40. The area of a square is 45 m², what is the measurement of its side? (no choices)

41.) What is the square root of -4? a. 2 b.-2 c.0 d.undefined

42.) Which of the following DOES NOT belong to the group?
a. (3/4)-2 b. 9/16 c. 16/9 D.9 m

43.) Evaluate 8x0.
a.0 b.1 c.8 d.x

44.) If y varies directly as x, and y is 15 when x-3, find y when x-5.
a. 25 b. 15 C.45 D.35

45. If N varies inversely as M, and N=5 when M-3, find N when M=10.
a. 3/2 b. 15 c. 5/3 d. 5

46.)If y varies jointly as x ad z, and y-6 when x-10 and z-8, find y when x-4 and 2-40. a. 12 b. 10 c. 8 d. 16

47.) If z varies directly as x and inversely as y, and z-9 when x-6 and y=2, find z when x=8 and y=12. a. 2 b. 4 c. 6 d. 16

48. If 3 men can do a portion of a job in 8 days, how many men can do the same job in 6 days? a. 7 b. 6 c. 5 d. 4


49.) Jordan's income varies directly as the number of days that he works. If he earns 8,000 pesos in 20 days, how much will he earn if he worked 3 times long? a. 26,000 b. 24,000 c. 20,000 c. 16,000


50.) The amount of gasoline used by a car varies jointly as the distance travelled and the square root of the speed. Suppose a car used 25 litres on a 100 km trip at 100 kph, about how many litres will be use on a 1000 km trip at 64 kph? a. 100 L b. 200 L c. 300 L c. 400 L​

Answers

Answer 1

The solutions to the different sides and values of square are given below. The length of the side of the square is 6.71m.

What is a square?

Square is a polygon which four equal sides and all angles are right- angles.

Given area of square = 45 m²

     Area = side²

     Side = √Area = √45 = 6.71 m

Therefore side of the square is 6.71m.

41) Negative numbers do not have square roots.

Therefore √-4 is undefined.

42) Option D is correct as it is not a fraction.

43) Any number multiplied by zero is zero.

Therefore (a) is the correct option.

44) When y = 15, x = 3

   For direct variation, y =kx

so k = y/x =15/3 = 5

When x=5, y = kx =5*5 = 25

Therefore (a) is correct.

45) For inverse variation

   MN = k

  Given 5*3 = k

k=15

When M = 10 , N = k/M = 15 /10 = 3/2

Therefore option a is correct.

48) Let the amount of work be W

     For 3 men,

          8 days = W

             1 day = W/8

Now work done by 1 man in one day = (W/8) /3 =W/24

In six days, work done by one man = W/24 * 6 = W/4

Therefore for the work to be completed, the number of men required is 4 (W/4 *4 = W).

To learn more about the square, follow the link.

brainly.com/question/25092270

#SPJ1


Related Questions

Simplify and write the trigonometric expression in terms of sine and cosine: (1+cos(y))/(1+sec(y))

Answers

The simplified expression in terms of sine and cosine is:
[tex]cos(y) + \frac{1}{(cos(y)+1) }- \frac{sin(y)^2}{(cos(y)+1)}[/tex]

To simplify the expression (1+cos(y))/(1+sec(y)), we need to rewrite sec(y) in terms of cosine and simplify. Recall that sec(y) = 1/cos(y). Substituting this in, we get:

[tex]\frac{(1+cos(y))}{(1+sec(y))} =\frac{ (1+cos(y))}{(1+1/cos(y))}[/tex]

Now we need to get a common denominator in the denominator of the fraction. Multiplying the second term by cos(y)/cos(y), we get:

[tex]\frac{(1+cos(y))}{(1+1/cos(y))} =\frac{ (1+cos(y))}{(cos(y)/cos(y) + 1/cos(y))} = \frac{(1+cos(y))}{((cos(y)+1)/cos(y))}[/tex]
Next, we invert the denominator and multiply by the numerator to simplify:

[tex]\frac{(1+cos(y))}{((cos(y)+1)/cos(y)) }= \frac{(1+cos(y)) * (cos(y)}{(cos(y)+1))} = cos(y) + cos(y)^2 / (cos(y)+1)[/tex]

Finally, we can simplify further using the identity cos(y)^2 = 1 - sin(y)^2, which gives:

[tex]cos(y) + cos(y)^2 / (cos(y)+1) = cos(y) + (1-sin(y)^2)/(cos(y)+1)[/tex]
Combining the terms, we get:

[tex]\frac{(1+cos(y))}{(1+sec(y))} = cos(y) + (1-sin(y)^2)/(cos(y)+1)\\\\ = cos(y) + 1/(cos(y)+1) - sin(y)^2/(cos(y)+1)[/tex]

Therefore, the simplified expression in terms of sine and cosine is:

[tex]cos(y) + \frac{1}{(cos(y)+1) }- \frac{sin(y)^2}{(cos(y)+1)}[/tex]

learn more about expression

https://brainly.com/question/10271512

#SPJ11

A number cube of questionable fairness is rolled 100 times. The probability distribution shows the results. What is P(3≤x≤5) ? Enter your answer, as a decimal, in the box

Answers

The probability of getting a number between 3 and 5 (inclusive) is  P(3≤x≤5) is 1/600.

To find the probability of getting a number between 3 and 5 (inclusive) when rolling a number cube 100 times, we need to sum the probabilities of rolling a 3, 4, or 5 and divide it by the total number of rolls.

If the probability distribution is not provided, we cannot determine the exact probabilities for each number. However, assuming the number cube is fair, we can assign equal probabilities to each number from 1 to 6. In this case, the probability of rolling a 3, 4, or 5 would be 1/6 for each number.

Since we rolled the cube 100 times, the total number of rolls is 100. Therefore, the probability of getting a number between 3 and 5 (inclusive) is:

P(3≤x≤5) = (P(3) + P(4) + P(5)) / Total number of rolls

= (1/6 + 1/6 + 1/6) / 100

= 3/6 / 100

= 1/6 / 100

= 1/600

Therefore, P(3≤x≤5) is 1/600.

