5 of 8 18 seconds A Given that A, O & B lie on a straight line segment, evaluate acute ZCOD. C (3x+88) this question ZCOD = 46 0 (x +36) (2x-4) The diagram is not drawn to scale. D B​

Answers

Answer 1

On solving the provided question, we can say that A,O, B lie on a straight line segment, so, angle COD=46°

what are angles?

An angle is a form in Euclidean geometry made composed of two rays, called the angle's sides, that meet at a point in the middle known as the angle's vertex. In the plane where the rays are placed, two rays can produce an angle. An angle is also produced when two planes intersect. They're known as dihedral angles. In plane geometry, an angle is the form that two rays or lines with a common termination might take. The Latin word "angulus," which means "horn," is where the English word "angle" comes from. The two rays, also known as the sides of the angle, have a common termination known as the vertex.

A,O, B lie on a straight line segment.

We know that

straight line has  = 180

angle AOC=3x+88

angle COD=(x+36)

Angle DOB = (2x - 4)

[tex]AOC+ COD+ DOB=180\\(3x+88)+(x+36)+(2x-4)=180\\6x+190=180\\ x=60/6=10 \\COD=x+36=10+36=46\\[/tex]

so, angle COD=46°

To know more about angles visit:

https://brainly.com/question/14569348

#SPJ1


Related Questions

Melanie is at the fair and she is on a budget. She knows she will spends $5 to get in, $8 on snacks and the rest on tickets for games which sell for $0. 75 per ticket. If she can spend a maximum of $20, then what is the most amount of tickets she can buy?

Answers

Melanie can purchase a maximum of 9 tickets because she cannot buy a fraction of a ticket.

Melanie plans on spending a maximum of $20 at the fair, $5 of which will be spent on entrance fee and $8 on snacks. The remaining balance after taking care of entrance fees and snacks is $20 - $5 - $8 = $7. Therefore, Melanie can purchase tickets worth $7 at $0.75 per ticket.However, to determine how many tickets she will get with the $7, we need to divide $7 by the cost of each ticket:$7 ÷ $0.75 = 9.33Therefore, Melanie can purchase a maximum of 9 tickets because she cannot buy a fraction of a ticket. Therefore, the most amount of tickets Melanie can purchase at the fair is 9.Hence, we have determined that the most amount of tickets Melanie can buy at the fair is 9. This is because she can purchase tickets worth $7 at $0.75 per ticket and this will total to 9 tickets.

Learn more about Budget here,Why is budgeting so important? Explain and provide examples

https://brainly.com/question/6663636

#SPJ11

1. The accounting department at Box and Go Apparel wishes to estimate the net profit for each of the chain's many stores on the basis of the number of employees in the store, overhead costs, average markup, and theft loss. The data from two stores are: Net Profit ($ thousands) Number of Employees X 143 110 Overhead Cost ($ thousands) X2 Average Markup (percent) x х, 69% 50 Theft Loss ($ thousands) X $52 45 Store $79 1 2 $846 513 64 a. The dependent variable is b. The general equation for this problem is c. The multiple regression equation was computed to be y = 67 + 8x, - 10x, + 0.004x, - 3x What are the predicted sales for a store with 112 employees, an overhead cost of $65,000. a markup rate of 50%, and a loss from theft of $50,000? d. Suppose R2 was computed to be .86. Explain. e. Suppose that the multiple standard error of estimate was 3 (in $ thousands). Explain

Answers

a. The dependent variable is net profit, which is the variable being predicted based on the values of the independent variables.

b. The general equation for this problem is:

[tex]Net Profit = f(Number of Employees, Overhead Cost, Average Markup, Theft Loss)[/tex]

c. The multiple regression equation is:

Net Profit = 67 + 8(Number of Employees) - 10(Overhead Cost) + 0.004(Average Markup) - 3(Theft Loss)

d. R2 is a measure of how well the regression equation fits the data, and it represents the proportion of the total variation in the dependent variable that is explained by the independent variables. An R2 value of .86 means that 86% of the variation in net profit is explained by the independent variables in the regression equation. This is a relatively high R2 value, indicating a strong relationship between the independent variables and net profit.

e. The multiple standard error of estimate is a measure of the average distance between the predicted values of the dependent variable and the actual values in the data. A multiple standard error of estimate of 3 (in $ thousands) means that, on average, the predicted net profit for a store based on the independent variables in the regression equation is off by about $3,000 from the actual net profit. This measure can be used to assess the accuracy of the regression equation and to evaluate the precision of the predictions based on the independent variables.

Learn more about net profit here:

https://brainly.com/question/31780989

#SPJ11

 what is equation of a circle center (2,3)The passes through the point(5,3)

Answers

The answer is , (x - 2)² + (y - 3)² = 9 , this is the equation of the circle with center (2,3) and passes through the point (5,3).

To write the equation of a circle in standard form with its center at (h, k), and a radius of r, the  formula is :

(x-h)²+(y-k)²=r²

Where h and k are the x and y coordinates of the center of the circle, respectively, and r is the radius.

We can use this formula to solve the given problem since we know the center of the circle and a point that lies on it.

Let the center of the circle be (h,k) = (2,3) and the point on the circle be (x,y)=(5,3).

We also know that the radius is equal to the distance between the center of the circle and the point on the circle, using the distance formula:

radius = √[(x - h)² + (y - k)²]

radius = √[(5 - 2)² + (3 - 3)²]

radius = √[3² + 0²]

radius = √9

radius = 3

Now that we know the center and radius of the circle, we can use the formula for the equation of the circle in standard form.

