Answer:
Loan term of the truck in years:
The loan term of the truck is 60 months. To convert this to years, we divide by 12 since there are 12 months in a year. Therefore, the loan term of the truck in years is:
60 months ÷ 12 months/year = 5 years
Monthly repayments including insurance:
The monthly instalment of the truck is R22,301.67 and the insurance cover is R500. Therefore, the total monthly repayment including insurance is:
R22,301.67 + R500 = R22,801.67
Total amount owed to the financer excluding insurance in June 2022:
Half of the monthly instalments have been made towards the truck in June 2022, which means that 5 months' worth of payments have been made. Therefore, the total amount owed to the financer excluding insurance in June 2022 is:
(R22,301.67 × 55) - R500 = R1,223,592.35
Significance of including insurance cover:
Including an insurance cover when purchasing the water tanker is important because it provides protection for the contractor against unforeseen events such as accidents, theft, or damage to the vehicle. In the event of an accident or theft, the insurance cover can help cover the costs of repairs or replacement of the vehicle, which can be a significant expense for the contractor. Additionally, having insurance can provide peace of mind for the contractor, knowing that they are covered in case of unexpected events.
Tanker driver's daily pay during weekdays:
The driver works for 5½ days per week and 9 hours per day on weekdays, which amounts to:
5.5 days/week × 9 hours/day = 49.5 hours/week
The rate per hour is R92.50, so the driver's pay per day during weekdays is:
49.5 hours/week × R92.50/hour ÷ 5 days/week = R909.75/day
The area of shape A is 3cm2 what is the area of shape B?
28.5cm^2 is the area of shape B.
What is area?A solid object's surface area is a measurement of the total area that the surface of the object takes up.
The definition polyhedra of arc length for one-dimensional curves and the definition of surface area for (i.e., objects with flat polygonal faces), where the surface area is the sum of the areas of its faces, are both much simpler mathematical concepts than the definition of surface area when there are curved surfaces.
A smooth surface's surface area is determined using its representation as a parametric surface, such as a sphere.
This definition of surface area uses partial derivatives and double much simpler mathematical concepts than the definition of surface area integration and is based on techniques used in infinitesimal calculus.sought a general definition of surface area.
(3×7)+(1.5×5)
21+7.5
28.5cm^2
learn more about area click here:
brainly.com/question/16519513
#SPJ1
if cos is the 4 quadrant
The exact value of sin∅ if cos∅ =3/8 and in the fourth quadrant is 292⁰
What are the angles in the 4th quadrant?We should recall that the the angles of the 4th quadrant range from 270° to 360°. that is to say that in the fourth quadrant, 270≤x≤360
The given angle is cos∅ =3/8
cos∅ = 0.375
Find the angle we take the cos inverse
That ∅ = Cos⁻¹0.375
∅ = 68⁰
In the fourth quadrant, cos is positive that 360-68 = 292⁰
Then the exact value of sin is 292⁰
Learn more about the quadrants on https://brainly.com/question/7196312
#SPJ1
The local zoo buys from a supplier with an invoice amount if 17,200. The term of the sale are 5/22 n/30. What is the net amount on the order of the bill is paid by the 22nd day
The net amount on the order if the bill is paid by the 22nd day is $16,340.
What is trade credit?The terms of payment that a supplier offers to a buyer are referred to as rade credit terms. These conditions outline the deadline for payment as well as any early payment discounts. For instance, if a supplier offers "2/10 net 30" terms, the customer can choose to pay the whole amount up front or receive a 2% reduction if they pay within 10 days.
The parameters of a trade credit agreement can significantly affect a company's cash flow. If a company can benefit from an early payment discount, they can save expenses and increase cash flow.
The term of sale is given as 5/22 n/30.
Here, the discount is 5%, thus the invoice amount is:
Discount = 0.05 x $17,200 = $860
Now, the net amount is:
Net Amount = Invoice Amount - Discount
Net Amount = $17,200 - $860
Net Amount = $16,340
Hence, the net amount on the order if the bill is paid by the 22nd day is $16,340.
Learn more about trade credit here:
https://brainly.com/question/28940561
#SPJ1
Hi, any one can solve it ?