For such more questions on probability

https://brainly.com/question/23286309

#SPJ11

a) Show that the set W of polynomials in P2 such that p(1)=0 is asubspace of P2.b)Make a conjecture about the dimension of Wc) confirm your conjecture by finding the basis for W

Answers

The basis for W is {x - 1, x^2 - 1}, and since there are two linearly independent polynomials, the dimension of W is 2, which confirms our conjecture.

a) To show that the set W of polynomials in P2 such that p(1) = 0 is a subspace of P2, we need to verify the three conditions for a subset to be a subspace:

The zero polynomial, denoted as 0, must be in W:

Let p(x) = ax^2 + bx + c be the zero polynomial. For p(1) = 0 to hold, we have:

p(1) = a(1)^2 + b(1) + c = a + b + c = 0.

Since a, b, and c are arbitrary coefficients, we can choose them such that a + b + c = 0. Thus, the zero polynomial is in W.

W must be closed under addition:

Let p(x) and q(x) be polynomials in W. We need to show that their sum, p(x) + q(x), is also in W.

Since p(1) = q(1) = 0, we have:

(p + q)(1) = p(1) + q(1) = 0 + 0 = 0.

Therefore, p(x) + q(x) satisfies the condition p(1) = 0 and is in W.

W must be closed under scalar multiplication:

Let p(x) be a polynomial in W and c be a scalar. We need to show that the scalar multiple, cp(x), is also in W.

Since p(1) = 0, we have:

(cp)(1) = c * p(1) = c * 0 = 0.

Thus, cp(x) satisfies the condition p(1) = 0 and is in W.

Since W satisfies all three conditions, it is indeed a subspace of P2.

b) Conjecture about the dimension of W:

The dimension of W can be conjectured by considering the degree of freedom available in constructing polynomials that satisfy p(1) = 0. Since p(1) = 0 implies that the constant term of the polynomial is zero, we have one degree of freedom for choosing the coefficients of x and x^2. Therefore, we can conjecture that the dimension of W is 2.

c) Confirming the conjecture by finding the basis for W:

To find the basis for W, we need to determine two linearly independent polynomials in W. We can construct polynomials as follows:

Let p1(x) = x - 1.

Let p2(x) = x^2 - 1.

To confirm that they are in W, we evaluate them at x = 1:

p1(1) = (1) - 1 = 0.

p2(1) = (1)^2 - 1 = 0.

Both p1(x) and p2(x) satisfy the condition p(1) = 0, and they are linearly independent because they have different powers of x.

Therefore, the basis for W is {x - 1, x^2 - 1}, and since there are two linearly independent polynomials, the dimension of W is 2, which confirms our conjecture.

To know more about polynomials refer to

https://brainly.com/question/11536910

#SPJ11

suppose that the delivery times for a local pizza delivery restaurant are normally distributed with an unknown mean and standard deviation. a random sample of 24 deliveries is taken and gives a sample mean of 27 minutes and sample standard deviation of 6 minutes. the confidence interval is (24.47, 29.53). find the margin of error, for a 95% confidence interval estimate for the population mean.

Answers

The margin of error for the 95% confidence interval estimate for the population mean is approximately 2.402 minutes.

To find the margin of error for a 95% confidence interval estimate for the population mean, we can use the formula:

Margin of Error = (Critical Value) * (Standard Deviation / √(Sample Size))

In this case, the sample size is 24, and the sample mean is 27 minutes. The confidence interval is given as (24.47, 29.53).

To determine the critical value, we need to consider the level of confidence. For a 95% confidence level, the critical value is approximately 1.96 (assuming a large sample size).

The sample standard deviation is given as 6 minutes.

Substituting these values into the formula, we have:

Margin of Error = 1.96 * (6 / √(24))

≈ 1.96 * (6 / 4.899)

≈ 1.96 * 1.226

≈ 2.402

Therefore, the margin of error for the 95% confidence interval estimate for the population mean is approximately 2.402 minutes.

Learn more about Standard Deviation here:

https://brainly.com/question/30252820

#SPJ11

A soft drink dispensing machine uses plastic cups that hold a maximum of 12 ounces. The machine is set to dispense a mean of x = 10 ounces of liquid. The amount of liquid that is actually dispensed varies. It is normally distributed with a standard deviation of s = 1 ounce. Use the Empirical Rule (68%-95%-99.7%) to answer these questions. (a) What percentage of the cups contain between 10 and 11 ounces of liquid? % (b) What percentage of the cups contain between 8 and 10 ounces of liquid? % (c) What percentage of the cups spill over because 12 ounces of liquid or more is dispensed? % (d) What percentage of the cups contain between 8 and 9 ounces of liquid?

Answers

1)  The percentage of cups that contain between 10 and 11 ounces of liquid is approximately 34%.

2) The percentage of cups that contain between 8 and 10 ounces of liquid is approximately 81.5%.

3) The percentage of cups that spill over is approximately 0.3%.

4) The percentage of cups that contain between 8 and 9 ounces of liquid is approximately 2.5%.

To use the Empirical Rule, we need to assume that the distribution of the amount of liquid dispensed by the soft drink machine follows a normal distribution.

(a) To find the percentage of cups that contain between 10 and 11 ounces of liquid, we need to find the area under the normal curve between 10 and 11 standard deviations from the mean, which is represented by the interval (x - s, x + s).

According to the Empirical Rule, we know that approximately 68% of the data falls within one standard deviation of the mean. Therefore, the percentage of cups that contain between 10 and 11 ounces of liquid is approximately 68%/2 = 34%.

(b) To find the percentage of cups that contain between 8 and 10 ounces of liquid, we need to find the area under the normal curve between 8 and 10 standard deviations from the mean, which is represented by the interval (x - 2s, x + s).

According to the Empirical Rule, we know that approximately 95% of the data falls within two standard deviations of the mean. Therefore, the percentage of cups that contain between 8 and 10 ounces of liquid is approximately (95%-68%)/2 + 68% = 81.5%.