(x - 2)² + (y - 3)² = 9 , this is the equation of the circle with center (2,3) and passes through the point (5,3).

To know more about Distance formula visit:

https://brainly.com/question/12031398

#SPJ11

Of 18 students 1/3 can play guitar and piano 6 can play only the guitatar and 4 can play neither instructment. How much many student can play only the piano?

Answers

Given that, the Total number of students = 18

Number of students who can play guitar and piano (Common)

= 1/3 × 18

= 6

Number of students who can play only guitar = 6

The number of students who cannot play any of the instruments = 4

Now, let us calculate the number of students who can play only the piano.

Let this be x.

Number of students who can play only the piano = Total number of students - (Number of students who can play both guitar and piano + Number of students who can play only guitar + Number of students who cannot play any of the instruments)

Therefore,

x = 18 - (6 + 6 + 4)

x = 18 - 16x

= 2

Therefore, 2 students can play only the piano.

To know more about instruments visit:

https://brainly.com/question/28572307

#SPJ11

Takes 1 hour and 21 minutes for a 2. 00 mg sample of radium-230 to decay to 0. 25 mg. What is the half-life of radium-230?

Answers

The half-life of radium-230 is approximately 5 hours and 24 minutes, or equivalently, 324 minutes.

The half-life of a radioactive substance is the time it takes for half of the initial quantity of the substance to decay. In this case, the initial quantity of radium-230 is 2.00 mg, and it decays to 0.25 mg over a time period of 1 hour and 21 minutes.

To determine the half-life, we need to find the time it takes for the quantity of radium-230 to decrease to half of the initial amount. In this case, the initial quantity is 2.00 mg, so half of that is 1.00 mg.

Since it takes 1 hour and 21 minutes for the sample to decay to 0.25 mg, we can determine the time it takes for the sample to decay to 1.00 mg by multiplying the given time by (1.00 mg / 0.25 mg).

(1 hour and 21 minutes) * (1.00 mg / 0.25 mg) = 5 hours and 24 minutes

Learn more about half-life problems:

https://brainly.com/question/32674731

#SPJ11

find integral from (-1)^4 t^3 dt

Answers

The integral of [tex]t^3[/tex] from -1 to 4 is 63.75

To find the integral of [tex]t^3[/tex] from -1 to 4,

-Determine the antiderivative of [tex]t^3[/tex].

-The antiderivative of [tex]t^3[/tex] is [tex]( \frac{1}{4} )t^4 + C[/tex], where C is the constant of integration.

- Apply the Fundamental Theorem of Calculus. Evaluate the antiderivative at the upper limit (4) and subtract the antiderivative evaluated at the lower limit (-1).
[tex](\frac{1}{4}) (4)^4 + C - [(\frac{1}{4} )(-1)^4 + C] = (\frac{1}{4}) (256) - (\frac{1}{4}) (1)[/tex]

-Simplify the expression.
[tex](64) - (\frac{1}{4} ) = 63.75[/tex]

So, the integral of [tex]t^3[/tex] from -1 to 4 is 63.75.

To know more about "Fundamental Theorem of Calculus" refer here:

https://brainly.com/question/30761130#

#SPJ11

Twin brothers wish to get a driver's license. They must pass a driving test to obtain the license Each time they take the test the probability of passing is identical. The result of each test is independent of the result of any other test. The test results for each brother are independent The average number of times the first brother must take the test to get a license is 5. The probability the second brother passes a test is 0.3 (a) What is the probability the first brother will need to take more than 4 tests to get a license? (b) What is the probability the second brother needs more than 2 test attempts but no more than 4 test attempts to obtain a license? (c) What is the probability the first brother passes on his first attempt and the second brother passes on his second attempt?

Answers

The probability the first brother passes on his first attempt and the second brother passes on his second attempt is 0.042.

(a) Let X be the number of tests the first brother needs to pass the driving test. We are given that X follows a geometric distribution with parameter p = 1/5, since the first brother needs an average of 5 tests to pass. The probability that the first brother needs more than 4 tests is:

P(X > 4) = 1 - P(X ≤ 4)

= 1 - (1 - p)^4

= 1 - (4/5)^4

= 0.4096

Therefore, the probability the first brother needs to take more than 4 tests to get a license is 0.4096.

(b) Let Y be the number of tests the second brother needs to pass the driving test. We are given that Y follows a geometric distribution with parameter p = 0.3, since the second brother has a probability of 0.3 of passing each test. The probability that the second brother needs more than 2 tests but no more than 4 tests is:

P(2 < Y ≤ 4) = P(Y ≤ 4) - P(Y ≤ 2)

= (1 - (0.7)^4) - (1 - (0.7)^2)

= 0.4003

Therefore, the probability the second brother needs more than 2 test attempts but no more than 4 test attempts to obtain a license is 0.4003.

(c) The probability that the first brother passes on his first attempt is p = 1/5, and the probability that the second brother passes on his second attempt is q = 0.3(0.7) = 0.21, since the first brother has already used up one test and failed, leaving 0.7 probability of the second brother failing on his first attempt.

Since the results of the two tests are independent, the probability that both events occur is:

P(first brother passes on first attempt and second brother passes on second attempt) = p * q

= (1/5) * 0.21

= 0.042

Therefore, the probability the first brother passes on his first attempt and the second brother passes on his second attempt is 0.042.