For given function f(x)= x³ + 2x , the complete table is mentioned below. f⁻¹(3)= 1, f⁻¹(-12) = -2.
Describe function ?In mathematics, a function is a rule that assigns a unique output value for every input value in a specified set. It is a fundamental concept in algebra, calculus, and other areas of mathematics.
A function is typically denoted by a symbol, such as f(x), where x is the input variable, and f(x) is the output variable. The set of all input values for which the function is defined is called the domain, and the set of all output values is called the range.
To complete the table of values, we simply plug in the given values of x into the expression for f(x) and evaluate:
x f(x)
0 0
1 3
2 14
To find f⁻¹(3), we need to solve for x in the equation f(x) = 3:
x³ + 2x = 3
x³ + 2x - 3 = 0
We can use trial and error to find that x = 1 is a solution to this equation:
1³ + 2(1) - 3 = 0
Therefore, f⁻¹(3) = 1.
To find f⁻¹(-12), we need to solve for x in the equation f(x) = -12:
x³ + 2x = -12
x³ + 2x + 12 = 0
We can use trial and error to find that x = -2 is a solution to this equation:
(-2)³ + 2(-2) + 12 = 0
Therefore, f⁻¹(-12) = -2.
To know more about equation visit:
https://brainly.com/question/22964920
#SPJ1
For each of the following propositions, either i. use a case-based proof to demonstrate that the proposition holds true or ii. Use a counterexample to demonstrate the proposition does not hold.
(a) Assume x is an integer that is not divisible by 3, and y is an integer that is not divisible by 3. Then the sum of x and y cannot be divisible by 3.
(b) Assume x is an integer that is not divisible by 3, and y is an integer that is divisible by 3. Then the sum of x and y cannot be divisible by 3.
In both cases, the sum of x and y is not divisible by 3, we have demonstrated that the proposition is true. and the proposition is false, and we have shown a counterexample where the sum of two integers, one of which is not divisible by 3 and the other is divisible by 3, can be divisible by 3.
(a) To prove that the sum of two integers, x and y, neither of which is divisible by 3, cannot be divisible by 3, we can use a case-based proof.
Case 1: x and y leave a remainder of 1 when divided by 3.
Let x = 3m + 1 and y = 3n + 1, where m and n are integers. Then, the sum of x and y is 3m + 3n + 2, which leaves a remainder of 2 when divided by 3. Therefore, x + y is not divisible by 3.
Case 2: x and y leave a remainder of 2 when divided by 3.
Let x = 3m + 2 and y = 3n + 2, where m and n are integers. Then, the sum of x and y is 3m + 3n + 4, which leaves a remainder of 1 when divided by 3. Therefore, x + y is not divisible by 3.
Since in both cases, the sum of x and y is not divisible by 3, we have demonstrated that the proposition is true.
(b) To prove that the sum of two integers, x and y, where x is not divisible by 3 and y is divisible by 3, cannot be divisible by 3, we can use a counterexample.
Let x = 2 and y = 6. Then, x is not divisible by 3 and y is divisible by 3. However, x + y = 8, which is not divisible by 3.
Therefore, the proposition is false, and we have shown a counterexample where the sum of two integers, one of which is not divisible by 3 and the other is divisible by 3, can be divisible by 3.
To know more about proposition click here:
brainly.com/question/30895311
#SPJ4
in a batch of 10,000 clock radios 500 are defective. A sample of 10 clock radios is randomly selected without replacement from the 10,000 and tested. The entire batch will be rejected if at least one of those tested is defective. what is the probability that the entire batch will be rejected?
Answer:
Step-by-step explanation:
This is an example of a hypergeometric distribution problem, where we have a population of 10,000 clock radios with 500 defective ones, and we want to calculate the probability of getting at least one defective radio in a random sample of 10 without replacement.
The probability of getting no defective radios in the sample is:
(9500/10000) * (9499/9999) * (9498/9998) * ... * (9491/9992)
This is because, for the first radio, there are 9500 good radios out of 10,000, and for the second radio, there are 9499 good radios out of 9,999, and so on.