(c) To find the percentage of cups that spill over because 12 ounces of liquid or more is dispensed, we need to find the area under the normal curve to the right of 12 standard deviations from the mean, which is represented by the interval (x + 2s, ∞). According to the Empirical Rule, we know that approximately 99.7% of the data falls within three standard deviations of the mean. Therefore, the percentage of cups that spill over is approximately 0.3%.

(d) To find the percentage of cups that contain between 8 and 9 ounces of liquid, we need to find the area under the normal curve between 8 and 9 standard deviations from the mean, which is represented by the interval (x - 2s, x - s).

This interval is equivalent to the complement of the interval (x + s, x + 2s), which we can find using the Empirical Rule. The percentage of data falling outside of two standard deviations of the mean is (100% - 95%) / 2 = 2.5%.

Therefore, the percentage of cups that contain between 8 and 9 ounces of liquid is approximately 2.5%.

To know more about Mean, visit;

https://brainly.com/question/20118982

#SPJ11

he probability that a patient recovers from a stomach disease is 0.6. Suppose 20 people are known have contracted this disease: (Round your answers to three decimal places A. What the probability that exactly 12 recover? 0.1797 B. What the probubility that Icust 11 recover? 040440 C. What is the probability that at least 12 but not more than 17 recover? 0 5070 D. Whal the probability that at most 16 recover? 0,9840 You may need to use the appropriate appendix table or technology to answer this question

Answers

The probability that exactly 12 recover is 0.1797, the probability that at most 11 will recover is 0.040440  the probability that at least 12 but not more than 17 recover is 0.5070 and he probability that at most 16 recover is 0.9840.

Based on the given information, the probability that a patient recovers from a stomach disease is 0.6.

Now, let's answer the questions:

A. the probability that exactly 12 recover is
Using the binomial probability formula, we can calculate the probability as follows:
P(X=12) = (20 choose 12) * 0.6^12 * (1-0.6)^(20-12)
= 0.1797 (rounded to 3 decimal places)

B. the probability that at most 11 recover is
This is the same as asking for the probability that less than or equal to 11 recovers.

We can calculate it by adding up the probabilities for X=0,1,2,...,11.
P(X<=11) = Σ (20 choose x) * 0.6^x * (1-0.6)^(20-x) for x=0 to 11
= 0.040440 (rounded to 3 decimal places)

C.the probability that at least 12 but not more than 17 recover is
This is the same as asking for the probability that X is between 12 and 17 inclusive.

We can calculate it by adding up the probabilities for X=12,13,14,15,16,17.
P(12<=X<=17) = Σ (20 choose x) * 0.6^x * (1-0.6)^(20-x) for x=12 to 17
= 0.5070 (rounded to 3 decimal places)

D. the probability that at most 16 recover is
This is the same as asking for the probability that X is less than or equal to 16.

We can calculate it by adding up the probabilities for X=0,1,2,...,16.
P(X<=16) = Σ (20 choose x) * 0.6^x * (1-0.6)^(20-x) for x=0 to 16
= 0.9840 (rounded to 3 decimal places)
Learn more about  binomial probability formula : https://brainly.com/question/30764478

#SPJ11

In order to compute a binomial probability we must know all of the following except: O a. the value of the random variable. Hob. the number of trials. c. the number of elements in the population. O d. the probability of success.

Answers

c. the number of elements in the population is not necessary to compute a binomial probability.

to know more about binomial , refer here :

https://brainly.com/question/13870395#

#SPJ11

Determine the convergence or divergence of the series. (If you need to use oo or -[infinity], enter INFINITY or -INFINITY, respectively.)
Σ (-1)"
n = 1
en
lim n→[infinity] 1/en

Answers

The series Σ (-1)^n/e^n converges to 0.

To determine the convergence or divergence of the series Σ (-1)^n/e^n, we can analyze the behavior of the individual terms and apply a convergence test.

The series Σ (-1)^n/e^n is an alternating series, as the sign alternates between positive and negative for each term. Alternating series can be analyzed using the Alternating Series Test, which states that if the terms of an alternating series decrease in absolute value and approach zero as n approaches infinity, then the series converges.

In this case, let's examine the individual terms of the series:

a_n = (-1)^n/e^n

The terms alternate between positive and negative, and the magnitude of the terms is given by 1/e^n. As n increases, the magnitude of 1/e^n decreases, approaching zero. Therefore, the terms of the series decrease in absolute value and approach zero as n approaches infinity.

Since the terms of the series satisfy the conditions of the Alternating Series Test, we can conclude that the series Σ (-1)^n/e^n converges.

Furthermore, we can find the limit of the series as n approaches infinity to determine its convergence value:

lim n→[infinity] (-1)^n/e^n

The limit of (-1)^n as n approaches infinity does not exist since the terms alternate between 1 and -1. However, the limit of 1/e^n as n approaches infinity is 0. Therefore, the series converges to 0.

In summary, the series Σ (-1)^n/e^n converges to 0.

To learn more about series, click here: brainly.com/question/26263191

#SPJ11

I need some help :(




Answers

The slope of the line passing through (4, 4) and (0, -2) is 1.5

What is an equation?

An equation is an expression that shows how numbers and variables are related to each other using mathematical operations.

The slope of a straight line is the ratio of its rise to its run. It is given by:

Slope = Rise / Run

Hence, for the line shown passing through (4, 4) and (0, -2):

Slope = (-2 - 4) / (0 - 4) = 1.5

The slope of the line is 1.5

Find out more on equation at: https://brainly.com/question/2972832

#SPJ1

If y varies inversely as x and y=3 when x = 3, find y when x =4.

