The value of Keq is (c) Keq: 1×10²⁶ and the sign of ΔG° for the reaction at 1000K is Positive.
The Keq value for the reaction 2FeO(s) + C(s) ⇄ 2Fe(s) + CO₂(g) can be obtained by multiplying the Keq values for the two reactions given in the problem: Keq = Keq₁ x Keq₂. Thus,
Keq = (1x10⁻⁶) x (1x10⁻³²)
Keq = 1x10⁻³⁸.
Since ΔG° = -RTln(Keq),
a positive value of ΔG° means that the reaction is not thermodynamically favorable at 1000K.
However, C(s) is added to the reaction mixture to drive the reaction in the forward direction. The addition of C(s) will increase the concentration of CO₂(g) and hence decrease the value of Keq. Therefore, the value of Keq is much greater than 1x10⁻³⁸ and the sign of ΔG° is positive. Option (c) is the correct answer.
To learn more about thermodynamically favorable, here
https://brainly.com/question/31665869
#SPJ4
The strongest intermolecular interactions between carbon disulfide CS2 molecules arise from. a) London dispersion forces b) hydrogen bonding c) disulfulfide linkages d) dipole-dipole forces e) ion-dipole interactions
The strongest intermolecular interactions between carbon disulfide (CS2) molecules arise from a) London dispersion forces. This is because CS2 is a nonpolar molecule, and there is no hydrogen bonding, disulfide linkages, dipole-dipole forces, or ion-dipole interactions present.
The strongest intermolecular interactions between carbon disulfide (CS2) molecules arise from London dispersion forces. These forces are also known as van der Waals forces and are the result of temporary dipoles that form due to the movement of electrons in the molecules. While other types of intermolecular interactions, such as dipole-dipole forces and hydrogen bonding, can also occur, they are generally weaker than London dispersion forces for nonpolar molecules like CS2.
Disulfide linkages and ion-dipole interactions are not relevant in this case as they involve different types of chemical bonding or interactions with charged particles.
To know more about intermolecular visit:-
https://brainly.com/question/9007693
#SPJ11
Arrange the following compounds in order of decreasing acidity. 1. CH3COOH 2. CH3CH2OH 3. CF3COOH 4. CCI3COOH A. 3214 B. 3412 C. 2143 D. 2431 E. 2134 F. 3142
The correct order of decreasing acidity for the given compounds is option F, which is 3142. Acidity of a compound is determined by the strength of its conjugate base.
The stronger the conjugate base, the weaker the acid. In this case, all the given compounds have a carboxylic acid functional group, which is a strong acid. However, the strength of the acid is affected by the electronegativity of the substituents on the carbon atom. The more electronegative the substituent, the stronger the acid.
Therefore, CF3COOH (compound 3) is the strongest acid due to the presence of the highly electronegative CF3 group. CH3COOH (compound 1) is the next strongest acid due to the presence of the moderately electronegative CH3 group. CCI3COOH (compound 4) is weaker than CH3COOH due to the presence of the highly electronegative CCI3 group. Finally, CH3CH2OH (compound 2) is the weakest acid as it does not have any electronegative substituents.
Thus, the correct order of decreasing acidity is 3142 (option F).
To know more about carboxylic acid refer to
https://brainly.com/question/31050542
#SPJ11
what is the electron-pair geometry for b in bf3?
The electron-pair geometry for boron (B) in BF3 is trigonal planar.
BF3 molecule consists of three fluorine atoms and one boron atom. The boron atom has three valence electrons. Each fluorine atom shares one valence electron with boron atom, resulting in the formation of three B-F covalent bonds. Since there are no lone pairs on the boron atom, the geometry of the molecule is determined by the arrangement of the B-F bonds.
The VSEPR theory (Valence Shell Electron Pair Repulsion theory) states that the electron pairs (bonding and non-bonding) around the central atom will arrange themselves in such a way as to minimize the repulsion between them. In the case of BF3, the three bonding pairs of electrons are arranged around the boron atom in a trigonal planar arrangement. Therefore, the electron-pair geometry for boron in BF3 is trigonal planar.
To know more about VSEPR theory refer here:
https://brainly.com/question/31034060#
#SPJ11
Use the References to access important values if needed for this question. The following standard reduction potentials have been determined for the aqueous chemistry of gold: Au3+(aq) + 2e → Au+(aq) Aut(aq) +e- —Au(s) E° = 1.290 V E° = 1.680 V Calculate the equilibrium constant (K) for the disproportionation of Aut(aq) at 25 °C. 3Aut(ag) 2Au(s) + Au3+(aq) K=
The value of equilibrium constant (K) for the disproportionation of Aut(aq) at 25 °C is 1.7109 × 10 ⁷⁰.