The probability of getting at least one defective radio in the sample is then:
1 - (9500/10000) * (9499/9999) * (9498/9998) * ... * (9491/9992)
which is approximately equal to 0.401.
Therefore, the probability that the entire batch will be rejected is 0.401.
Consider the function h(x) = a(−2x + 1)^5 − b, where a does not=0 and b does not=0 are constants.
A. Find h′(x) and h"(x).
B. Show that h is monotonic (that is, that either h always increases or remains constant or h always decreases or remains constant).
C. Show that the x-coordinate(s) of the location(s) of the critical points are independent of a and b.
Answer:
A. To find the derivative of h(x), we can use the chain rule:
h(x) = a(-2x + 1)^5 - b
h'(x) = a * 5(-2x + 1)^4 * (-2) = -10a(-2x + 1)^4
To find the second derivative, we can again use the chain rule:
h''(x) = -10a * 4(-2x + 1)^3 * (-2) = 80a(-2x + 1)^3
B. To show that h is monotonic, we need to show that h'(x) is either always positive or always negative. Since h'(x) is a multiple of (-2x + 1)^4, which is always non-negative, h'(x) is always either positive or negative depending on the sign of a. If a > 0, then h'(x) is always negative, which means that h(x) is decreasing. If a < 0, then h'(x) is always positive, which means that h(x) is increasing.
C. To find the critical points, we need to find where h'(x) = 0:
h'(x) = -10a(-2x + 1)^4 = 0
-2x + 1 = 0
x = 1/2
Thus, the critical point is at x = 1/2. This value is independent of a and b, as neither a nor b appear in the calculation of the critical point.
an adjusted r-squared value of 0 represents no ability of the model to explain the dependent variable.
An adjusted R-squared value of 0 indicates that the model has no ability to explain the variation in the dependent variable using the independent variables included in the model.
In other words, the model does not fit the data well and cannot make accurate predictions. An adjusted R-squared value of 1 represents a perfect fit, where the model explains all of the variation in the dependent variable using the independent variables. However, it is important to consider other factors such as the sample size, the quality of the data, and the appropriateness of the model to make valid conclusions about the model's ability to explain the dependent variable.
To know more about R-squared value, here
brainly.com/question/30260338
#SPJ4
Assume that a piece of land is currently valued at $50,000. If this piece of land is expected to appreciate at an annual rate of 5% per year for the next 20 years, how much will the land be worth 20 years from now?
The value of the land 20 years after it appreciates at annual rate at 5% is $132676.47.
What is appreciation of assets?An asset's value increases over time through a process called appreciation. Depreciation, on the other hand, reduces an asset's value throughout its useful life. The rate at which an asset's value increases is known as the appreciation rate. An increase in the value of financial assets, such as stocks, is referred to as capital appreciation. When a currency appreciates, it means that its value increases when compared to other currencies on the foreign exchange markets.
The annual rate is given as 5%.
The new value after 20 years can be calculated using the formula:
[tex]A = P * (1 + r/n)^{(nt)}[/tex]
Substituting the values we have:
[tex]A = $50,000 * (1 + 0.05/1)^{(1*20)}\\A = $50,000 * 1.05^{20}\\A = $132,676.47[/tex]
Hence, the value of the land 20 years after it appreciates at annual rate at 5% is $132676.47.
Learn more appreciating assets here:
https://brainly.com/question/28499559
#SPJ1
A screen has a zoom of 140%, which means that images on the screen are 140% as long and 140% as wide as when they are printed on a sheet of paper. An image of a house is 17 cm tall when printed on a sheet of paper. How tall would the image of the house be on the screen? Give your answer in centimetres (cm).
Answer:
23.8 cm
Step-by-step explanation:
17 * 140% = 17 * 1.4 = 23.8 cm
The image of the house would be 23.8 cm tall on the screen.
To calculate the height of the image of the house on the screen, we can use the given zoom factor of 140%.
The zoom factor of 140% means that the images on the screen are 140% as long and 140% as wide compared to when they are printed on a sheet of paper.
To calculate the height of the image on the screen, we need to multiply the printed height by the zoom factor (140% or 1.4).