Answers

[tex]\qquad \qquad \textit{inverse proportional variation} \\\\ \textit{\underline{y} varies inversely with \underline{x}} ~\hspace{6em} \stackrel{\textit{constant of variation}}{y=\cfrac{\stackrel{\downarrow }{k}}{x}~\hfill } \\\\ \textit{\underline{x} varies inversely with }\underline{z^5} ~\hspace{5.5em} \stackrel{\textit{constant of variation}}{x=\cfrac{\stackrel{\downarrow }{k}}{z^5}~\hfill } \\\\[-0.35em] ~\dotfill[/tex]

[tex]\stackrel{\textit{"y" varies inversely with "x"}}{y = \cfrac{k}{x}}\hspace{5em}\textit{we also know that} \begin{cases} x=3\\ y=3 \end{cases} \\\\\\ 3=\cfrac{k}{3}\implies 9 = k\hspace{9em}\boxed{y=\cfrac{9}{x}} \\\\\\ \textit{when x = 4, what's "y"?}\qquad y=\cfrac{9}{4}\implies y=2\frac{1}{4}[/tex]

When x = 4, y = 9/4. y will be equal to 9/4 or 2.25.

When a variable y varies inversely as x, it means that their product remains constant. We can represent this relationship mathematically as y = k/x, where k is the constant of variation.

To find the value of k, we can substitute the given values into the equation. Given that

y = 3 when x = 3,

we can write the equation as follows:

3 = k/3

To solve for k, we can multiply both sides of the equation by 3:

9 = k

Now that we have determined the value of k, we can use it to find y when x = 4. Substituting the values into the equation:

y = 9/4

Therefore, when x = 4, y = 9/4. Thus, y is equal to 9/4 or 2.25.

For more such answers on the Constant of variations

https://brainly.com/question/25215474

#SPJ8

: Explain why L'Hopital's Rule is of no help in finding lim x -> [infinity] rightarrow infinity x+sin 2x/x. Find the limit using methods learned earlier in the semester.

Answers

The limit of the given expression is
lim x -> infinity (x + sin(2x))/x = 1 + 0 = 1

To answer your question, L'Hopital's Rule is of no help in finding lim x -> infinity (x + sin(2x))/x because L'Hopital's Rule applies to indeterminate forms like 0/0 and ∞/∞.

In this case, as x approaches infinity, both the numerator and denominator approach infinity, making the expression an indeterminate form of ∞/∞. However, applying L'Hopital's Rule requires taking the derivative of both the numerator and the denominator, and since sin(2x) oscillates between -1 and 1, its derivative (2cos(2x)) will not help in finding the limit.

To find the limit using methods learned earlier in the semester, we can rewrite the given expression as:

lim x -> infinity (x + sin(2x))/x = lim x -> infinity (x/x + sin(2x)/x)

Now, let's evaluate the limit for each term separately:

lim x -> infinity (x/x) = lim x -> infinity 1 = 1 (since x/x always equals 1)

lim x -> infinity (sin(2x)/x) = 0 (since the sine function oscillates between -1 and 1, its value divided by an increasingly large x will approach 0)

So, the limit of the given expression is:

lim x -> infinity (x + sin(2x))/x = 1 + 0 = 1

Learn more about "limit ":

https://brainly.com/question/23935467

#SPJ11

Following the beginning of the lecture, define the area function A(z) under y = t4 between the lines t = 2 and t = x. Sketch a proper graph. Explain and find the formula for A(x).

Answers

The area function A(x) under y = t⁴ between the lines t = 2 and t = x is given by A(x) = ∫[2,x] t⁴ dt.

How to find the area?

The area function A(x) represents the area under the curve y = t⁴ between the lines t = 2 and t = x.

To find the formula for A(x), we integrate the function y = t⁴ with respect to t over the interval [2, x].

We start by calculating the definite integral of t⁴ with respect to t:

∫[2,x] t⁴ dt = [(1/5) * t⁵] evaluated from 2 to x

= (1/5) * x⁵ - (1/5) * 2⁵

= (1/5) * x⁵ - 32/5

Therefore, the formula for the area function A(x) is given by A(x) = (1/5) * x⁵- 32/5.

Learn more about area

brainly.com/question/1631786

#SPJ11

Is it possible to get a very strong correlation just by chance when in fact there is no relationship between the two variables? True False

Answers

It is not possible to get a very strong correlation just by chance when there is no relationship between the two variables. False

Is it possible to get a very strong correlation just by chance when in fact there is no relationship between the two variables?

Correlation measures the strength and direction of the linear relationship between two variables. A high correlation coefficient indicates a strong relationship between the variables, while a low or near-zero correlation suggests a weak or no relationship.

A strong correlation implies that changes in one variable are associated with predictable changes in the other variable. Therefore, a high correlation cannot occur by chance alone without an underlying relationship between the variables.

Learn more about correlation at https://brainly.com/question/13879362

#SPJ1

Let v1= [1,2,-1], v2=[-2,-1,1], and y=[4,-1,h]. For what value of h is y in the plane spanned by v1 and v2?

Answers

The value of h that makes y lie in the plane spanned by v1 and v2 is 7.5.

How to determine plane spanned?

To find the value of h that makes y lie in the plane spanned by v1 and v2, we need to check if y can be written as a linear combination of v1 and v2. We can do this by setting up a system of equations and solving for h.

The plane spanned by v1 and v2 can be represented by the equation ax + by + cz = d, where a, b, and c are the components of the normal vector to the plane, and d is a constant. To find the normal vector, we can take the cross product of v1 and v2:

v1 x v2 = (-1)(-1) - (2)(1)i + (1)(-2)j + (1)(2)(-2)k = 0i - 4j - 4k

So, the normal vector is N = <0,-4,-4>. Using v1 as a point on the plane, we can find d by substituting its components into the plane equation:

0(1) - 4(2) - 4(-1) = -8 + 4 = -4

So, the equation of the plane is 0x - 4y - 4z = -4, or y + z/2 = 1.

To check if y is in the plane, we can substitute its components into the plane equation:

4 - h/2 + 1/2 = 1

Solving for h, we get:

h/2 = 4 - 1/2

h = 7.5

Therefore, the value of h that makes y lie in the plane spanned by v1 and v2 is 7.5.

Learn more about plane spanned

brainly.com/question/13381746

#SPJ11

evaluate the following integral over the region d. (answer accurate to 2 decimal places). ∫ ∫d 7(r2⋅sin(θ))rdrdθ d={(r,θ)∣0≤r≤5 cos(θ), 0 π≤θ≤ 1 π}.