Modifying the given equations,
3 Au⁺ (aq) → 2Au (s) + Au³⁺ (aq)
2 Au⁺ (aq) + 2e⁻ → 2Au (s)
Reverse reaction,
Au (s) → Au³⁺ (aq) + 2e⁻
Adding the eqns,
[2 Au⁺ (aq) + 2e⁻ → 2Au (s)] + [Au (s) → Au³⁺ (aq) + 2e⁻] → [3 Au⁺ (aq) + 2 Au + Au³⁺]
E° cell = 3.360 - 1.290 = 2.070
E cell = E° cell - RT/nF ln K
At eq, E cell = 0
At 25° C , RT/F = 0.0256 V and number of electrons involved = 2
0 = E° cell - 0.0256/2 ln K
E° cell = 0.0256/2 ln K
2.070 = 0.0128 ln K
ln K = 161.718
K = e¹⁶¹.⁷¹⁸
K = 1.7109 × 10 ⁷⁰
Hence, the value of equilibrium constant (K) for the disproportionation of Aut(aq) at 25 °C is 1.7109 × 10 ⁷⁰.
Learn more about equilibrium constant from the link given below.
https://brainly.com/question/28559466
#SPJ4
A metal having a mass 29. 94 g at 96. 6 oC was placed in a coffee cup calorimeter of negligible heat capacity. The liquid in the calorimeter was 150 mL mercury at 17. 7 oC, which specific heat is 0. 140 J/g oC. Mercury density is 5. 43 g/cm3. If the final temperature of the system was 33. 3 oC, what would be the specific heat of that metal
The specific heat of metal is approximate [tex]0.331 J/g^0C[/tex] which is calculated based on its mass, the mass and specific heat of a liquid in a calorimeter, and the initial and final temperatures of the system.
To calculate the specific heat of the metal, we need to use the principle of energy conservation. The heat lost by the metal is equal to the heat gained by the liquid in the calorimeter. The formula to calculate heat transfer is given by:
q = m * c * ΔT
Where:
q = heat transfer
m = mass
c = specific heat
ΔT = change in temperature
Let's calculate the heat lost by the metal and the heat gained by the liquid separately.
For the metal:
[tex]q_m_e_t_a_l[/tex] = -[tex]q_l_i_q_u_i_d[/tex] = [tex]m_m_e_t_a_l[/tex] * [tex]c_m_e_t_a_l[/tex] * Δ[tex]T_m_e_t_a_l[/tex]
For the liquid:
[tex]q_m_e_t_a_l[/tex] = [tex]m_l_i_q_u_d[/tex] *[tex]c_l_i_q_u_d[/tex] * Δ[tex]T_l_i_q_u_i_d[/tex]
Substituting the given values:
[tex]m_m_e_t_a_l[/tex] * [tex]c_m_e_t_a_l[/tex] * Δ[tex]T_m_e_t_a_l[/tex] = -[tex]m_l_i_q_u_d[/tex] * [tex]c_l_i_q_u_d[/tex] * Δ[tex]T_l_i_q_u_i_d[/tex]
Rearranging the equation to solve for the specific heat of the metal ([tex]c_m_e_t_a_l[/tex]):
[tex]c_m_e_t_a_l[/tex] = (-[tex]m_l_i_q_u_d[/tex] * [tex]c_l_i_q_u_d[/tex] * Δ[tex]T_l_i_q_u_i_d[/tex]) / ([tex]m_m_e_t_a_l[/tex] * Δ[tex]T_m_e_t_a_l[/tex])
Plugging in the values:
[tex]c_m_e_t_a_l = (-150 g * 0.140 J/g^0C * (33.3°C - 17.7^0C)) / (29.94 g * (33.3^0C - 96.6^0C))[/tex]
Simplifying the equation:
[tex]c_m_e_t_a_l =0.331 J/g^0C[/tex]
Therefore, the specific heat of the metal is approximate [tex]0.331 J/g^0C[/tex].
Learn more about calorimeter here:
https://brainly.com/question/28034251
#SPJ11
An electron of energy 5.0 eV approaches a step potential of height 1.6 eV Calculate the probabilities that the electron will be reflected and transmitted. Express your answers using two significant figures separated by a comma.
When an electron of energy 5.0 eV approaches a step potential of height 1.6 eV, then the probabilities that the electron will be reflected and transmitted are 0.13 and 0.87, respectively.
To calculate the probabilities of reflection and transmission, we will use the following formulas:
1. Reflection coefficient (R) = ((k1 - k2) / (k1 + k2))^2
2. Transmission coefficient (T) = 1 - R
First, determine the energy difference (E) between the electron and the step potential:
E = 5.0 eV - 1.6 eV = 3.4 eV
Next, find the wave vector (k) for the initial and final states:
k1 = sqrt(2 * m * E1 / h^2) = sqrt(2 * m * 5.0 eV / h^2)
k2 = sqrt(2 * m * E2 / h^2) = sqrt(2 * m * 3.4 eV / h^2)
Now, calculate the reflection coefficient (R):
R = ((k1 - k2) / (k1 + k2))^2
Then, calculate the transmission coefficient (T):
T = 1 - R
Finally, express the probabilities in two significant figures:
R = 0.13 (reflection probability)
T = 0.87 (transmission probability)
In summary, the probabilities of the electron being reflected and transmitted are 0.13 and 0.87, respectively.
