Answer:
dasgfwe
Explanation:
what phase changes take place when you are adding energy to the substance
Answer:
During a phase change, a substance undergoes transition to a higher energy state when heat is added, or to a lower energy state when heat is removed. Heat is added to a substance during melting and vaporization. Latent heat is released by a substance during condensation and freezing. Explanation:
Which best explains a difference between Einstein’s general theory of relativity and his special theory of relativity?
His general theory includes uniform and accelerated motion, but his special theory applies only to uniform motion.
His general theory includes uniform and accelerated motion, but his special theory applies only to accelerated motion.
His general theory applies only to accelerated motion, but his special theory includes uniform and accelerated motion.
His general theory applies only to uniform motion, but his special theory includes uniform and accelerated motion.
Answer:
His general theory includes uniform and accelerated motion, but his special theory applies only to uniform motion.
Explanation:
According to Einstein's 1915 general theory of relativity, the force of gravity arises from the curvature of space and time.
According to theory of special relativity:
1. The laws of physics are the same for all non-accelerating observers
2. The speed of light in a vacuum was independent of the motion of all observers.
His general theory includes uniform and accelerated motion, but his special theory applies only to uniform motion.
Answer:
for those who dont like to read
the answer is A.
hope i helped
Explanation:
An increase in temperature the kinetic energy and average speed of the gas particles. As a result, the pressure on the walls of the container . Answer Bank What temperature must a gas, initially at 10 ∘C, be brought to for the pressure to triple?
Answer:
a
The pressure will increase
b
[tex]T_2 = 576^oC[/tex]
Explanation:
From the ideal gas law we have that
[tex]PV = nRT[/tex]
We see that the temperature varies directly with the pressure so if there is an increase in temperature that pressure will increase
The initial temperature is [tex]T_i = 10^oC = 10 + 273 = 283 \ K [/tex]
The objective of this solution is to obtain the temperature of the gas where the pressure is tripled
Now from the above equation given that nR and V are constant we have that
[tex]\frac{P}{T} = constant[/tex]
=> [tex]\frac{P_1}{T_1} =\frac{P_2}{T_2}[/tex]
Let assume the initial pressure is [tex]P_1 = 1 Pa[/tex]
So tripling it will result to the pressure being [tex]P_2 = 3 Pa[/tex]
So
[tex]\frac{1}{283} =\frac{3}{T_2}[/tex]
=> [tex]T_2 = 3 * 283[/tex]
=> [tex]T_2 = 3 * 283[/tex]
=> [tex]T_2 = 849 \ K [/tex]
Converting back to [tex]^oC[/tex]
[tex]T_2 = 849 - 273[/tex]
=> [tex]T_2 = 576^oC[/tex]
What amount of work is done on a cart that is pushed 4.0 meters across a floor by a horizontal 40-N net force?
Answer:
The answer is 160 JExplanation:
The work done by an object can be found by using the formula
workdone = force × distance
From the question we have
workdone = 40 × 4
We have the final answer as
160 JHope this helps you
2. It is now 10:29 a.m., but when the bell rings at 10:30 a.m. Suzette will be late for French class for the third time this week. She must get from one side of the school to the other by hurrying down three different hallways. She runs down the first hallway, a distance of 35.0 m, at a speed of 3.50 m/s. The second hallway is filled with students, and she 4covers its 48.0 m length at a speed of 1.20 m/s. The final hallway is empty, and Suzette sprints its 60.0 m length at a speed of 5.00 m/s. How long does it take Suzette to make to class? Did Suzette beat the bell?
Answer:
62 secondsnoExplanation:
The total travel time Suzette experiences is the sum of the times in each hallway. Using
time = distance/speed
we can add the times.
(35.0 m)/(3.50 m/s) +(48.0 m)/(1.20 m/s) +(60 m)/(5.0 m/s)
= 10 s + 40 s + 12 s
= 62 s
It takes Suzette 62 seconds to get to class. She does not beat the bell.