Answers

The value of the integral over the region d is 0.

We want to evaluate the double integral:

∫∫d 7(r^2·sin(θ)) r dr dθ

where d={(r,θ)∣0≤r≤5cos(θ), 0≤θ≤π}.

We can integrate with respect to r first and then with respect to θ.

∫π0 ∫5cos(θ)0 7(r^2·sin(θ)) r dr dθ

= ∫π0 [7/3 · r^3 · sin(θ)]5cos(θ)0 dθ

= (7/3) · ∫π0 [125cos^3(θ)sin(θ)] dθ

We can solve this integral by substituting u = cos(θ), then du = -sin(θ) dθ:

(7/3) · ∫1-1 [125u^3(-du)]

= (7/3) · ∫-1^1 [125u^3 du]

= (7/3) · [125/4 · u^4]1-1

= 0

Therefore, the value of the integral over the region d is 0.

Learn more about integral  here:

https://brainly.com/question/18125359

#SPJ11

In complete sentences, explain the relationship between the sines and cosines of the two acute angles in right triangles. State the relationship and explain why that relationship exists

Answers

This relationship holds true for all right triangles and is a fundamental property of trigonometry.

The relationship between the sines and cosines of the two acute angles in right triangles is defined by the concept of trigonometric ratios. The sine of an angle is equal to the ratio of the length of the side opposite the angle to the hypotenuse, while the cosine of an angle is equal to the ratio of the length of the side adjacent to the angle to the hypotenuse. The relationship between the sines and cosines can be summarized as follows: the sine of an angle is equal to the cosine of its complement, and the cosine of an angle is equal to the sine of its complement.

This relationship exists because the two acute angles in a right triangle are complementary angles, meaning their sum is equal to 90 degrees. Since the hypotenuse is the longest side in a right triangle and is shared by both angles, the ratio of the length of the side opposite one angle to the hypotenuse is equal to the ratio of the length of the side adjacent to the other angle to the hypotenuse. Therefore, the sine of one angle is equal to the cosine of its complement, and the cosine of one angle is equal to the sine of its complement. This relationship holds true for all right triangles and is a fundamental property of trigonometry.

Learn more about trigonometric ratios here:

https://brainly.com/question/23130410

#SPJ11

soccer fields vary in size. a large soccer field is 110 meters long and 90 meters wide. what are its dimensions in feet? (assume that 1 meter equals 3.281 feet. for each answer, enter a number.)

Answers

The dimensions of the large soccer field are 361 x 295.28 feet.

What are the dimensions of the large soccer field in feet?

To convert the dimensions of the large soccer field from meters to feet, we multiply each dimension by the conversion factor of 1 meter equals 3.281 feet.

Length conversion: The length of the soccer field is 110 meters. Multiply this by the conversion factor: 110 meters * 3.281 feet/meter = 361 feet.

Width conversion: The width of the soccer field is 90 meters. Multiply this by the conversion factor: 90 meters * 3.281 feet/meter = 295.28 feet.

Therefore, the large soccer field measures 361 feet long and 295.28 feet wide when converted to the imperial unit of feet.

By applying the conversion factor, we accurately express the field's dimensions in the desired measurement system.

Learn more about converting dimensions

brainly.com/question/29909084

#SPJ11

consider the curve given by 2y^2 3xy=1 find dy/dx

Answers

To find dy/dx for the curve 2y^2 + 3xy = 1, we use implicit differentiation. Taking the derivative of both sides with respect to x, we get:

4y dy/dx + 3y + 3x dy/dx = 0

Simplifying, we obtain:

dy/dx = (-3y) / (4y + 3x)

Therefore, the derivative of y with respect to x is given by:

dy/dx = (-3y) / (4y + 3x)

Note that this expression is only valid for points on the curve 2y^2 + 3xy = 1. To find the value of dy/dx at a specific point, we need to substitute the coordinates of the point into the equation and then solve for dy/dx using the above expression.

Learn more about curve here:

https://brainly.com/question/28793630

#SPJ11

Prove that 7 |[3^(4n +1) −5^(2n−1)] for every positive integer n.

Answers

To prove that 7 divides the expression 3^(4n+1) - 5^(2n-1) for every positive integer n, we can use mathematical induction.

Base case: Let n = 1. Then,

3^(4n+1) - 5^(2n-1) = 3^(5) - 5^(1) = 243 - 5 = 238

Since 238 is divisible by 7, the base case holds true.

Inductive step: Assume that the statement is true for some arbitrary positive integer k, i.e.,

7 | [3^(4k+1) - 5^(2k-1)]

We need to show that the statement is also true for k+1.

We have,

3^(4(k+1)+1) - 5^(2(k+1)-1)

= 3^(4k+5) - 5^(2k+1)

= 3^4 * 3^(4k+1) - 25 * 5^(2k-1)

= 81 * 3^(4k+1) - 25 * 5^(2k-1)

= 7 * (9 * 3^(4k+1) - 5^(2k-1)) + 2 * 5^(2k-1)

Since 9 * 3^(4k+1) - 5^(2k-1) is an integer, and 2 * 5^(2k-1) is divisible by 7 (since 5^2 = 25 is congruent to 4 modulo 7), it follows that

7 | [3^(4(k+1)+1) - 5^(2(k+1)-1)]

Thus, by mathematical induction, the statement is true for all positive integers n.

To now more about mathematical induction, visit:

https://brainly.com/question/29503103

#SPJ11

If RS = 4 and RQ = 16, find the length of segment RP. Show your work. (4 points)

Answers

.Answer: Length of segment RP is greater than 3.

Given that RS = 4 and RQ = 16, we need to find the length of segment RP. Now, we have to consider a basic property of triangles that the sum of the lengths of any two sides of a triangle is always greater than the length of the third side. We apply the same rule in the triangle PRS, PQS and PQR.As per the above property, PR+RS>PS ⇒ PR+4>PS...

(1) PR+PQ>QR ⇒ PR+16>QR...

(2) PQ+QS>PS ⇒ PQ+8>PS..