Learn more about transmission coefficient here:
https://brainly.com/question/31412413
#SPJ11
based on the organization and colors in the periodic table which two elements do you think are most similar in terms of their properties: magnesium, barium,and gold explain
The two elements that appear to be most similar in terms of their properties among magnesium, barium, and gold are magnesium and barium.
What are the elements?Group 2, often known as the alkaline earth metals group, is where both magnesium (Mg) and barium (Ba) can be found. Due to sharing the same amount of valence electrons, elements belonging to the same group frequently display similarities in their properties.
Barium and magnesium both have comparable atomic structures. They are both two-valence electron systems, which increases the likelihood that they will lose those electrons and create positive ions.
Learn more about periodic table:https://brainly.com/question/31672126
#SPJ1
what is e°cell for the following reaction? 2ag(s) sn2 (aq) → 2ag (aq) sn(s) ag (aq) e– → ag(s) e° = 0.80 v sn4 (aq) 2e– → sn2 (aq) e° = 0.13 v sn2 (aq) 2e– → sn(s) e° = –0.14 v
The standard cell potential of the reaction is 0.67 V obtained by subtracting the reduction and oxidation half-reaction potentials.
How to find standard cell potential?To find the standard cell potential, we can use the formula:
E°cell = E°(reduction at cathode) - E°(oxidation at anode)
First, let's write the overall balanced equation for the reaction:
2Ag(s) + Sn₄+(aq) → 2Ag+(aq) + Sn₂+(aq)
The reduction half-reaction occurs at the cathode, where Ag+ ions are reduced to Ag(s):
Ag+(aq) + e- → Ag(s) E° = 0.80 V
The oxidation half-reaction occurs at the anode, where Sn₄+ ions are oxidized to Sn₂+ ions:
Sn₄+(aq) + 2e- → Sn₂+(aq) E° = 0.13 V
Notice that the reduction half-reaction has a higher E° value than the oxidation half-reaction, which means it is more likely to occur spontaneously. To get the overall cell potential, we subtract the oxidation half-reaction potential from the reduction half-reaction potential:
E°cell = E°(reduction at cathode) - E°(oxidation at anode)
E°cell = 0.80 V - 0.13 V
E°cell = 0.67 V
Therefore, the standard cell potential for the given reaction is 0.67 V.
Learn more about standard cell
brainly.com/question/28188023
#SPJ11
true/false. the avr uses the term twi instead of i2c.
True.
AVR, which stands for Advanced Virtual RISC, uses the term TWI (Two-Wire Interface) instead of I2C (Inter-Integrated Circuit) to refer to a communication protocol that allows for simple, two-wire serial communication between multiple devices on a shared bus.
TWI and I2C are very similar protocols, but TWI is specific to AVR microcontrollers, while I2C is a more general protocol used by many different manufacturers.
The TWI protocol was developed by Atmel (now part of Microchip Technology) specifically for their AVR microcontrollers, and it is essentially a subset of the I2C protocol. So while the two protocols are very similar, they are not exactly the same.
Learn more about protocol here :
https://brainly.com/question/24678664
#SPJ11
Sodium reacts with water according to the geaction: 2 Na(s) + 2 H2O(1) --> 2 NaOH(aq) + H2(g) Identify the oxidizing agent [ Select ] H20 Na Identify the reducing agent NaOH H2 What is the oxidation state for Na(s) [Select ] < What is the oxidation state for O in H2O(l
The oxidizing agent in the given reaction is water (H2O). The reducing agent is sodium (Na). In the given reaction, sodium (Na) is oxidized as it loses electrons to form sodium hydroxide (NaOH). Water (H2O) is reduced as it gains electrons to form hydrogen gas (H2). Therefore, water acts as an oxidizing agent and sodium acts as a reducing agent.
The oxidation state for Na(s) is 0 (zero) because it is in its elemental form and has no charge.The oxidation state for O in H2O(l) is -2 (minus two) because oxygen (O) is more electronegative than hydrogen (H) and attracts the electrons towards itself, making its oxidation state -2.
An oxidizing agent is a substance that gains electrons in a redox reaction, causing another substance to lose electrons (be oxidized). In this reaction, H2O gains electrons from Na, making H2O the oxidizing agent.A reducing agent is a substance that loses electrons in a redox reaction, causing another substance to gain electrons (be reduced). In this reaction, Na loses electrons to H2O, making Na the reducing agent.
To know more about electrons visit
https://brainly.com/question/1255220
#SPJ11
which would be a more effective drying agent, cacl2 or cacl2 ? 6h2o? explain.
Calcium chloride ([tex]CaCl_{2}[/tex]) is a drying agent commonly used in the laboratory to remove moisture from organic solvents.
However, calcium chloride also tends to absorb water from the atmosphere, so it must be kept in a sealed container to be effective.