A designer is creating an obstacle for an obstacle course where a person starts on a moveable platform of height H from the ground. The person grabs a rope of length L and swings downward. At the instant the rope is vertical, the person lets go of the rope and attempts to reach the far side of a water-filled moat. The left side of the moat is directly below the position where the person will let go of the rope. The designer runs several tests in which the rope has different lengths and moves the platform such that the rope is always initially horizontal. The designer notices that the person cannot land on the other side if the length L is very short. The designer also notices that the person also cannot land on the other side if the length L is very close to the height H.
Assume the size of the person is much smaller than the lengths L and H. Let D represent the horizontal distance from below the release point to where the person lands.
Required:
a. Why does the person land in the moat if the rope's length is very short?
b. Why does the person land in the moat if the length is nearly the same as the height of the platform?
Answer:
* when L → H chord too long
in this case we see that the speed to cross the well grows a lot (it goes towards infinity) therefore we do not have enough speed in the movement to cross
* when L → 0 very short string
the speed of the platform is very small, so we do not have the minimum required value
vox = √ (g / (2 (H)) D
Explanation:
For this exercise we are going to solve it using conservation of energy to find the velocity of the body and the launch of projectiles to find the velocity to cross the well.
Let's start with the projectile launch
as the body leaves the vertical its velocity must be horizontal
x = v₀ₓ t
y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²
when reaching the ground its height of zero (y = 0) and the initial vertical velocity is zero
t = √ 2 y₀ / g
we substitute
x = vox √2y₀ / g
v₀ₓ = √(g / 2y₀) x
In the exercise, it tells us that the width of the well is D (x = D) and the initial height is the height of the platform minus the length of the rope (I = H - L)
v₀ₓ = √(g /(2 (H -L)) D
this is the minimum speed to cross the well.
Now let's use conservation of energy
starting point. On the platform
[tex]Em_{o}[/tex] = U = m g H
final point. At the bottom of the swing
Em_{f} = K + U = 1 / 2m v² + m g (H -L)
as there is no friction the mechanical energy is conserved
Em_{o} = Em_{f}
m g H = 1 / 2m v² + m g (H -L)
v = √ (2gL)
let's write our two equations
the minimum speed to cross the well
v₀ₓ = √ (g /(2 (H -L)) D
the speed at the bottom of the oscillatory motion
v = √ (2g L)
we analyze the extreme cases
* when L → H chord too long
in this case we see that the speed to cross the well grows a lot (it goes towards infinity) therefore we do not have enough speed in the movement to cross
* when L → 0 very short string
the speed of the platform is very small, so we do not have the minimum required value
vox = √ (g / (2 (H)) D
From this analysis we see that there is a range of lengths that allows us to have the necessary speeds to cross the well
V₀ₓ = v
g / (2 (H -L) D² = 2g L
4 L (H- L) = D²
4 H L - 4 L2 - D² = 0
L² - H L - D² / 4 = 0
let's solve the quadratic equation
L = [H ± √ (H2-D2)] / 2
we assume that H> D
L = ½ H [1 + - RA (1 - (D / H) 2)]
The two values of La give the range of values for which the two speeds are equal
A) The person lands in the moat if the rope's length is very short because :
The speed of the platform is less than the required minimum speedB) The person lands in the moat if the rope length is similar to the height of the platform because :
The speed required to cross the moat approaches infinityFollowing the assumptions;
size of the person is much smaller than L and H
D = horizontal distance
The conditions that will cause the person to land on the moatThe person will land in the moat when the rope's length is very short because as the rope reduces in length the speed reduces as well such that the speed of the platform goes below the required minimum speed which will enable the person cross over. while As the magnitude of the length tends towards the same magnitude of the height the speed required to cross the moat increases towards infinity and this speed cannot be attained by the person hence he will land in the moat.Hence we can conclude that The person lands in the moat if the rope's length is very short because The speed of the platform is less than the required minimum speed and The person lands in the moat if the rope length is similar to the height of the platform because,the speed required to cross the moat approaches infinity.