Height on the screen = Printed height * Zoom factor
Height on the screen = 17 cm * 1.4
Height on the screen = 23.8 cm
Therefore, the image of the house would be 23.8 cm tall on the screen.
To know more about variable visit:
brainly.com/question/2466865
#SPJ2
Sharon used 8 roses and 6 tulips to make a bouquet. The tape diagram below shows the relationship between the number of roses and the number of tulips in the bouquet.
Answer:
Step-by-step explanation:
its C
The function rule for this graph is Y equals___ X + ___
The answer is below in case someone needs it.
The function rule for this graph is y = -1/2(x) + 2.
How to determine an equation of this line?In Mathematics, the point-slope form of a straight line can be calculated by using the following mathematical expression:
y - y₁ = m(x - x₁) or [tex]y - y_1 = \frac{(y_2- y_1)}{(x_2 - x_1)}(x - x_1)[/tex]
Where:
m represent the slope.x and y represent the points.At data point (0, 2), a linear equation in slope-intercept form for this line can be calculated by using the point-slope form as follows:
[tex]y - y_1 = \frac{(y_2- y_1)}{(x_2 - x_1)}(x - x_1)\\\\y - 2 = \frac{(0- 2)}{(4 -0)}(x -0)[/tex]
y - 2 = -1/2(x)
y = -1/2(x) + 2.
In this context, we can reasonably infer and logically deduce that an equation of the line that represents this graph in slope-intercept form is y = -1/2(x) + 2.
Read more on slope here: brainly.com/question/3493733
#SPJ1
The pens in a box are repackaged equally into 9 packs. Each pack has more than 15 pens.
1. Find an inequality to represent n, the possible number of pens in the box.
2. Explain why you chose this inequality.
Therefore, the possible number of pens in the box is p, where p is greater than 135.
What is inequality?Inequality refers to a situation in which there is a difference or disparity between two or more things, usually in terms of value, opportunity, or outcome. Inequality can take many forms, including social, economic, and political inequality.
Inequalities are mathematical expressions that compare two values using the symbols < (less than), > (greater than), ≤ (less than or equal to), or ≥ (greater than or equal to). To solve an inequality, you need to isolate the variable (the unknown quantity) on one side of the inequality symbol and determine the range of values for which the inequality holds true.
Here are some general steps to solve an inequality:
Simplify both sides of the inequality as much as possible. This may involve combining like terms, distributing terms, or factoring.Get all the variable terms on one side of the inequality symbol and all the constant terms on the other side. Remember that when you multiply or divide both sides of an inequality by a negative number, you must reverse the direction of the inequality symbol.Solve for the variable by isolating it on one side of the inequality symbol. If the variable has a coefficient, divide both sides of the inequality by that coefficient.Write down the solution as an inequality. If you have solved for x, the solution will be in the form of x < a or x > b, where a and b are numbers.Check your solution by testing a value in the original inequality that is within the range of the solution. If the inequality holds true for that value, then the solution is correct. If not, then you may need to recheck your work or adjust your solutionby the question.
Let's say there are 'p' pens in the box. Each pack has more than 15 pens, so we can write the inequality:
p/9 > 15
Multiplying both sides by 9, we get:
p > 135
To learn more about inequality:
https://brainly.com/question/30231190
#SPJ1
PLS HELP FAST 50 POINTS + BRAINLIEST
Answer:
Anna had 23 sweets in her bag at the start of the day.
Step-by-step explanation:
Let's use working backwards to find out how many sweets were in the bag at the start of the day.
At the end of lesson 4, Anna had 1 sweet left in her bag. So, before she gave a sweet to her teacher in lesson 4, she had 2 sweets left in her bag.
In lesson 3, she gave out half of the sweets left in her bag and then gave one to the teacher. So, before she gave a sweet to her teacher in lesson 3, she had 2 x 2 + 1 = 5 sweets in her bag.
In lesson 2, she gave out half of the sweets left in her bag and then gave one to the teacher. So, before she gave a sweet to her teacher in lesson 2, she had 5 x 2 + 1 = 11 sweets in her bag.