Calcium chloride hexahydrate ([tex]CaCl_{2}[/tex] · [tex]6H_{2}O[/tex]) is a hydrated form of calcium chloride that also has drying properties, but it is less effective than anhydrous calcium chloride since it contains a smaller proportion of the active [tex]CaCl_{2}[/tex] component.
Furthermore, [tex]CaCl_{2}[/tex] · [tex]6H_{2}O[/tex] is more bulky than anhydrous [tex]CaCl_{2}[/tex], which can make it more difficult to work with in certain situations. Therefore, anhydrous [tex]CaCl_{2}[/tex] is generally considered to be the more effective drying agent.
To know more about drying agent, refer here:
https://brainly.com/question/31579854#
#SPJ11
the diluted solution was heated. (how did the increasing temperature affect the value of kc?
The value of kc is the equilibrium constant, which represents the ratio of the concentrations of products to reactants at equilibrium. When a diluted solution is heated, it can affect the value of kc in a number of ways.
Firstly, increasing the temperature can cause the reaction to shift in the direction of the endothermic reaction, which absorbs heat. This can increase the concentration of the products and decrease the concentration of the reactants, thereby increasing the value of kc.
On the other hand, if the reaction is exothermic and releases heat, increasing the temperature can cause the reaction to shift in the direction of the reactants. This can decrease the concentration of the products and increase the concentration of the reactants, thereby decreasing the value of kc.
To know more about equilibrium constant visit:-
https://brainly.com/question/10038290
#SPJ11
What is the molar solubility of pbbr2pbbr2 in 0.500 m kbr0.500 m kbr solution?
The answer is 4.98 x 10^-6 mol/L.
The molar solubility of pbbr2pbbr2 in a 0.500 m kbr solution can be calculated using the common ion effect. KBr, which is a salt of a strong acid (HBr) and a strong base (KOH),
dissociates completely in water to form K+ and Br- ions. PbBr2, on the other hand, is a sparingly soluble salt that dissociates in water to form Pb2+ and 2Br- ions.
When PbBr2 is added to a solution containing KBr, the concentration of Br- ions increases due to the dissociation of both salts.
This increase in the concentration of Br- ions shifts the equilibrium of PbBr2 dissociation towards the formation of undissociated PbBr2. As a result, the molar solubility of PbBr2 decreases in the presence of KBr.
To calculate the molar solubility of PbBr2 in a 0.500 m KBr solution, we need to use the solubility product constant (Ksp) of PbBr2. The expression for Ksp is:
Ksp = [Pb2+][Br-]^2
Assuming that the molar solubility of PbBr2 in pure water is x, the equilibrium concentrations of Pb2+ and Br- ions in a 0.500 m KBr solution can be expressed as:
[Pb2+] = x
[Br-] = 2x + 0.500
Substituting these values into the Ksp expression gives:
Ksp = x(2x + 0.500)^2
We can solve for x by substituting the Ksp value of PbBr2 (6.60 x 10^-6) and solving for x using a quadratic equation. The molar solubility of PbBr2 in a 0.500 m KBr solution is found to be 4.98 x 10^-6 mol/L.
In summary, the molar solubility of PbBr2 in a 0.500 m KBr solution is lower than its solubility in pure water due to the common ion effect.
The calculation involves using the solubility product constant and assuming an equilibrium concentration of the ions in the solution. The answer is 4.98 x 10^-6 mol/L.
To know more about molar solubility refer here
https://brainly.com/question/28170449#
#SPJ11
What is the boiling point, in °C, of
a 1.3 m solution of C6H14 in
benzene?
The boiling point of the 1.3 m solution of C₆H₁₄ in benzene is 83.5 °C.
What is the boiling point, of a 1.3 m solution of C6H14 in benzene?The boiling point of the 1.3 m (molality) solution of C₆H₁₄ in benzene is determined using the equation:
ΔT = Kb * mwhere
ΔT is the boiling point elevation,Kb is the molal boiling point elevation constant of the solvent (benzene), andm is the molality of the solution.Given data:
Kb (benzene) = 2.65 °C/m
m = 1.3 m
Substituting the values into the equation:
ΔT = 2.65 °C/m * 1.3 m
ΔT = 3.445 °C
Boiling point of the solution = Boiling point of benzene + ΔT
Boiling point of the solution = 80.10 °C + 3.445 °C
Boiling point of the solution = 83.545 °C
Learn more about boiling point at: https://brainly.com/question/1530966
#SPJ1
Rank the following complex ions in order of increasing wavelength of light absorbed.
[Co(H2O)6]3+, [CO(CN)6]3-, [CO(I)6]3-, [Co(en)3]3+
Complex ions in order of increasing wavelength of light absorbed:
[Co(H₂O)₆]³⁺ < [Co(en)₃]³⁺ < [CO(I)₆]³⁻ < [CO(CN)₆]³⁻
The wavelength of light absorbed by a complex ion is related to the energy required to promote an electron from a lower energy level (ground state) to a higher energy level (excited state).