(3)Adding equation 2 to equation 3, we get PR+PQ+16+8>PS+QR⇒PR+PQ+24>PS+QR....

(4)Adding equation 1 to equation 4, we get 2(PR+PQ+12)>30 ⇒ PR+PQ+12>15 ⇒ PR+PQ>3..

. (5)Now, we consider a triangle PQR. As per the above property, PR+QR>PQ ⇒ PR+QR>16⇒ PR>16-QR.....(6)Substituting equation (6) in equation (5), we get 16-QR+PQ>3 ⇒ PQ>QR-13We know that PQ=QS+PS And RS=4Therefore, QS+PS+4>QR-13 ⇒ QS+PS>QR-17.We also know that PQ+QS>PS ⇒ PQ>PS-QS. Substituting these values in QS+PS>QR-17, we get PQ+PS-QS>QR-17 ⇒ PQ+QS-17>QR-PS. Again, PQ+QS>16⇒ PQ>16-QSPutting this value in PQ+QS-17>QR-PS, we get 16-QS-17>QR-PS ⇒ QS+PS>3On simplifying we get PS>3-QSSince RS=4, we have PQ+PS>3 and RS=4Therefore, PQ+PS+4>7 ⇒ PQ+PS>3On solving the equations we get: PS>3-QSQR>16-QS PQ>16-PSFrom the above equations, we have PQ+PS>3Therefore, the length of segment RP is greater than 3. Hence, we can conclude that the length of segment RP is greater than 3

Know more about triangle  here:

https://brainly.com/question/10652623

#SPJ11

Final answer:

Without more information about how the segments are related, it's not possible to calculate the length of RP just from the lengths of RS and RQ.

Explanation:

The detailed information provided does not seem to relate directly to your question about finding the length of segment RP given the lengths of segments RS and RQ. Without additional information on the relationship between these segments (e.g., if they form a triangle or a straight line), it's not possible to calculate the length of RP directly from the given information. However, if RQ and RS are related in a certain way, such as the sides of a right triangle, we'd require the Pythagorean theorem or other geometric principles to find the length of RP.

Learn more about Geometry here:

https://brainly.com/question/31408211

#SPJ11

A circular aluminum sign has a radius of 28 centimeters. If a sheetof auminum costs $0. 33 per square centimeter, how much will it cost to buy the aluminum to make the sign? use 3. 14 to approximate pi. Show your work.

Answers

With a circular sign of radius 28 centimeters and a cost of $0.33 per square centimeter, the cost to buy the aluminum will be approximately $810.92.

The formula for the area of a circle is given by A = πr², where A represents the area and r represents the radius of the circle. In this case, the radius of the circular sign is 28 centimeters. Let's substitute this value into the formula and calculate the area.

A = π * r²

A = 3.14 * (28 cm)²

A = 3.14 * 784 cm²

A ≈ 2459.36 cm²

The area of the circular sign is approximately 2459.36 square centimeters.

The cost per square centimeter of aluminum is given as $0.33. To find the total cost of buying aluminum to make the sign, we need to multiply the cost per square centimeter by the area of the sign.

Cost = (Cost per square centimeter) * (Area)

Cost = $0.33/cm² * 2459.36 cm²

Cost ≈ $810.92

Therefore, it will cost approximately $810.92 to buy the aluminum required to make the circular sign.

To know more about circle here

https://brainly.com/question/483402

#SPJ4

Seventh grade


>


AA. 12 Surface area of cubes and prisms RFP


What is the surface area?


20 yd


16 yd


20 yd


24 yd


23 yd


square yards


Submit

Answers

The surface area of the given object is 20 square yards

The question asks for the surface area of an object, but it does not provide any specific information about the object itself. Without knowing the shape or dimensions of the object, it is not possible to determine its surface area.

In order to calculate the surface area of a shape, we need to know its specific measurements, such as length, width, and height. Additionally, different shapes have different formulas to calculate their surface areas. For example, the surface area of a cube is given by the formula 6s^2, where s represents the length of a side. The surface area of a rectangular prism is calculated using the formula 2lw + 2lh + 2wh, where l, w, and h represent the length, width, and height, respectively.

Therefore, without further information about the shape or measurements of the object, it is not possible to determine its surface area. The given answer options of 20, 16, 20, 24, and 23 square yards are unrelated to the question and cannot be used to determine the correct surface area.

Learn more about area here:

https://brainly.com/question/27776258

#SPJ11

Diagonalize A if possible. (Find P and D such that A = PDP−1 for the given matrix A. Enter your answer as one augmented matrix. If the matrix is not able to be diagonalized, enter DNE in any cell.) 9 −10 2 0 [P D] =

Answers

Thus, the augmented matrix for P and D is:
[  1   -1   0  | 9  0  0]
[-1/2 0   1   | 0 -10 0]
[  0   1  1/2 | 0   0  2]

To determine if a matrix can be diagonalized, we need to find its eigenvalues and eigenvectors. Using the characteristic equation, we get:
det(A-λI) = (9-λ)(-10-λ)(2-λ) = 0
Solving for λ, we get λ1 = 9, λ2 = -10, λ3 = 2.
Next, we find the eigenvectors corresponding to each eigenvalue.
For λ1 = 9, we solve the system (A-λ1I)x = 0 and get:
x1 = 1, x2 = -1/2, x3 = 0
So the eigenvector for λ1 is [1, -1/2, 0].
Similarly, for λ2 = -10, we get the eigenvector [-1, 0, 1].
And for λ3 = 2, we get [0, 1, 1/2].
We can then construct the matrix P by arranging the eigenvectors as columns:
P = [1 -1 0; -1/2 0 1; 0 1 1/2]
And the diagonal matrix D by placing the eigenvalues along the diagonal:
D = [9 0 0; 0 -10 0; 0 0 2]
Finally, we can find A = [tex]PDP^{-1}[/tex]:
A = [tex][1,-1 ,0; -1/2 ,0 ,1; 0 ,1 ,1/2] [9 ,0 ,0; 0 ,-10 ,0; 0 ,0 ,2] [1 -1 0; -1/2 0 1]^{-1}[/tex]

Learn more about eigenvalues here:

https://brainly.com/question/31650198

#SPJ11

Hue is arranging chairs. She can form 2 rows of a given length with 4 chairs left over, or 4 rows of that same length if she gets 14 more chairs

Answers

Let's assume Hue has x chairs. According to the first scenario, we can form 2 rows of a given length with 4 chairs left over.