Learn more about obstacle course : https://brainly.com/question/241926
Someone help me I’ll give brainliest
Answer:
2.83 m/s
Explanation:
you have the right answer
I need help please help ! For science
Answer:
1, 5, 4, 6
Explanation:
bc
anyone to assist me on it ...especial page7 and 8
Answer:
i needed points it was an emergency sorry
Explanation:
Engineers are using computer models to study train collisions to design safer
train cars. They start by modeling an elastic collision between two train cars
traveling toward each other. Car 1 is traveling north at 20 m/s and has a mass
of 12,745 kg. Car 2 is traveling south at 15 m/s and has a mass of 4,125 kg.
After the collision, car 1 has a final velocity of 3 m/s north. What is the final
velocity of car 2?
A. 56 m/s north
B. 56 m/s south
C. 38 m/s south
D. 38 m/s north
Answer:
did you get the answer???
Answer: 38 m/s north
Explanation:
kerosene is able to reach the oher end of a wick by
Answer:
Capillary Action
Explanation:
Narrow spacings or pores are present in the wick, due to which capillary action takes place, that makes the oil to reach the other end of wick. The ability of a liquid to flow in narrow spaces without any opposition or assistance of external force such as gravity is called as Capillary action.What does g stand for
Group of answer choices
gravity
The acceleration of gravity
The force of gravity
Answer:
the acceleration of gravity.
Answer:
g stand for the acceleration of gravity .
Explanation:
"What will the pressure inside the container become if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant?"
This question is incomplete, the complete question is;
The Figure shows a container that is sealed at the top by a moveable piston, Inside the container is an ideal gas at 1.00 atm. 20.0°C and 1.00 L.
"What will the pressure inside the container become if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant?"
Answer:
the pressure inside the container become 0.625 atm if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant
Explanation:
Given that;
P₁ = 1.00 atm
P₂ = ?
V₁ = 1 L
V₂ = 1.60 L
the temperature of the gas is kept constant
we know that;
P₁V₁ = P₂V₂
so we substitute
1 × 1 = P₂ × 1.60
P₂ = 1 / 1.60
P₂ = 0.625 atm
Therefore the pressure inside the container become 0.625 atm if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant
describe the energy conversion that occurs in a diesel engine
Design a tension member and slip-critical splice to carry a factored load of 500 kips. Please use a wide-flange section for the tension member. Please use A572 Gr. 50 steel plates for the splice plates. Please use Group B, A490 bolts for the splice connection. The splice connection should be slip-critical, and have adequate strength after slip occurs as well. Please make any other assumptions you need in order to complete the problem. Provide detailed sketches and drawings for your design.
Answer:
Kindly check the explanation section.
Explanation:
For the design we are asked for in this question/problem there is the need for us to calculate or determine the strength in fracture and that of the yield. Also, we need to calculate for the block shear strength.
From the question, we have that the factored load = 500kips. Also, note that the tension splice must not slip.
Also, the shear force are resisted by friction, that is to say shear resistance = 1.13 × Tb × Ns.
Assuming our db = 3/4 inches, then the slip critical resistance to shear service load = 18ksi(refer to AISC manual for the table).
If db = 7/8 inches, then the shear force resistance for n bolt = 10.2kips, n > 49.6.
The yielding strength = 0.9 × Aj × Fhb= 736 kips > 500
The fracture strength = .75 × Ah × Fhb = 309 kips.
The bearing strength of 7/8 inches bolt at the edge hole and other holes = 46 kips and 102 kips.
If car A is at 40km/h and car B is at 10km/h in the opposite direction, what is the velocity of the car A relative to the car B?.
Explanation:
The velocity of car A relative to car B is (10km/h+40km/h)=50km/h
A car traveling at 27 m/s slams on its brakes to come to a stop. It decelerates at a rate of 8 m/s2 . What is the stopping distance of the car?
v² - u² = 2 a ∆x
where u = initial velocity (27 m/s), v = final velocity (0), a = acceleration (-8 m/s², taken to be negative because we take direction of movement to be positive), and ∆x = stopping distance.