The energy required is proportional to the frequency (and inversely proportional to the wavelength) of the absorbed light. Therefore, the order of increasing wavelength of light absorbed corresponds to the order of decreasing energy required to promote an electron to an excited state.
Based on the ligand field theory, the ligands affect the energy of the d orbitals of the central metal ion, which in turn affects the energy required to promote an electron to an excited state.
Strong field ligands (such as CN⁻) cause a greater splitting of the d orbitals, leading to higher energy transitions, while weak field ligands (such as H₂O) cause less splitting and lower energy transitions.
Using this information, we can rank the complex ions in order of increasing wavelength of light absorbed:
[Co(H₂O)₆]³⁺ < [Co(en)₃]³⁺ < [CO(I)6]3- < [CO(CN)6]3-
- [Co(H₂O)₆]³⁺ : This complex ion has a weak field ligand (H₂O), leading to a smaller splitting of the d orbitals and lower energy transitions. Therefore, it absorbs light at longer (lower) wavelengths, corresponding to lower energy.
- [Co(en)₃]³⁺: This complex ion has a stronger field ligand (en = ethylenediamine), leading to a larger splitting of the d orbitals and higher energy transitions than [Co(H₂O)₆]³⁺ . Therefore, it absorbs light at slightly shorter (higher) wavelengths than [Co(H₂O)₆]³⁺ .
- [CO(I)₆]³⁻: This complex ion has a larger and more extended ligand field compared to [Co(H₂O)₆]³⁺ and [Co(en)₃]³⁺ due to the larger size of the I⁻ ion. This causes an even larger splitting of the d orbitals and higher energy transitions, leading to absorption of light at even shorter (higher) wavelengths.
- [CO(CN)₆]³⁻: This complex ion has the strongest field ligand (CN⁻), causing the largest splitting of the d orbitals and the highest energy transitions. Therefore, it absorbs light at the shortest (highest) wavelengths, corresponding to the highest energy.
To learn more about Complex ions refer here:
https://brainly.com/question/31310283#
#SPJ11
For specified limits for the maximum and minimum temperatures the ideal cycle with the lowest thermal efficiency is 1. Camot 2. Stirling 3. Otto 4. Ericsson 5. All same
For specified limits for the maximum and minimum temperatures the ideal cycle with the lowest thermal efficiency is 3. Otto.
The Otto cycle is used in spark ignition engines, such as those used in cars. It has a lower thermal efficiency compared to other cycles because it has a fixed compression ratio, meaning it cannot take advantage of high compression ratios to improve efficiency. On the other hand, the other cycles mentioned (Camot, Stirling, Ericsson) have variable compression ratios which allow for better efficiency. Therefore, the ideal cycle with the lowest thermal efficiency for specified limits for maximum and minimum temperatures is the Otto cycle.
learn more about Otto cycle
https://brainly.com/question/29392521
#SPJ11
Using the following data, determine the standard cell potential for the electrochemical cell constructed based on the following unbalanced reaction expression: Al(s) + (aq) - AP*(g) + Cr2+ (aq). Half-reaction Standard reduction potential (V) AP* (aq) + 3 e - Al(s) 1.66 C*(aq) + e -- Cr2(aq) -0.41 Answer: Check
The standard cell potential for the electrochemical cell based on the given unbalanced reaction expression is 1.25 V.
The standard cell potential for the electrochemical cell constructed based on the given unbalanced reaction expression can be determined using the half-reaction standard reduction potentials provided. The balanced half-reactions are:
1. Al(s) → AP*(aq) + 3e⁻ E° = -1.66 V (reversed original half-reaction)
2. 2C*(aq) + 2e⁻ → Cr2(aq) E° = -0.41 V
To calculate the standard cell potential (E°cell), we use the formula:
E°cell = E°cathode - E°anode
In this case, the Al(s) half-reaction acts as the anode (oxidation) and the Cr2(aq) half-reaction acts as the cathode (reduction). Therefore:
E°cell = (-0.41 V) - (-1.66 V) = 1.25 V
Therefore, the standard cell potential for the electrochemical cell based on the given unbalanced reaction expression is 1.25 V.
Know more about standard cell potential here:
https://brainly.com/question/29653954
#SPJ11
Mass of one drop of water is 0. 1 gram. Calculate the number of molecules of water present in 2 drop of water
The number of molecules of water present in two drops of water is 6.68 x 10²¹ molecules.
Given,
Mass of one drop of water is 0.1 gram.
The mass of water present in two drops of water is 2 x 0.1 g = 0.2 g.
The formula to calculate the number of moles of a substance is given as;
Moles = Mass/Molar mass
Molar mass of water = 18 g/mol.
So, the number of moles of water present in 0.2 g of water is;
Moles of water = Mass of water/Molar mass of water= 0.2/18= 0.01111 mol.
Now, the formula to calculate the number of molecules is given as
;Number of molecules = Moles x Avogadro's number
Avogadro's number is 6.022 x 10²³.
So, the number of molecules of water present in 0.2 g of water is;
Number of molecules of water = Moles x Avogadro's number
= 0.01111 x 6.022 x 10²³
= 6.68 x 10²¹ molecules.