To know more about  probability refer here:

https://brainly.com/question/30034780

#SPJ11

The floor of Taylor's bathroom is covered with tiles in the shape of triangles. Each triangle has a height of 7 in. And a base of 12 in. If the floor of her bathroom has 40 tiles, what is the area of the bathroom floor? Write the number only. ​

Answers

Given that Taylor's bathroom has 40 tiles of triangles that have a height of 7 in and a base of 12 in, we have to find the area of the bathroom floor.

As each tile is a triangle, the area of each tile can be found using the formula for the area of a triangle:Area of one triangle = 1/2 × base × height Area of one triangle = 1/2 × 12 in × 7 in Area of one triangle = 42 in²Therefore, the total area of 40 tiles = 40 × 42 in²Total area of 40 tiles = 1680 in²Therefore,

the area of Taylor's bathroom floor is 1680 square inches. Answer: 1680

To, know more about area,visit:

https://brainly.com/question/16151549

#SPJ11

Consecutive numbers follow one right after the other. An example of three consecutive numbers is 17,18,


and 19. Another example is -100,-99,-98.


How many sets of two or more consecutive positive integers can be added to obtain a sum of 100?

Answers

We are required to find the number of sets of two or more consecutive positive integers that can be added to get the sum of 100.

Solution:Let us assume that we need to add 'n' consecutive positive integers to get 100. Then the average of the n numbers is 100/n. For instance, If we need to add 4 consecutive positive integers to get 100, then the average of the four numbers is 100/4 = 25.

Also, the sum of the four numbers is 4*25 = 100.We can now apply the following conditions:n is oddWhen the number of integers to be added is odd, then the middle number is the average and will be an integer.

For instance, when we need to add three consecutive integers to get 100, then the middle number is 100/3 = 33.33 which is not an integer.

Therefore, we cannot add three consecutive integers to get 100.

n is evenIf we are required to add an even number of integers to get 100, then the average of the numbers is not an integer. For instance, if we need to add four consecutive integers to get 100, then the average is 100/4 = 25.

Therefore, there is a set of integers that can be added to get 100.

Sets of two or more consecutive positive integers can be added to get 100 are as follows:[tex]14+15+16+17+18+19+20 = 100 9+10+11+12+13+14+15+16 = 100 18+19+20+21+22 = 100 2+3+4+5+6+7+8+9+10+11+12+13+14 = 100[/tex]Therefore, there are 4 sets of two or more consecutive positive integers that can be added to obtain a sum of 100.

To know more about the word average visits :

https://brainly.com/question/897199

#SPJ11

One side of a triangle is 4 units longer than a second side. The ray bisecting the angle formed by these sides divides the opposite side into segments that are 6 units and 7 units long. Find the perimeter of the triangle. Give your answer as a reduced fraction or exact decimal. Perimeter =



Show your work:

Answers

The perimeter of a triangle can be calculated using the given information about the lengths of its sides and the segment formed by the angle bisector. The solution is provided in the following explanation.

Let's denote the second side of the triangle as x units. According to the given information, one side is 4 units longer than the second side, so the first side is (x + 4) units.

The ray bisecting the angle divides the opposite side into segments of length 6 units and 7 units. This means the total length of the opposite side is the sum of these two segments, which is (6 + 7) = 13 units.

To find the perimeter of the triangle, we add up the lengths of all three sides. Therefore, the perimeter is (x + x + 4 + 13) = (2x + 17) units.

Since we don't have a specific value for x, the perimeter is expressed in terms of x as (2x + 17) units.

Thus, the perimeter of the triangle is (2x + 17) units.

Learn more about perimeter here:

https://brainly.com/question/30252651

#SPJ11

The discount warehouse sells a sheet of 18 rectangular stickers for 45 cents. Each sticker is 1/2 inch long and 2/7 inch wide. What is the total area if 1 sheet of stickers

Answers

To calculate the total area, we need to find the area of each individual sticker and then multiply it by the number of stickers on one sheet. The total area of one sheet of stickers is 5 1/14 square inches.

Each sticker is a rectangle with a length of 1/2 inch and a width of 2/7 inch. The area of a rectangle is given by the formula A = length * width.

So, the area of one sticker is (1/2) * (2/7) = 1/7 square inches.

Since there are 18 stickers on one sheet, we can multiply the area of one sticker by 18 to get the total area of the sheet:

Total area = (1/7) * 18 = 18/7 = 2 4/7 square inches.

Simplifying the fraction, we have 2 4/7 = 5 1/14 square inches.

Therefore, the total area of one sheet of stickers is 5 1/14 square inches.

Learn more about fraction here:

https://brainly.com/question/10354322

#SPJ11

In a study on​ infants, one of the characteristics measured was head circumference. The mean head circumference of 12 infants was 34.4 centimeters​ (cm). Complete parts​ (a) through​ (d) below.
a. Assuming that head circumferences for infants are normally distributed with standard deviation 2.1 ​cm, determine a 90​% confidence interval for the mean head circumference of all infants.
The confidence interval for the mean head circumference of all infants is from enter your response here cm to enter your response here cm. ​(Round to one decimal place as​ needed.)
b. Obtain the margin of​ error, E, for the confidence interval you found in part​ (a).
The margin of error is enter your response here cm. ​(Round to one decimal place as​ needed.)
c. Explain the meaning of E in this context in terms of the accuracy of the estimate. Choose the correct answer below and fill in the answer box to complete your choice. ​(Round to one decimal place as​ needed.)