In lesson 1, she gave out half of the sweets in her bag and then gave one to the teacher. So, before she gave a sweet to her teacher in lesson 1, she had 11 x 2 + 1 = 23 sweets in her bag.
Therefore, Anna had 23 sweets in her bag at the start of the day.
name three angles that sum up to 180 degrees
The three angles are= angleMCD + angleCMD + angleGMF= 180.
What are angles?Two lines intersect at a location, creating an angle.
An "angle" is the term used to describe the width of the "opening" between these two rays. The character is used to represent it.
Angles are frequently expressed in degrees and radians, a unit of circularity or rotation.
In geometry, an angle is created by joining two rays at their ends. These rays are referred to as the angle's sides or arms.
An angle has two primary components: the arms and the vertex. T
he two rays' shared vertex serves as their common terminal.
According to our question-
angleM= 127
angleC=27
angleG=26
127+27+26
180
Hence, The three angles are= angleMCD + angleCMD + angleGMF= 180.
Learn more on angles here click here:
brainly.com/question/2046046
#SPJ1
Answer: <MCD, <CMD, and <GMF
Step-by-step explanation:
Solve each of the following equations for the indicated variable f = (1+i)"-1 for i
Answer:
If i = -1 then the answer is f = 0
0 = ( 1 + -1 ).
f equaling 0 makes the statement true 0=0
Step-by-step explanation:
Three dice are rolled. What is the probability of getting the sum as 13?
When three dices are rolled.
Total number of outcomes = = 216
Sum of 13 can be achieved in the following ways:
From the digits 6,4,3
So, there are 3! ways = = 6
From the digits 6,2,5
So, there are 3! ways = = 6
From the digits 5,4,4
So, there are ways = 3
From the digits 6,6,1
So, there are ways = 3
From the digits 3,5,5
So, there are ways = 3
So, total numbers whose sum is 13=
So, Probability = .
Therefore, the probability of getting sum as 21 on rolling three dice = .
HELP Whats the Answer to this Stand Deviation Question?
Answer: he would be 2 standard deviations above the
Step-by-step explanation:
Evaluate (can't write decimal answer).
[tex]sin(20)sin(70)-sin(14)cos(26)-cos(6)cos(84)[/tex]
The evaluation of sin(20)sin(70) - sin(14)cos(26) - cos(6)cos(84) is approximately -1.
How to solve trigonometry?Use the trigonometric identities to simplify the expression:
sin(20)sin(70) - sin(14)cos(26) - cos(6)cos(84)
= (sin(20)cos(20)) / 2 - (sin(14)sin(64)) / 2 - (cos(6)cos(6)) / 2
= [(sin(40) - sin(80)) / 2] - [(cos(50) - cos(78)) / 2] - [(1 + cos(12)) / 2]
= (sin(40) - cos(50) + cos(78) - sin(80) - 1 - cos(12)) / 2
Now, use a calculator to evaluate each trigonometric function:
sin(40) = 0.6428, cos(50) = 0.6428, cos(78) = 0.2079, sin(80) = 0.9848, cos(12) = 0.9781
Substituting these values:
= (0.6428 - 0.6428 + 0.2079 - 0.9848 - 1 - 0.9781) / 2
= -2.755 / 2
= -1.3775
Therefore, the value of the given expression is approximately -1.
Learn more on trigonometry here: https://brainly.com/question/13729598
#SPJ1
Annie is concerned over a report that "a woman over age 40 has a better chance of being killed by a terrorist than of getting married." A study found that the likelihood of marriage for a never-previously-wed, 40 -year-old university-educated American woman was 2.5% . To demonstrate that this percentage is too small, Annie uses her resources at the Baltimore Sun to conduct a simple random sample of 546 never-previously-wed, university-educated, American women who were single at the beginning of their 40 s and who are now 45 . Of these women, 20 report now being married. Does this evidence support Annie’s claim, at the 0.01 level of significance, that the chances of getting married for this group is greater than 2.5% ? Step 1 of 3 : State the null and alternative hypotheses for the test. Fill in the blank below. H0Ha: p=0.025: p⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯0.025
Due to the directed nature of the alternative hypothesis, a one-tailed test is being used (greater than).