To leran more about moles, refer:-
https://brainly.com/question/15209553
#SPJ11
An athlete had 14% body fat by mass. What is the weight of fat, in pounds, of a 82-kg athlete? Express your answer to two significant figures & include the appropriate units
The weight of fat, in pounds, of an 82-kg athlete with 14% body fat by mass is 25.31 lb.
Given,
The percentage of body fat by mass = 14%
Weight of the athlete = 82 kg
Now we need to calculate the weight of fat in pounds of the athlete.
Let's use the following conversion factors,1 kg = 2.205 lb1% = 0.01
Thus,
The weight of fat = Percentage of body fat by mass × Weight of the athlete
= 14% × 82 kg
= 0.14 × 82 kg
= 11.48 kg
Now we need to convert kg to pounds,
11.48 kg = 11.48 kg × 2.205 lb/kg = 25.31 lb
To learn more about body fat by mass, refer:-
https://brainly.com/question/18987770
#SPJ11
Propose a synthesis of (E)-2-hexene starting from (Z)-2-hexene. Specify the reagents you would use to carry out the conversion by using letters from the table. The reaction may require more than one step, if so, write the letters in the order that they are used, e.g., iad. If two or more ways of conversion to the same product are possible, show only one of them.)
One way to achieve this is through a catalytic hydrogenation reaction followed by a dehydrohalogenation reaction.
To synthesize (E)-2-hexene starting from (Z)-2-hexene, we would need to perform an isomerization reaction to convert the Z isomer to the E isomer. One way to achieve this is through a catalytic hydrogenation reaction followed by a dehydrohalogenation reaction.
Step 1: Catalytic hydrogenation of (Z)-2-hexene using hydrogen gas and a palladium catalyst (reagents: h, f)
(Z)-2-hexene + H2 → (E)-2-hexene
Step 2: Dehydrohalogenation of (E)-2-bromohexane using a strong base such as sodium ethoxide (reagents: g)
(E)-2-bromohexane + NaOEt → (E)-2-hexene
Therefore, the overall synthesis would involve the use of reagents h, f, and g in the order hfg.
For more such questions on hydrogenation , Visit:
https://brainly.com/question/12833896
#SPJ11
To synthesize (E)-2-hexene starting from (Z)-2-hexene, the conversion can be achieved through an isomerization reaction. Here is a possible synthesis route:
(Z)-2-hexene --> (E)-2-hexene
The isomerization of (Z)-2-hexene to (E)-2-hexene can be carried out using a catalytic system such as a transition metal catalyst. One common reagent used for this purpose is a Lindlar catalyst, which consists of palladium (Pd) supported on calcium carbonate (CaCO3) and quinoline. This catalyst selectively hydrogenates the triple bond in (Z)-2-hexene, resulting in the isomerization to the corresponding (E)-2-hexene.
The synthesis can be summarized as follows:
(Z)-2-hexene + Lindlar catalyst --> (E)-2-hexene
By using a suitable transition metal catalyst like the Lindlar catalyst, the isomerization reaction can be achieved, converting (Z)-2-hexene to (E)-2-hexene.
Learn more about isomerization reactions here:
https://brainly.com/question/30897046
#SPJ11
how many atoms of carbon are in 23.1 g of glucose (c6h12o6)?
The answer is that there are approximately 7.68 x 10^22 atoms of carbon in 23.1 g of glucose.
To determine the number of carbon atoms in 23.1 g of glucose (C6H12O6), we need to first calculate the number of moles of glucose present in the given amount.
The molar mass of glucose is the sum of the atomic masses of all the elements present in it, which are:
C6H12O6 = (6 x atomic mass of C) + (12 x atomic mass of H) + (6 x atomic mass of O)
= (6 x 12.01) + (12 x 1.01) + (6 x 16.00)
= 180.18 g/mol
So, the number of moles of glucose in 23.1 g can be calculated as:
Number of moles = Mass / Molar mass
= 23.1 g / 180.18 g/mol
= 0.128 moles
From the molecular formula of glucose, we know that it contains 6 carbon atoms. Therefore, the number of carbon atoms present in 0.128 moles of glucose can be calculated as:
Number of carbon atoms = 6 x Number of moles
= 6 x 0.128
= 0.768
So, there are 0.768 moles or approximately 7.68 x 10^22 atoms of carbon in 23.1 g of glucose.
For such more question on glucose:
https://brainly.com/question/397060
#SPJ11
at 298 k, a cell reaction exhibits a standard emf of 0.21 v. the equilibrium constant for the reaction is 1.31 x 107. what is the value of n for the cell reaction?
The value of n for the cell reaction is 2, which indicates that two electrons are transferred in the reaction. we can use the relationship between the standard emf (E°), the equilibrium constant (K), and the number of electrons transferred (n) in the cell reaction. The formula is: E° = (0.0592/n) x log(K)
Where 0.0592 is the value of RT/F at room temperature (298K), R is the gas constant, F is the Faraday constant, and log is the base 10 logarithm.