Answers

a. The confidence interval for the mean head circumference of all infants is from 33.3 cm to 35.5 cm.

b. The margin of error is 1.1 cm.  

c.  In this context, the margin of error represents the precision of our estimate of the true population mean.

a) To find the 90% confidence interval for the mean head circumference of all infants, we can use the formula:

CI = x ± z*(σ/√n)

Where x is the sample mean, σ is the population standard deviation, n is the sample size, and z is the critical value from the standard normal distribution corresponding to the desired level of confidence (90% in this case).

Substituting the given values, we get:

CI = 34.4 ± 1.833*(2.1/√12)

CI = 34.4 ± 1.131

The confidence interval for the mean head circumference of all infants is from 33.3 cm to 35.5 cm.

b) The margin of error (E) is the amount added to and subtracted from the sample mean to obtain the lower and upper limits of the confidence interval, respectively.

In other words, it represents the range of values within which we can expect the true population mean to fall with a certain level of confidence.

To obtain the margin of error, we can use the formula:

E = z*(σ/√n)

Substituting the given values, we get:

E = 1.833*(2.1/√12)

E = 1.131

The margin of error is 1.1 cm.

c) In this context, the margin of error represents the precision of our estimate of the true population mean. It tells us how much the sample mean is likely to vary from the true population mean due to sampling variability.

A smaller margin of error indicates greater precision and a more accurate estimate.

For example, if we had obtained a smaller margin of error in this case, say 0.5 cm, it would mean that we can be more confident that the true population mean falls within a narrower range of values.

On the other hand, a larger margin of error, say 2.0 cm, would mean that our estimate is less precise and the true population mean could be further away from our estimate.

Therefore, the margin of error is an important measure of the reliability and validity of our estimate and should always be reported along with the confidence interval.

To know more about confidence interval refer here :

https://brainly.com/question/29680703#

#SPJ11

1. Un ciclista que está en reposo comienza a pedalear hasta alcanzar los 16. 6 km/h en 6 minutos. Calcular la distancia total que recorre si continúa acelerando durante 18 minutos más

Answers

The cyclist travels a total of 15.44 kilometers if he continues to accelerate for 18 more minutes.

What is the total distance it travels if it continues to accelerate for 18 more minutes?

To solve this problem, we can use the following steps:

1. Calculate the cyclist's average speed in the first 6 minutes.

Average speed = distance / time = 16.6 km / 6 min = 2.77 km/min

2. Calculate the cyclist's total distance traveled in the first 6 minutes.

Total distance = average speed * time = 2.77 km/min * 6 min = 16.6 km

3. Assume that the cyclist's acceleration is constant. This means that his speed will increase linearly with time.

4. Calculate the cyclist's speed after 18 minutes.

Speed = initial speed + acceleration * time = 2.77 km/min + (constant acceleration) * 18 min

5. Calculate the cyclist's total distance traveled after 18 minutes.

Total distance = speed * time = (2.77 km/min + (constant acceleration) * 18 min) * 18 min

6. Solve for the constant acceleration.

Total distance = 15.44 km

2.77 km/min + (constant acceleration) * 18 min = 15.44 km

(constant acceleration) * 18 min = 12.67 km

constant acceleration = 0.705 km/min²

7. Substitute the value of the constant acceleration in step 6 to calculate the cyclist's total distance traveled after 18 minutes.

Total distance = speed * time = (2.77 km/min + (0.705 km/min²) * 18 min) * 18 min = 15.44 km

Learn more on acceleration here;

https://brainly.com/question/14344386

#SPJ1

Translation: A cyclist who is at rest begins to pedal until he reaches 16.6 km/h in 6 minutes. Calculate the total distance it travels if it continues to accelerate for 18 more minutes.




A table of values, rounded to the nearest hundredth, for the function y Vã is given for 0 < x < 8.


What is the average rate of change of the function over the interval 2,7 to the nearest hundredth?

Answers

The average rate of change of the function over the interval 2, 7 (rounded to the nearest hundredth) is 0.45.

The given function is y = √x. Average Rate of Change (ARC) of a function is the rate at which it changes over a certain interval. The formula for Average Rate of Change of a function f(x) over an interval [a, b] is given by ;Average Rate of Change (ARC) = [f(b) − f(a)] / [b − a]The given table of values for the function y Vã is :Now, we have to find the average rate of change of the function over the interval [2, 7]. To do that, we need to apply the formula of Average Rate of Change (ARC) of a function. The average rate of change of the function over the interval [2, 7] is given by; ARC = [f(7) − f(2)] / [7 − 2]We can obtain the value of f(7) and f(2) from the given table of values as follows :f(7) = √7 ≈ 2.65f(2) = √2 ≈ 1.41Now, putting the values of f(7) and f(2) in the formula of ARC, we get ;ARC = [2.65 − 1.41] / [7 − 2]= 0.45

Know more about function here:

https://brainly.com/question/23715190

#SPJ11

An account statement has a balance of 109 dollars and 75 cents. Carl is balancing his checking account. After comparing the bank statement to his register, he notices an outstanding debit of $58. 0. Which shows the correct amount in Carl’s checking account? $51. 75 $109. 75 $167. 75 $221. 87.

Answers

The correct amount in Carl’s checking account is $51.75.

Carl’s checking account shows a balance of $51.75.What is a checking account?A checking account is a financial account that lets a person make deposits, withdrawals, and payments. It’s used as a primary account to keep track of finances. A checking account is also a very easy way to keep track of expenses.