Therefore, if she arranges the chairs in 2 rows, we get:x = 2a + 4 where a is the number of chairs in each row. Simplifying the equation, we have:x - 4 = 2a          ....(i)

On the other hand, Hue can form 4 rows of that same length if she gets 14 more chairs. This means she will have x + 14 chairs. Therefore, if she arranges the chairs in 4 rows, we get:x + 14 = 4a    ....(ii)

Equation (ii) can be rewritten as follows:4a - x = 14     ....(iii)

Solving equations (i) and (iii) gives us the value of x and a. We have:

x - 4 = 2a4a - x = 14

Adding the two equations together, we have

3a = 18

Therefore, a = 6Substituting a = 6 into equation (i) gives us:

x - 4 = 2(6)

Therefore, x = 16

Therefore, Hue has 16 chairs. To check if this answer is correct, we substitute x = 16 into equations (i) and (ii) and check if they are true. We have:

x - 4 = 2a          ....(i)

16 - 4 = 2(6)

This is true.4a - x = 14     ....(iii)

4(6) - 16 = 8 This is also true.

The solution starts by assuming that Hue has x chairs and proceeds to set up two equations, based on the two scenarios given in the question, which must be satisfied simultaneously to get the value of x. Solving the equations gives us x = 16, which means Hue has 16 chairs.

The solution further shows how to check the answer and concludes by stating that the answer is correct.

To know more about length visit:

https://brainly.com/question/32060888

#SPJ11

HELP!! Triangle MNO is dilated to create triangle PQR on a coordinate grid. You are given that angle N is congruent to angle Q. What other information is required to prove that the two triangles are similar?

Answers

Once we have established that all three angles are congruent and all three sides are proportional, we can conclude that the two triangles are similar.

To prove that the two triangles are similar, we need to show that all three angles are congruent, and all three sides are proportional.

We know that angle N is congruent to angle Q, but we need to find additional information to prove that the triangles are similar. One possible piece of information could be the length of one side or the ratio of two sides.

If we know the ratio of the lengths of two corresponding sides in the two triangles, we can use that information to show that all three sides are proportional.

Alternatively, if we know the length of one side in both triangles, we can use the angle-angle similarity theorem to show that all three angles are congruent.

To learn more about : triangles

https://brainly.com/question/17335144

#SPJ11

find fx and fy, and evaluate each at the given point. f(x, y) = xy x − y , (5, −5)

Answers

The partial derivative fx of f(x, y) is y, and the partial derivative fy is x - 1. Evaluating at (5, -5), fx = -5 and fy = 4.

To find the partial derivatives of f(x, y), we differentiate f(x, y) with respect to each variable while treating the other variable as a constant.

Partial derivative fx:

To find fx, we differentiate f(x, y) with respect to x while treating y as a constant.

∂/∂x (xy x - y) = y

Partial derivative fy:

To find fy, we differentiate f(x, y) with respect to y while treating x as a constant.

∂/∂y (xy x - y) = x - 1

Now, evaluating at (5, -5):

Substituting x = 5 and y = -5 into the partial derivatives:

fx(5, -5) = -5

fy(5, -5) = 4

For more questions like Derivative click the link below:

https://brainly.com/question/25324584

#SPJ11

Help me on this please

Answers

The value of the limit when x tends to 6, the limit tends to infinity.

How to find the value of the limit?

Here we want to find the value of the following limit:

[tex]\lim_{x \to 6} \frac{x + 6}{(x - 6)^2}[/tex]

We can see that when we evaluate in that limit the denominator becomes zero, and the numerator becomes 12.

12/0

So, we have the quotient between a whole number and a really small positive number (really close to zero, it is positive because of the square) when we take that limit.

That means that the limit will tend to infinity, then we can write:

[tex]\lim_{x \to 6} \frac{x + 6}{(x - 6)^2} = 12/0 = \infty[/tex]

Learn more about limits at:

https://brainly.com/question/5313449

#SPJ1

Given the circle below with secants GHI and KJI. If HI = 48, JI = 46 and
KJ is 5 more than GH, find the length of GH. Round to the nearest tenth if
necessary.

Please also explain

Answers

The length of GH is 21 units.

How to find the length of GH?

The Secant-Secant Theorem states that "if two secant segments which share an endpoint outside of the circle, the product of one secant segment and its external segment is equal to the product of the other secant segment and its external segment".

Using the theorem above, we can say:

HI * GI = JI * KI

Since KJ is 5 more than GH, we can say:

KJ = GH + 5

KI = KJ + JI

KI = GH + 5 + 46 = GH + 51

From the figure:

GI = GH + HI

Substituting into:

HI * GI = JI * KI

HI * (GH + HI) = JI * (GH + 51)

48 * (GH + 48) = 46 * (GH + 51)

48GH + 2304 = 46GH + 2346

48GH - 46GH =  2346 - 2304

2GH = 42

GH = 42/2

GH = 21 units

Learn more about Secant-Secant Theorem on:

brainly.com/question/30242636

#SPJ1

Complete Question

Check attached image

A radioactive decay series that begins with 23290Th ends with formation of the stable nuclide 20882Pb.
Part A
How many alpha-particle emissions and how many beta-particle emissions are involved in the sequence of radioactive decays?

Answers

In the given decay series, there are a total of 6 alpha-particle emissions, each resulting in a decrease of 4 in the atomic number and 4 in the mass number, and 4 beta-particle emissions, each resulting in a change in the atomic number but no change in the mass number.

In the radioactive decay series that begins with 23290Th and ends with 20882Pb, a total of 6 alpha-particle emissions and 4 beta-particle emissions are involved.