what is null hypothesis ?The null hypothesis, which is an assertion or assumption that there is no significant difference or association between two or more variables or populations, is used in statistical hypothesis testing. It is frequently indicated by the letter H0 and is typically the hypothesis that is tested against a competing hypothesis. The objective of the hypothesis test is to either reject or fail to reject the null hypothesis based on the evidence or data seen. The null hypothesis serves as the default or baseline assumption. If the alternative hypothesis is supported by evidence, the null hypothesis is likely to be rejected.
given
The test's null and alternate hypotheses are as follows:
H0: p 0.025 (The percentage of American women with university educations who had never previously been married at the start of their 40s and are now 45 and married is less than or equal to 2.5%)
Ha: p > 0.025 (More than 2.5% of American women with college degrees who were unmarried at the start of their 40s and are now 45 and married are never before married).
Due to the directed nature of the alternative hypothesis, a one-tailed test is being used (greater than).
To know more about null hypothesis visit
https://brainly.com/question/28920252
#SPJ1
The weight of a small Starbucks coffee is a normally distributed random variable with a mean of 385 grams and a standard deviation of 8 grams find the weight that corresponds to each event(use excel or appendix c to calculate the z value round your final answers to 2 decimal places
The weight that corresponds to the highest 5% is also approximately 398.12 grams.
What is Z-Score?
A score's connection to the mean within a group of scores is statistically measured by a Z-Score.
To find the weight that corresponds to each event, we need to use the standard normal distribution and convert each value to a z-score using the formula:
z = (x - μ) / σ
Here are the calculations for each event:
The weight that corresponds to the 25th percentile:
-0.68 = (x - 385) / 8
Solving for x gives:
x = 379.44 grams (rounded to two decimal places)
Therefore, the weight that corresponds to the 25th percentile is approximately 379.44 grams.
The weight that corresponds to the 95th percentile. we find that the z-score is approximately 1.64 (rounded to two decimal places). Then we can use the formula above to solve for x:
1.64 = (x - 385) / 8
x = 398.12 grams (rounded to two decimal places)
Therefore, the weight that corresponds to the 95th percentile is approximately 398.12 grams.
The weight that corresponds to the highest 5%:
1.64 = (x - 385) / 8
x = 398.12 grams (rounded to two decimal places)
Therefore, the weight that corresponds to the highest 5% is also approximately 398.12 grams.
To know more about Z-Score visit,
https://brainly.com/question/25638875
#SPJ1
Please help me with this question
The slope-intercept version of the equation for the tangent line to f(x) at the position (-5, -1) is y = (-1/5)x -2. Thus,
m = -1/5
y = (-1/5)x -2
What can you infer from a tangent line?A tangent line is a straight line that οnly has οne cοntact with a functiοn. (See earlier.) The instantaneοus rate οf change οf the functiοn at that exact place is shοwn by the tangent line. At each given pοint οn the functiοn, the slοpe οf the tangent line is equal tο the derivative οf the functiοn at that same lοcatiοn.
We must determine the derivative οf the functiοn and evaluate it at x = -5 in οrder tο determine the slοpe οf f(x) = 5/x at the pοint (-5, -1).
f(x) = 5/x
f'(x) = [-5/x²]
When we enter x = -5, we obtain:
f'(-5) = [-5/(-5)²] = -1/5
As a result, the tangent line to f(x) at the point (-5, -1) has a slope of -1/5.
y - y1 = m(x - x1)
y - (-1) = (-1/5)(x - (-5))
y + 1 = (-1/5)(x + 5)
y = (-1/5)x -10/5
y = (-1/5)x -2
To know more about tangent line visit:-
brainly.com/question/23265136
#SPJ1
Solve for h -110=13+3(4h-6)
Answer:
H= -35/4
Decimal form: -8.75
Explanation:
Subtract 13 from both sides. { -110 - 13 =3(4h - 6) }Simplify -110 -13 to -123 { -123 = 3 (4h - 6) }Divide both sides by 3 { -123/3 = 4h - 6 }simplify 123/3 to 41 { -41 = 4h - 6 }add 6 to both sides { -41 +6 = 4h }simplify -41 + 6 to -35 { -35 = 4h }divide both sides by 4 { - 35/4 = h }switch sides { h= - 35/4 }Question 23 (2 points)
A standard deck of cards contains 4 suits of the same 13 cards. The contents of a
standard deck are shown below:
Standard deck of 52 cards
4 suits (CLUBS, SPADES, HEARTS, DIAMONDS)
13 CLUBS
13 SPADES
13 HEARTS
13 DIAMONDS
If two cards are drawn at random from the deck of cards, what is the probability both
are kings?