The equation for a checking account balance is as follows:Beginning Balance + Deposits – Withdrawals = Ending BalanceLet’s use this equation to solve the problem:Beginning Balance = Account Statement Balance = $109.75Deposits = N/A Account Register Withdrawals = Outstanding Debit = $58.00Ending Balance = Beginning Balance + Deposits – Withdrawals .

Therefore, we can substitute the values to get the equation: $109.75 + N/AA - $58.00 = Ending Balance Let's solve for N/AA = Ending Balance - $51.75Now let's substitute the value of A into the equation to solve for N:$109.75 + N - $58.00 = Ending Balance N = Ending Balance - $51.75Therefore, the correct amount in Carl’s checking account is $51.75.

Learn more about the word Debit here,

https://brainly.com/question/28390335

#SPJ11

Let S,T be sets, and R a relation from S to T. Prove that R is right-total if and only if R−1 is left-total. Hint: compare with exercise 13.4.

Answers

R is right-total if and only if R−1 is left-total since there exists s ∈ S such that (s,t) ∈ R−1, since (s,t) ∈ R−1 if and only if (t,s) ∈ R and there exists t ∈ T such that (s,t) ∈ R, since (t,s) ∈ R if and only if (s,t) ∈ R−1 where R is a relation from S to T

Recall that a relation R from set S to set T is right-total if every element of S is related to some element of T, that is, for every s ∈ S, there exists t ∈ T such that (s,t) ∈ R.

On the other hand, a relation R from S to T is left-total if every element of T is related to some element of S, that is, for every t ∈ T, there exists s ∈ S such that (s,t) ∈ R.

First, suppose that R is right-total. Then, for any s ∈ S, there exists t ∈ T such that (s,t) ∈ R.

This means that for any t ∈ T, there exists s ∈ S such that (s,t) ∈ R−1, since (s,t) ∈ R−1 if and only if (t,s) ∈ R. Hence, R−1 is left-total.

Conversely, suppose that R−1 is left-total. Then, for any t ∈ T, there exists s ∈ S such that (s,t) ∈ R−1. This means that (t,s) ∈ R for some s ∈ S.

Hence, for any s ∈ S, there exists t ∈ T such that (s,t) ∈ R, since (t,s) ∈ R if and only if (s,t) ∈ R−1. Therefore, R is right-total.

In summary, we have shown that R is right-total if and only if R−1 is left-total.

Know more about relation here:

https://brainly.com/question/24779057

#SPJ11

Use the Root Test to determine whether the series convergent or divergent.[infinity] leftparen2.gifn2 + 45n2 + 7rightparen2.gif nsum.gifn = 1

Answers

The Root Test is inconclusive and we cannot determine whether the series converges or diverges using this test alone.

To determine whether the series is convergent or divergent, we can use the Root Test. The Root Test states that if the limit of the nth root of the absolute value of the nth term of a series approaches a value less than 1, then the series converges absolutely. If the limit approaches a value greater than 1 or infinity, then the series diverges.

Using the Root Test on the given series, we have:

lim(n→∞) (|n^2 + 45n^2 + 7|)^(1/n)
= lim(n→∞) [(n^2 + 45n^2 + 7)^(1/n)]
= lim(n→∞) [(n^2(1 + 45/n^2) + 7/n^2)^(1/n)]
= lim(n→∞) [(n^(2/n))(1 + 45/n^2 + 7/n^2)^(1/n)]
= 1 * lim(n→∞) [(1 + 45/n^2 + 7/n^2)^(1/n)]

Since the limit of the expression in the brackets is 1, the overall limit is also 1. Therefore, the Root Test is inconclusive and we cannot determine whether the series converges or diverges using this test alone.

However, we can use other tests such as the Ratio Test or the Comparison Test to determine convergence or divergence.

Learn more on converges or diverges here:

https://brainly.com/question/15415793

#SPJ11

SCT. Imagine walking home and you notice a cat stuck in the tree. Currently, you are standing a distance of 25 feet away from the tree. The angle in which you see the cat in the tree is 35 degrees. What is the vertical height of the cat positioned from the ground? Round to the nearest foot

Answers

The vertical height of the cat positioned from the ground is given as follows:

18 ft.

What are the trigonometric ratios?

The three trigonometric ratios are the sine, the cosine and the tangent of an angle, and they are obtained according to the formulas presented as follows:

Sine = length of opposite side to the angle/length of hypotenuse of the triangle.Cosine = length of adjacent side to the angle/length of hypotenuse of the triangle.Tangent = length of opposite side to the angle/length of adjacent side to the angle = sine/cosine.

For the angle of 35º, we have that:

The height is the opposite side.The adjacent side is of 25 ft.

Hence the height is obtained as follows:

tan(35º) = h/25

h = 25 x tangent of 35 degrees

h = 18 ft.

A similar problem, also about trigonometric ratios, is given at brainly.com/question/24349828

#SPJ4

use the limit comparison test to determine the convergence or divergence of the series. [infinity] 1 n n4 7 n = 1 lim n→[infinity] 1 n n4 7 = l

Answers

Using the limit comparison test, we want to compare the given series with a simpler series, typically of the form 1/n^p, where p is a positive integer. In this case, since the series is 1/(n^4 * 7), we can compare it with 1/n^4.

Let's apply the limit comparison test:

lim (n→∞) [(1/(n^4 * 7)) / (1/n^4)] = lim (n→∞) [n^4 / (n^4 * 7)]

As n approaches infinity, we can see that the limit becomes:

lim (n→∞) [1 / 7] = 1/7

Since the limit (L) is a finite positive value (1/7), the convergence or divergence of the given series is the same as that of the simpler series, 1/n^4.