So
0² - (27 m/s)² = 2 (-8 m/s²) ∆x
∆x = (27 m/s)² / (16 m/s²)
∆x ≈ 45.6 m
The stopping distance of car achieved during the braking is of 45.56 m.
Given data:
The initial speed of car is, u = 27 m/s.
The final speed of car is, v = 0 m/s. (Because car comes to stop finally)
The magnitude of deacceleration is, [tex]a = 8\;\rm m/s^{2}[/tex].
In order to find the stopping distance of the car, we need to use the third kinematic equation of motion. Third kinematic equation of motion is the relation between the initial speed, final speed, acceleration and distance covered.
Therefore,
[tex]v^{2}=u^{2}+2(-a)s[/tex]
Here, s is the stopping distance.
Solving as,
[tex]0^{2}=27^{2}+2(-8)s\\\\s = 45.56 \;\rm m[/tex]
Thus, we can conclude that the stopping distance of car achieved during the braking is of 45.56 m.
Learn more about the kinematic equation of motion here:
https://brainly.com/question/11298125
When you place leftover food in the refrigerator, what kind of energy do you
decrease in the food?
A. Nuclear energy
B. Electromagnetic energy
C. Thermal energy
D. Chemical energy
By cooling down the food, the thermal energy in the food molecules is reduced.
What is a refridgerator?A refrigerator is an appliance that is commonly used in the home for the purpose of cooling down a substnace especially water and drinks.
Due to the fact that the molecules that compose matter are is in a state of constant random motion, the food molecules contain thermal energy. Hence, by cooling down the food, the thermal energy in the food molecules is reduced.
Learn more about thermal energy: https://brainly.com/question/11278589
A race car accelerates from rest to a velocity of +90 m/s over a distance of 423m. Determine the acceleration of the race car.
Answer:
9.57m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 90m/s
Distance = 423m
Unknown:
Acceleration of the race car = ?
Solution:
To solve this problem, we should apply one of the appropriate motion equations;
V² = U² + 2as
Where V is the final velocity
U is the initial velocity
a is the acceleration
s is the distance
90² = 0² + 2 x a x 423
8100 = 846a
a = 9.57m/s²
Why is it better to use the metric system, rather than the English system, in scientific measurement?
A. The English system uses one unit for each category of measurement.
B. The metric system uses one unit for each category of measurement.
C. The English system uses consistent fractions that are multiples of 10.
D. The metric system utilizes a variety of number conversions.
A. The English system uses one unit for each category of measurement.
Answer:
A
Explanation:
A car starts from rest and accelerates uniformly over a time of 18 seconds for a distance of 390 m. Determine the acceleration of the car.
Answer:
[tex]a=2.4\ m/s^2[/tex]
Explanation:
Given that,
The initial speed of a car, u = 0
Time, t = 18 s
Distance, d = 390 m
We need to find the acceleration of the car. Let it is a. Using the second equation of motion to find it.
[tex]d=ut+\dfrac{1}{2}at^2[/tex]
or
[tex]d=\dfrac{1}{2}at^2\\\\a=\dfrac{2d}{t^2}\\\\a=\dfrac{2\times 390}{(18)^2}\\\\a=2.4\ m/s^2[/tex]
So, the acceleration of the car is [tex]2.4\ m/s^2[/tex].
A car which is traveling at a velocity of 15 m/s undergoes an acceleration of 6.5 m/s2 over a distance of 340 m. How fast is it going after that acceleration?
Answer:68.15m/s
Explanation:
Given:
v₁=15m/s
a=6.5m/s²
v₁=?
x=340m
Formula:
v₁²=v₁²+2a (x)
Set up:
=[tex]\sqrt{15m/s} ^{2} +2(6.5m/s^2)(340m)[/tex]
Solution:68.15m/s
Which of the following is the closest to the scientific fact
A. A hypothesis
B. A theory
C. An opinion
D. A prediction
A theory is the closest to a scientific fact (Option B).