4/52
3/51
12/2652
16/2704
Answer:
12/2652
Step-by-step explanation:
First, the probability of drawing a king for the first time is 4/52. The chance of drawing another is 3/51. Multiplying, we get the 3rd answer choice, 12/2652
The roof on a house requires that every 2 yards gets covered by 3 shingles. You currently have 60 boxes that contain 120 shingles each. The roof of the house is estimated at 4500 yards that must be covered. Which sentence best describes the amount of shingles needed?
To cover the house roof, as we only need 6,750 shingles and we have 7,200 shingles available.
What are arithmetic operations ?
Arithmetic operations are basic mathematical operations used to perform calculations involving numbers. The four basic arithmetic operations are:
Addition: This operation involves combining two or more numbers to get a total or sum. The symbol used for addition is "+".Subtraction: This operation involves finding the difference between two numbers. The symbol used for subtraction is "-".Multiplication: This operation involves finding the product of two or more numbers. The symbol used for multiplication is "×" or "*".Division: This operation involves dividing a number into equal parts or finding how many times one number fits into another. The symbol used for division is "÷" or "/".According to the question:
To determine the amount of shingles needed to cover the roof of the house, we can use the fact that every 2 yards requires 3 shingles. Therefore, for 4500 yards, we need to divide by 2 and then multiply by 3 to get the total number of shingles needed.
(4500 yards) / (2 yards/2) * (3 shingles/2 yards) = 6,750 shingles
Since we have 60 boxes that contain 120 shingles each, we can calculate the total number of shingles we have:
60 boxes * 120 shingles per box = 7,200 shingles
Therefore, we have more than enough shingles to cover the roof, as we only need 6,750 shingles and we have 7,200 shingles available.
To know more about arithmetic operations visit:
https://brainly.com/question/30553381
#SPJ1
the answer is supposed to be 799 & 7188, but I don't know how to get there
Doing simple algebra with the two summations we can see that:
[tex]\Sigma x = 799\\\\\Sigma x^2 = 7,188[/tex]
How to find the values of the two summations?First, we know that there are 97 passengers, and we know that the summation:
[tex]\Sigma (x - 5) = 314[/tex]
Where x represents the weights.
Then we can rewrite that sum as:
[tex]\Sigma (x - 5) = \Sigma x - 97*5[/tex]
And replace that in the original equation to get:
[tex]\Sigma x - 97*5 = 314\\\Sigma x = 314 + 5*97 = 799[/tex]
So that is the first summation, now let's get the second one, we can rewrite the summation as:
[tex]\Sigma (x - 5)^2 = \Sigma x^2 - 10x +25 \\\\\Sigma x^2 - \Sigma 10x + \Sigma 25[/tex]
Where remember we have 97 terms, and the summation is equal to 1623, then:
[tex]\Sigma x^2 - \Sigma 10x + 25*97 = 1623[/tex]
Now we can replace the second term by the thing we found earlier:
[tex]\Sigma x^2 - 10\Sigma x + 25*97 = 1623\\\\\Sigma x^2 - 10*799 + 25*97 = 1623\\\\\Sigma x^2 = 1623 + 10*799 - 25*97\\\\\Sigma x^2 = 7,188[/tex]
That is the answer.
Learn more about summations at:
https://brainly.com/question/26243301
#SPJ1
I need help with this
Answer:
D
Step-by-step explanation:
when an angle is supplementary to another angle, it means that both of the angles added together equal 180 degrees.
120+60=180.