We know that the p-series 1/n^p converges if p > 1. In this case, p = 4, which is greater than 1, so the series 1/n^4 converges.

Therefore, using the limit comparison test, we can conclude that the given series 1/(n^4 * 7) also converges.

know more about limit comparison test here

https://brainly.com/question/31362838

#SPJ11

Find f such that f'(x) = 8 f(16)= 76. f(x) =

Answers

The function f(x) satisfies the given differential equation and the initial condition is:
f(x) = [tex](76/e^{(8 * 16)})[/tex] ×[tex]e^{(8x)}[/tex]

The given differential equation is f'(x) = 8f(x). To solve this, we use the separation of variables:
f'(x)/f(x) = 8
Integrating both sides with respect to x, we get:
ln|f(x)| = 8x + C
where C is the constant of integration. Solving for f(x), we get:
f(x) = [tex]Ce^{(8x)}[/tex]
where C = f(0) is the initial value. To find C, we use the given condition that f(16) = 76:
f(16) = [tex]Ce^{(8*16)}[/tex] = 76
Solving for C, we get:
C = [tex]76/e^{(8*16)}[/tex]
Substituting this value of C in the expression for f(x), we get:
f(x) = [tex](76/e^{(8 * 16)})[/tex] ×[tex]e^{(8x)}[/tex]

Learn more about integration here:

https://brainly.com/question/29276807

#SPJ11

(1 point) suppose a 3×3 matrix a has only two distinct eigenvalues. suppose that tr(a)=−1 and det(a)=45. find the eigenvalues of a with their algebraic multiplicities.

Answers

The values of λ1, λ2, and m, which will give us the eigenvalues of A with their algebraic multiplicities.

It is not feasible to find the answer however we can tell the method to find it out.

Given that the 3×3 matrix A has only two distinct eigenvalues, and we know that the trace of A (tr(A)) is -1 and the determinant of A (det(A)) is 45, we can find the eigenvalues and their algebraic multiplicities.

The trace of a matrix is the sum of its eigenvalues, and the determinant is the product of its eigenvalues. Since A has two distinct eigenvalues, let's denote them as λ1 and λ2.

We know that tr(A) = -1, so we have:

λ1 + λ2 + λ3 = -1 ---(1)

We also know that det(A) = 45, which is the product of the eigenvalues:

λ1 * λ2 * λ3 = 45 ---(2)

Since A has only two distinct eigenvalues, let's assume that λ1 and λ2 are the distinct eigenvalues, and λ3 is repeated with algebraic multiplicity m.

From equation (2), we have:

λ1 * λ2 * λ3 = 45

Since λ3 is repeated m times, we can rewrite this equation as:

λ1 * λ2 * [tex](λ3^m)[/tex] = 45

Now, let's consider equation (1). Since A has only two distinct eigenvalues, we can write it as:

λ1 + λ2 + m*λ3 = -1

We have two equations:

λ1 * λ2 *[tex](λ3^m)[/tex]= 45

λ1 + λ2 + m*λ3 = -1

By solving these equations, we can find the values of λ1, λ2, and m, which will give us the eigenvalues of A with their algebraic multiplicities.

To know more about eigenvalue refer to-

https://brainly.com/question/31650198

#SPJ11

2x + 5y=-7 7x+ y =-8 yousing systems of equations Substituition

Answers

Therefore, the solution to the system of equations is x = -1 and y = -1.

To solve the system of equations using the substitution method, we will solve one equation for one variable and substitute it into the other equation. Let's solve the second equation for y:

7x + y = -8

We isolate y by subtracting 7x from both sides:

y = -7x - 8

Now, we substitute this expression for y in the first equation:

2x + 5(-7x - 8) = -7

Simplifying the equation:

2x - 35x - 40 = -7

Combine like terms:

-33x - 40 = -7

Add 40 to both sides:

-33x = 33

Divide both sides by -33:

x = -1

Now that we have the value of x, we substitute it back into the equation we found for y:

y = -7x - 8

y = -7(-1) - 8

y = 7 - 8

y = -1


To know more about equation,

https://brainly.com/question/27911641

#SPJ11

boys
4. Mr. Rogers, with his thoughtful heart, always buys Ms. Cassim black licorice when he goes to the coast. He pays
$2.75 per pound.
Linear, exponential, or neither? Explanation:
Equation:

Answers

Answer:

linear

y = 2.75x

Step-by-step explanation:

Price: $2.75/lb

Let y = cost.

Let x = number of pounds.

equation:

y = 2.75x

Linear equation

This is a direct proportion, so it is a linear equation.

For equal changes in x, you get equal changes in y.

For any n ≥ 1, the factorial function, denoted by n!, is the product of all the positive integers through n:
n!=1⋅2⋅3⋯(n−1)⋅n
Use mathematical induction to prove that for n ≥ 4, n! ≥ 2n.

Answers

Answer:

Basis step:

4! > 2^4--->24 > 16

Induction step:

(n + 1)! > 2^(n + 1)

(n + 1)n! > 2(2^n)

n + 1 > 2 and n! > 2^n

From the basis step, n! > 2^n for all

n > 4, so n + 1 > 2 for all n > 4, and it follows that the induction step is true.

Thus, the statement n! ≥ 2n for n ≥ 4  is true for all n ≥ 4 by mathematical induction.

To prove that n! ≥ 2n for n ≥ 4 using mathematical induction, we must first establish the base case:

Base case: n = 4
4! = 4 x 3 x 2 x 1 = 24
2n = 2 x 4 = 8
Since 24 ≥ 8, the base case is true.