We can rearrange this formula to solve for n:
n = 0.0592 / (E° / log(K))
Plugging in the given values, we get:
n = 0.0592 / (0.21 / log(1.31 x 10^7))
n = 2
Therefore, the value of n for the cell reaction is 2, which indicates that two electrons are transferred in the reaction.
To know more about equilibrium constant visit:
brainly.com/question/10038290
#SPJ11
Which of the following best defines a scientific theory?
A) An 'if, then' statement that can be tested by science.
B) A model used to explain how or why a phenomenon occurs.
C) A unifying concept; often a mathematical description of the way in which a natural phenomenon occurs.
D) A piece of knowledge about the outside world received through the senses or instrumentation.
E) Something that is known to be consistent with reality; that which has not been falsified.
Answer: B) A model used to explain how or why a phenomenon occurs.
Explanation: Scientific theory explain through models will educate students more. they can learn in both audio visual ways and keep that situation in brain always. a model or a blue print is a better way of educating on scientific theory as the aim. material, observation and conclusion can be derived by actually viewing the phenomenon.
The interaction of light with a molecule depends on characteristics of the molecule. The presence of nonbonding lone-pair electrons or bond dipoles are two examples. Identify at least 2 more characteristics.
Molecular symmetry: The symmetry of a molecule plays a significant role in determining its interaction with light. Symmetrical molecules tend to exhibit different optical properties compared to asymmetrical molecules. Symmetry affects factors such as polarizability, which is the ability of a molecule to induce an electric field. Symmetrical molecules may have certain optical activities, such as being optically inactive or having a lack of optical rotation.
Conjugation: Conjugated systems are formed by the presence of alternating single and multiple bonds or the presence of delocalized electrons. These systems can significantly affect the absorption and emission of light by molecules. Conjugation allows for the delocalization of electrons, leading to extended pi-electron systems. This extended conjugation can result in the molecule absorbing light in the visible range, giving it specific colors. Conjugated systems are commonly found in organic compounds such as dyes and pigments.
Overall, these additional characteristics of molecular symmetry and conjugation contribute to the diverse ways in which molecules interact with light, allowing for a wide range of optical properties.
To learn more about organic compounds click here : brainly.com/question/13508986
#SPJ11
a particular first-order reaction has a rate constant of 7.85 × 104 s-1 at 25.0 °c. what is the magnitude of k at 42.5 °c if ea = 34.7kj/mol?
A particular first-order reaction has a rate constant of 7.85 × 104 s-1 at 25.0 °c. The magnitude of k at 42.5 °C is 6.01 × 10^7 s^-1.
We can use the Arrhenius equation to relate the rate constant k at two different temperatures:
k2 = A * exp(-Ea/R * (1/T2 - 1/T1))
where k2 is the rate constant at the new temperature T2, A is the pre-exponential factor, Ea is the activation energy, R is the gas constant, and T1 is the initial temperature.
We are given k1 = 7.85 × 10^4 s^-1 at T1 = 25.0 °C = 298.15 K, Ea = 34.7 kJ/mol, and T2 = 42.5 °C = 315.65 K.
We can calculate A by rearranging the equation to solve for A:
A = k1 / exp(-Ea/R * 1/T1)
A = 7.85 × 10^4 s^-1 / exp(-34.7 kJ/mol / (8.314 J/mol·K) * (1/298.15 K))
A = 2.07 × 10^13 s^-1
Now, we can use A and Ea to calculate k2 at T2:
k2 = A * exp(-Ea/R * (1/T2 - 1/T1))
k2 = 2.07 × 10^13 s^-1 * exp(-34.7 kJ/mol / (8.314 J/mol·K) * (1/315.65 K - 1/298.15 K))
k2 = 2.07 × 10^13 s^-1 * exp(-3.86)
k2 = 6.01 × 10^7 s^-1
Therefore, the magnitude of k at 42.5 °C is 6.01 × 10^7 s^-1.
To learn more about first-order reaction refer here:
https://brainly.com/question/12446045#
#SPJ11
Our Sun is a medium mass star that is approximately one-third of the way through its
life cycle. As our sun nears the end of its life cycle and burns away most of its hydrogen fuel, it will become a Red Giant and eventually a. A. Supernova b. Neutron star c. Red dwarf d. White dwarf
As our Sun nears the end of its life cycle, it will eventually become a white dwarf. The Sun is currently in the main sequence phase of its life cycle, where it fuses hydrogen into helium in its core.
It has been estimated that the Sun is about halfway through its total life span of approximately 10 billion years. As it continues to burn hydrogen, the Sun will gradually deplete its fuel and undergo changes. When the Sun exhausts its hydrogen fuel, it will enter the next phase known as the red giant phase. During this phase, the outer layers of the Sun will expand and cool, causing it to increase in size and become red in color. As the red giant phase progresses, the Sun will shed its outer layers, forming a planetary nebula, and what remains of the core will contract and become a white dwarf.