Lori is moving and must rent a truck. There is an initial charge of $60 for the rental plus an additional fee per mile driven. Would a linear, quadratic or exponential function be the best type of equation to model this function? Exponential Quadratic Linear
Answer:
A linear function would be the best type of equation to model this situation. The total cost of renting the truck increases linearly with the number of miles driven. The initial charge of $60 can be considered as the y-intercept of the linear function, and the additional fee per mile driven can be considered as the slope of the line. Therefore, the equation that models this situation can be written in the form y = mx + b, where y is the total cost of renting the truck, x is the number of miles driven, m is the additional fee per mile driven (the slope of the line), and b is the initial charge of $60 (the y-intercept).
Answer:
A linear function would be the best type of equation to model this function.
Step-by-step explanation:
The total cost of renting the truck is composed of two parts:
Initial charge of $60.Additional fee per mile driven.The initial charge of $60 is the fixed charge, and the additional fee is the variable charge that is proportional to the number of miles driven.
Let "x" be the number of miles driven and "y" be the total cost of the rental (in dollars), then the linear equation is:
y = mx + 60
where "m" is the additional fee (in dollars) per mile driven.
Therefore, a linear function, in the form y = mx + b, where m represents the slope or rate of change, and b represents the initial fixed charge, is the most appropriate function to model this situation.
the annual rainfall in 2017 in opuwo was 420mm.
the annual rainfall in 2018 was 12% more than in 2017.
find the annual rainfall in 2018.
Thus, Opuwo received 470.4mm of precipitation annually in 2018.
What is the procedure for determining rainfall?Depth x Radius x Radius x 3.14 will give you the typical rainfall amount. The apex of the bucket's region can be located. To calculate the amount of rain, divide the capacity by this region.
To find the annual rainfall in 2018, we can use the fact that it was 12% more than in 2017.
Let R be the annual rainfall in 2017 (which we know to be 420mm). Then, the annual rainfall in 2018 can be expressed as:
R + 0.12R
Simplifying this expression, we get:
1.12R
Therefore, the annual rainfall in 2018 was:
1.12 x 420mm = 470.4mm
So the annual rainfall in 2018 in Opuwo was 470.4mm
To know more about Rainfall visit:
https://brainly.com/question/29422204
#SPJ1
Cody has $7 dollars. he wants to buy at least 4 snacks. Hot dogs (x) and $2 each. Peanuts (y) are $1 each. which ordered pair is a solution
Since we can't find an ordered pair (x, y) that satisfies all the conditions, there is no solution to this problem.
What is equation?An equation is a mathematical statement that asserts the equality of two expressions. It typically contains variables, coefficients, and mathematical operations such as addition, subtraction, multiplication, and division. The goal of solving an equation is to find the value(s) of the variable(s) that make the equation true. Equations can be used to model relationships between variables, solve real-world problems, and make predictions.
Here,
Let's start by defining the variables:
x: number of hot dogs
y: number of peanuts
We need to find an ordered pair (x, y) that satisfies the following conditions:
x and y are both integers
x is greater than or equal to 0
y is greater than or equal to 0
2x + y ≤ 7 (total cost of snacks can't exceed $7)
x ≥ 4 (at least 4 snacks)
We can use trial and error to find a suitable ordered pair. Let's start with x = 4 and see if we can find a corresponding y value that satisfies the conditions:
If x = 4, then the total cost of hot dogs is 4 * $2 = $8.
We need to spend no more than $7, so we have $7 - $8 = -$1 left for peanuts.
Since we can't spend a negative amount of money, there is no solution for x = 4.
Let's try x = 5:
If x = 5, then the total cost of hot dogs is 5 * $2 = $10.
We have $7 - $10 = -$3 left for peanuts, so there is no solution for x = 5 either.
Finally, let's try x = 6:
If x = 6, then the total cost of hot dogs is 6 * $2 = $12.
We have $7 - $12 = -$5 left for peanuts, so there is no solution for x = 6 either.
To know more about equation,
https://brainly.com/question/28243079
#SPJ1
Complete question:
Cody has $7 dollars. he wants to buy at least 4 snacks. Hot dogs (x) and $2 each. Peanuts (y) are $1 each. Find the solution for this question of equation?