A scientific theory is a well-sustained scientific idea that has been verified using the scientific method.A scientific theory can be refuted by the emergence of new lines of evidence against some aspect of this scientific statement.A hypothesis is a given explanation about a question that emerged by observing the natural world.In conclusion, a theory is the closest to a scientific fact (Option B).
Learn more in:
https://brainly.com/question/2375277
An object is accelerating if it is moving?
9514 1404 393
Answer:
Not Necessarily
Explanation:
If the object is changing speed or direction, then it is accelerating. If it is maintaining the same speed and direction, it is not accelerating.
PLEASE HELP EASY MULTIPLE CHOICE!!!!!!!!!!!
Answer:
options C is correct
Explanation:
asking questions is super in this education life
Answer:
option c should be the answer
What is your role in motivating yourself?
i typically focus on motivating others.. i wanna be a motivational speaker someday. tbh if anyone needs anyone to talk to id be happy to listen and i would give the best advice i can. heres my discord: ionknow22#2868
Calculate the work WC done by the gas during the isothermal expansion. Express WC in terms of p0, V0, and Rv.
Complete Question
The complete question is shown on the first and second uploaded image
Answer:
The expression is [tex]W_c = P_o V_o ln (R_v)[/tex]
Explanation:
Generally smallest workdone done by a gas is mathematically represented as
[tex]dW = PdV[/tex]
Generally for an isothermal process
[tex]PV = nRT = constant [/tex]
=> [tex]P = \frac{nRT}{V}[/tex]
Generally the total workdone is mathematically represented as
[tex]W_c = \int\limits^{v_f}_{V_o} {\frac{nRT}{V} } \, dV[/tex]
=> [tex]W_c = nRT \int\limits^{V_f}_{V_o} {\frac{1}{V} } \, dV[/tex]
=> [tex]nRT [lnV] | \left \ {V_f}} \atop {V_o}} \right.[/tex]
=> [tex]W_c = nRT [ln(V_f) - ln(V_o)][/tex]
=> [tex]W_c = nRT ln \frac{V_f}{V_o}[/tex]
From the question [tex]\frac{V_f}{V_o } = R_v[/tex]
=> [tex]W_c = P Vln (R_v)[/tex]
at initial state
[tex]W_c = P_o V_o ln (R_v)[/tex]
Calculate the effective charges on the H and F atoms of the HF molecule in units of the electronic charge, e.
Answer:
Explanation:
Hydrogen fluoride (HF) is an ionic/electrovalent compound that dissociates into ions when dissolved in water. It's dissociation is as seen below
HF ⇄ H⁺ + F⁻
There is a transfer of electron from the hydrogen atom which produces the hydrogen ion (H⁺), while the fluorine atom receives the donated ion to become negatively charged (F⁻). The amount of charge in one electron is generally given as 1.602 × 10⁻¹⁹ coloumbs.
The required value of effective charge on HF molecule, due to H and F is 1.602 × 10⁻¹⁹ Coulombs.
The given problem is based on the concept of effective charges. The net positive charge carried out by the electrons of atomic species, after forming a polyelectronic atom is known as Effective charge.
As per the given problem, the Hydrogen fluoride (HF) is an ionic/electrovalent compound that dissociates into ions when dissolved in water. It's dissociation is given as,
HF ⇄ H⁺ + F⁻
There is a transfer of electron from the hydrogen atom which produces the hydrogen ion (H⁺), while the fluorine atom receives the donated ion to become negatively charged (F⁻). The amount of charge in one electron is generally given as 1.602 × 10⁻¹⁹ Coulombs.
Thus, we can conclude that the required value of effective charge on HF molecule, due to H and F is 1.602 × 10⁻¹⁹ Coulombs.
Learn more about the effective charge here:
https://brainly.com/question/25002720
The light bulbs are identical. Initially both bulbs are glowing. What happens when the switch is closed
Answer:
They turn off
Explanation:
what is the meaning of the word physics
Answer:
the scientific study of natural forces such as light, sound, heat, electricity, pressure, etc.
Explanation:
mark as brainliest