Now we assume that the statement is true for some arbitrary integer k ≥ 4:
Assumption: k! ≥ 2k

We must show that this assumption implies that the statement is also true for k + 1:
(k+1)! = (k+1) x k!

Substituting our assumption for k! yields:
(k+1)! = (k+1) x k!
≥ (k+1) x 2k       (by the induction hypothesis)
= 2 x 2k x (k+1)/2

We can see that (k+1)/2 ≥ 2 for k ≥ 3:
(k+1)/2 = (k-1)/2 + 1/2
Since k ≥ 4, we know that (k-1)/2 ≥ 1, so (k+1)/2 ≥ 1 + 1/2 = 3/2 > 1, which implies that (k+1)/2 ≥ 2.

Thus, we have:
(k+1)! ≥ 2 x 2k x (k+1)/2 ≥ 2 x 2k x 2 = 2k+1 x 2

Since this holds for k+1, the statement is true for all n ≥ 4 by mathematical induction.

Know more about the mathematical induction.

https://brainly.com/question/29503103

#SPJ11

find (f^-1)'(a) f(x)=x^2 5sinx 3cosx a=3

Answers

According to question,  (f^-1)'(3) is approximately 0.0414.

To find (f^-1)'(a), we can use the formula:

(f^-1)'(a) = 1 / f'(f^-1(a))

First, we need to find f'(x):

f(x) = x^2 * 5sin(x) * 3cos(x)

f'(x) = (2x * 5sin(x) * 3cos(x)) + (x^2 * 5cos(x) * 3cos(x)) + (x^2 * 5sin(x) * -3sin(x))

= 30xsin(x)cos(x) + 15x^2cos^2(x) - 15x^2sin^2(x)

= 30xsin(x)cos(x) + 15x^2(cos^2(x) - sin^2(x))

= 15x(2sin(x)cos(x) + xcos(2x))

Next, we need to find f^-1(a), where a = 3:

f(x) = 3

x^2 * 5sin(x) * 3cos(x) = 3

x^2sin(x)cos(x) = 1/5

We can't solve for x algebraically, so we'll have to use numerical methods. Using a graphing calculator or a computer algebra system, we can find that f^-1(3) is approximately 0.71035.

Now we can substitute these values into the formula to find (f^-1)'(a):

(f^-1)'(3) = 1 / f'(f^-1(3))

= 1 / f'(0.71035)

≈ 0.0414

To learn more about  algebra visit:

brainly.com/question/24875240

#SPJ11

"An online survey of 3000 randomly-selected teenagers from across the state shows three out of five teenagers participate in extracurricular activities. " Select two statements that are true A. The population of the survey was teenagers across the state. B. The population of the survey was five teenagers. C. The sample of the survey was 3000 teenagers. D. The sample of the survey was three teenagers. E. The population of the survey was 3000 teenagers

Answers

The two true statements are A. The population of the survey was teenagers across the state and C. The sample of the survey was 3000 teenagers.

Statement A is true because the survey was conducted among teenagers from across the state. This means that the survey aimed to gather information from teenagers across a specific geographical region rather than just a small group.

Statement C is true because the sample of the survey consisted of 3000 teenagers. The sample refers to the specific group of individuals who were selected to participate in the survey. In this case, 3000 randomly-selected teenagers were chosen to provide data for the survey.

Statements B, D, and E are false. Statement B suggests that the population of the survey was only five teenagers, which is incorrect because the survey included a larger sample size of 3000 teenagers. Statement D states that the sample of the survey was three teenagers, which is also incorrect because the sample size was 3000 teenagers.

Statement E claims that the population of the survey was 3000 teenagers, but this is incorrect as well. The population refers to the entire group being studied, which in this case would be all teenagers across the state, not just 3000 individuals.

Learn more about population here:

https://brainly.com/question/31598322

#SPJ11

A rectangular parallelepiped has sides 3 cm, 4 cm, and 5 cm, measured to the nearest centimeter.a. What are the best upper and lower bounds for the volume of this parallelepiped?b. What are the best upper and lower bounds for the surface area?

Answers

The best lower bound for the volume is 24 cm³, and the best upper bound is 120 cm³ and the best lower bound for the surface area is 52 cm², and the best upper bound is 148 cm².

a. To determine the best upper and lower bounds for the volume of the rectangular parallelepiped, we can consider the extreme cases by rounding each side to the nearest centimeter.

Lower bound: If we round each side down to the nearest centimeter, we get a rectangular parallelepiped with sides 2 cm, 3 cm, and 4 cm. The volume of this parallelepiped is 2 cm * 3 cm * 4 cm = 24 cm³.

Upper bound: If we round each side up to the nearest centimeter, we get a rectangular parallelepiped with sides 4 cm, 5 cm, and 6 cm. The volume of this parallelepiped is 4 cm * 5 cm * 6 cm = 120 cm³.

Therefore, the best lower bound for the volume is 24 cm³, and the best upper bound is 120 cm³.

b. Similar to the volume, we can determine the best upper and lower bounds for the surface area of the parallelepiped by considering the extreme cases.

Lower bound: If we round each side down to the nearest centimeter, the dimensions of the parallelepiped become 2 cm, 3 cm, and 4 cm. The surface area is calculated as follows:

2 * (2 cm * 3 cm + 3 cm * 4 cm + 4 cm * 2 cm) = 2 * (6 cm² + 12 cm² + 8 cm²) = 2 * 26 cm² = 52 cm².