The decay series can be summarized as follows:

23290Th → 22888Ra → 22486Rn → 22084Po → 21682Pb → 21280Hg → 21281Tl (beta decay) → 20882Pb

In each alpha decay, an alpha particle (which consists of two protons and two neutrons) is emitted from the nucleus, resulting in a decrease of 4 in the atomic number and a decrease of 4 in the mass number.

In each beta decay, a beta particle (which is either an electron or a positron) is emitted from the nucleus, resulting in a change in the atomic number but no change in the mass number.

For such more questions on Decay series:

https://brainly.com/question/15564068

#SPJ11

The decay series can be represented as follows:

23290Th → 22888Ra → 22889Ac → 22486Rn → 22084Po → 21682Pb → 21280Hg → 21281Tl → 20882Pb

In this decay series, alpha-particle emissions occur at each step except for the decay of 22889Ac to 22486Rn, which involves the emission of a beta particle. Therefore, there are a total of 7 alpha-particle emissions and 1 beta-particle emission involved in the sequence of radioactive decays.

Know more about decay series here:

https://brainly.com/question/31868853

#SPJ11

A and B belong to X. C and D belong to Y. Proof that :

(A ∩ B) × (C ∩ D) = (A × C) ∩ (B × D)

Answers

We have shown that (A ∩ B) × (C ∩ D) is a subset of (A × C) ∩ (B × D), and (A × C) ∩ (B × D) is a subset of (A ∩ B) × (C ∩ D). This establishes the equality: (A ∩ B) × (C ∩ D) = (A × C) ∩ (B × D)

To prove the equality (A ∩ B) × (C ∩ D) = (A × C) ∩ (B × D), we need to show that each side is a subset of the other.

First, let's take an arbitrary element (x, y) from the set (A ∩ B) × (C ∩ D).

(x, y) ∈ (A ∩ B) × (C ∩ D)

This means that x ∈ A ∩ B and y ∈ C ∩ D. By the definition of set intersection, this implies:

x ∈ A and x ∈ B

y ∈ C and y ∈ D

Now, let's consider the set (A × C) ∩ (B × D) and show that (x, y) is also an element of this set.

(x, y) ∈ (A × C) ∩ (B × D)

This means that x ∈ A × C and x ∈ B × D. By the definition of Cartesian product, this implies:

x = (a, c) for some a ∈ A and c ∈ C

x = (b, d) for some b ∈ B and d ∈ D

Since x has two different representations, we can conclude that (a, c) = (b, d). Thus, a = b and c = d.

Therefore, (a, c) = (b, d) is an element of both A × C and B × D. Thus, (x, y) = (a, c) = (b, d) is an element of their intersection, (A × C) ∩ (B × D).

Since (x, y) is an arbitrary element of (A ∩ B) × (C ∩ D), and we have shown that it is also an element of (A × C) ∩ (B × D), we can conclude that (A ∩ B) × (C ∩ D) is a subset of (A × C) ∩ (B × D).

To show the reverse inclusion, we need to take an arbitrary element (x, y) from the set (A × C) ∩ (B × D) and prove that it is also an element of (A ∩ B) × (C ∩ D). The proof follows a similar logic as above but in the reverse direction.

Therefore, we have shown that (A ∩ B) × (C ∩ D) is a subset of (A × C) ∩ (B × D), and (A × C) ∩ (B × D) is a subset of (A ∩ B) × (C ∩ D). This establishes the equality:

(A ∩ B) × (C ∩ D) = (A × C) ∩ (B × D)

Learn more about Cartesian product here:

https://brainly.com/question/22989508

#SPJ11

Other Questions
Can we always be aware of Our happiness? This image shows someone practicing good hygiene. A woman holding a tissue to her nose. What does this hygiene practice help prevent? smelling unwanted body odors the transmission of disease exposure to toxic chemicals the spread of common pests Which of the following is the constant in the equation below:16x + 42 = 7816x164278 A model car is 7.5 inches long made with a scale of 2 inches = 48 inches. How long is the actual car?a) 15b) 20c) 180d) 360WILL MARK BRANLIEST! In a survey of 1800 people who owned a certain type of car, 1260 said they would buy that type of car again. What percent of the people surveyed were satisfied with the car? El viraje que realiza el feminismo radical consiste fundamentalmente en defender que The boy sat close to his friend. "Close" in this sentence is a/an: -adverb. -adjective -noun -verb Bo wants to conduct research on the history of suspense movies, but he also wants to make sure that horror moviesdo not come up in his search results.How should Bo format his internet search?O Insert the word OR between suspense and horror.O Insert the word AND between suspense and horror.O Insert the word NOT between suspense and horror.O Insert the word BUT between suspense and horror. Can anyone tell me what 9/2 simplified completely is?? Describe the energy of the products in comparison to the energy the atoms had when the were wandering around the room free. an example of xenon (Xe) Which statements regarding the diagram are correct? Check all that apply. ST ST by the reflexive property. RWS UWT because they are vertical angles. RWS UWT by AAS. RST UST by SAS. WTU WSR because CPCTC.ANSWER: ST ST by the reflexive property. RWS UWT because they are vertical angles.RWS UWT by AAS.WTU WSR because CPCTC. What are the features of the Model Code of Conduct? What types of energy do lamps give off?Include how was your day in you answer.Explain why/if the lamp gives off heat energy. Decrease in a person's life span is an example of ____A. Adverse health effectsB. HazardC. IncidentsD. Risk There are 8 marbles in a bag, all of different colors. In how many orders can 4 marbles be chosen? In other words, what is thenumber of permutations of picking 4 marbles from the bag?A1680B7040320 Giovanni is heating up mini frozen pizzas in the microwave. Each pizza takes 3 minutes to cook. How long will it take Giovanni to heat up 3 pizzas? * given that line a is parallel to line be and the slope on line a is 2 what is the slope of line b? The tenth grade is usually theyear of high school.secondthirdfirstfourthOther: (1 point)Carlos measured the rainfall amounts, in inches, in his town for one week. The amounts were0.1, 0.5, 0, 0.32, 0, 0, 1.5, and 0. What is the outlier in this set of data?Oo00.1O 0.32O 1.5