Therefore, as our Sun nears the end of its life cycle, it will eventually become a white dwarf. This corresponds to option (d) in the provided choices. Unlike more massive stars, the Sun is not massive enough to undergo a supernova explosion or form a neutron star. A red dwarf is a type of star that is smaller and cooler than the Sun, which is not the fate of our Sun.
Learn more about nebula here: https://brainly.com/question/9497068
#SPJ11
Help please !!!!
If there are 2. 37 moles Fe203 then how many moles of Fe and O2 are there ?
if there are 11. 11 moles Fe203 then how many moles of Fe and O2 are there ?
there are approximately 22.22 moles of Fe and 16.665 moles of O2 in 11.11 moles of Fe2O3.To determine the number of moles of Fe and O2 in 11.11 moles of Fe2O3 (iron(III) oxide), we need to examine the stoichiometry of the balanced chemical equation for the reaction.
The balanced equation for the reaction is:
2 Fe2O3 → 4 Fe + 3 O2
From the balanced equation, we can see that for every 2 moles of Fe2O3, we obtain 4 moles of Fe and 3 moles of O2.
Therefore, to find the number of moles of Fe and O2 in 11.11 moles of Fe2O3, we can use the ratio from the balanced equation:
Moles of Fe = (11.11 moles Fe2O3) × (4 moles Fe / 2 moles Fe2O3) = 22.22 moles Fe
Moles of O2 = (11.11 moles Fe2O3) × (3 moles O2 / 2 moles Fe2O3) = 16.665 moles O2 (rounded to three decimal places)
Therefore, there are approximately 22.22 moles of Fe and 16.665 moles of O2 in 11.11 moles of Fe2O3.
To learn more about moles click here:brainly.com/question/15209553
#SPJ11
The atomic number of fluorine is 9. How many electrons are contained in the second principal energy level of a flourine atom in the ground state? a. 2 b. 5 c. 7 d. 9
There are 7 electrons (option c) contained in the second principal energy level of a fluorine atom in the ground state.
- The second principal energy level is also known as the n=2 shell.
- The maximum number of electrons that can be contained in this shell is given by the formula 2[tex]n^2[/tex], where n is the principal quantum number.
- For n=2, the maximum number of electrons is 2([tex]2^2[/tex]) = 8.
- In the ground state, a fluorine atom has 9 electrons.
- To determine the number of electrons in the second energy level, we need to subtract the number of electrons in the first energy level from the total number of electrons in the atom.
- The first energy level, or n=1 shell, can hold up to 2 electrons.
- Therefore, the number of electrons in the second energy level is 9 - 2 = 7.
- Thus, the answer is (c) 7.
For more such questions on electrons, click on:
https://brainly.com/question/371590
#SPJ11
Determine the number of atoms across the diameter of a human hair given that the diameter of an atom is 0.1 nm and the diameter of a human hair is 0.1 mm
There are approximately 1,000,000 atoms across the diameter of a human hair.
How to determine the number of atoms across the diameter of a human hair?To determine the number of atoms across the diameter of a human hair, we need to compare the sizes of the atom and the human hair.
Given:
Diameter of an atom = 0.1 nm
Diameter of a human hair = 0.1 mm
First, we need to convert the diameter of the human hair to the same unit as the diameter of the atom. Since 1 mm = 1,000,000 nm, we have:
Diameter of a human hair = 0.1 mm = 0.1 × 1,000,000 nm = 100,000 nm
Now, we can calculate the number of atoms across the diameter of the human hair by dividing the diameter of the hair by the diameter of the atom:
Number of atoms across the diameter of the human hair = Diameter of the hair / Diameter of the atom
= 100,000 nm / 0.1 nm
= 1,000,000 atoms
Therefore, there are approximately 1,000,000 atoms across the diameter of a human hair.
Learn more about Diameter.
brainly.com/question/31445584
#SPJ11
Which of the following illustrates the like dissolves like rule for two liquids? O A polar solute is miscible with a nonpolar solvent. O A polar solute is immiscible with a polar solvent. O A nonpolar solute is miscible with a nonpolar solvent. O A nonpolar solvent is miscible with a polar solvent. O None of these
Of the following illustrates the like dissolves like rule for two liquids. The option that illustrates the "like dissolves like” rule for two liquids is: A nonpolar solvent is miscible with a nonpolar solvent.
According to the “like dissolves like” rule, substances with similar polarity or intermolecular forces tend to mix well or dissolve in each other. Nonpolar solvents, which have molecules with evenly distributed electron densities, are generally miscible with other nonpolar solvents. This is because the intermolecular forces between nonpolar molecules are relatively weak, and they are attracted to each other due to London dispersion forces.
On the other hand, polar solvents, characterized by molecules with an uneven distribution of electron densities, are typically miscible with other polar solvents. This is because polar molecules exhibit dipole-dipole interactions and can form hydrogen bonds or other polar interactions with similar molecules.
Learn more about intermolecular forces here:
https://brainly.com/question/31797315
#SPJ11