Upper bound: If we round each side up to the nearest centimeter, the dimensions become 4 cm, 5 cm, and 6 cm. The surface area is calculated as follows:

2 * (4 cm * 5 cm + 5 cm * 6 cm + 6 cm * 4 cm) = 2 * (20 cm² + 30 cm² + 24 cm²) = 2 * 74 cm² = 148 cm².

Therefore, the best lower bound for the surface area is 52 cm², and the best upper bound is 148 cm².

To know more about surface area refer to-

https://brainly.com/question/29298005

#SPJ11

A number line going from negative 2 to positive 6. An open circle is at 1. Everything to the right of the circle is shaded. Which list contains values that are all part of the solution set of the graphed inequality? 2, 1, 3. 9, 4 2001. 3, 4, 0, 2. 6 1. 1, 1. 5, 19. 7, 8. 2 11, 1, 48. 5, 7.

Answers

The correct list of values that are all part of the solution set of the graphed inequality would be {3, 4, 2}.

Explanation Given: A number line going from negative 2 to positive 6.

An open circle is at 1. Everything to the right of the circle is shaded.

The given number line can be shown as follows: Here, an open circle is at 1 and everything to the right of the circle is shaded. So, the solution set of the given inequality would include all the values greater than 1 but not equal to 1. Therefore, the values 3, 4, and 2 would all be part of the solution set.

To know more about line visit

https://brainly.com/question/30003330

#SPJ11

Find the maximum rate of change of f at the given point and the direction in which it occurs. F(x, y) = 8y sqrt(x) , (16, 3)

Answers

The maximum rate of change of f at the given point and the direction in which it occurs is: √1033 in the direction of (3, 32)

How to carry out partial differentiation?

Partial differentiation is utilized in vector calculus and differential geometry. The function depends on two or more two variables. Then to differentiate with respect to x then we consider all the variables as a constant other than x.

The function is given as:

F(x, y) = 8y√x

Then find the maximum rate of change of f(x, y) at the given point (4, 5) and the direction.

Then we know that:

∇F(x, y) = δf/δx, δf/δy = 4y/√x, 8√x

Then the maximum rate of change will be:

∇F(16, 3) = 4*3/√16, 8√16 = |(3, 32)|

= √(3² + 32²)

= √1033 in the direction of (3, 32)

Read more about Partial Differentiation at: https://brainly.com/question/30217886

#SPJ4

use the formula for the present value of an ordinary annuity or the amortization formula to solve the following problem pv=$15000; i=0.02; pmt=$350; n=?

Answers

It would take 211 payments of $350 to pay off a present value of $15,000 with an interest rate of 2% using an ordinary annuity.

We can use the formula for the present value of an ordinary annuity to solve for n:

PV = PMT x ((1 - (1 + i)^-n) / i)

Substituting the given values, we get:

15000 = 350 x ((1 - (1 + 0.02)^-n) / 0.02)

Multiplying both sides by 0.02 and dividing by 350, we get:

0.8571 = (1 - (1 + 0.02)^-n)

Taking the natural logarithm of both sides, we get:

ln(0.8571) = ln(1 - (1 + 0.02)^-n)

Solving for n, we get:

n = -ln(1 - 0.8571) / ln(1 + 0.02) ≈ 210.86

Rounding up to the nearest whole number, we get:

n = 211

Therefore, it would take 211 payments of $350 to pay off a present value of $15,000 with an interest rate of 2% using an ordinary annuity.

Learn more about annuity here:

https://brainly.com/question/23554766

#SPJ11

Other Questions
If you started your own company selling iphone applications, what organizational structure would you create? why? Why was the world anti-slavery convention in london important to the women's movement? Julian wants to ride his bicycle 20.6 miles this week. He has already ridden 8 miles. If he rides for 3 more days, write and solve an equation which can be used to determine xx, the average number of miles he would have to ride each day to meet his goal. Manju and Arif are playing a game in which one of them thinks of a number from the grid shownbelow and the other has to guess it using some clues that are given. Manju thinks of a numberand gives the following clues:It is a multiple of 3.It is even.It is in the third row.What is Manju's number? Do you agree that Project Integration knowledge domain is the most important domain for project managers In the field of _______ psychology, researchers consider how lifetime experiences combine with predispositions and early biological influences to produce the adult's feelings, thoughts, and behaviors. ______ monitoring occurs when a company keeps tabs of competitor's activities on the web using software that automatically tracks all competitor website activities such as discounts and new products. Multiple choice question. If the average wage paid to the worker was $20 in the year 1990 and $30 in the year 2000, then the average worker in the year 2000 must have been better off in terms of purchasing power. True or false?. What enzyme adds complementary bases to exposed single strands of dna during dna replication? PLEASE HELP IM SUPER STUCK Drag the tiles to the correct boxes to complete the pairs.Match each computer field with its appropriate description.Tilesinformation support and servicesnetwork systemsprogramming and software developmentweb and digital communicationsPairscreating interactive materialsarrowBoth providing technical assistance to usersarrowBoth designing and developing applicationsfor an organization's usearrowBoth developing and implementing anorganization's technology infrastructurearrowBoth name a eight planets A desk is on sale for $595, which is 32% less than the regular price. What is the regular price? Suppose that a test for a disease correctly gives positive results for 95% of those having the disease and correctly gives negative results for 90% of those who don't have the disease. Suppose also that the incidence of the disease is 1%. If a person tests positive for the disease, what is the chance that they have the disease At a cost of R55 per box how much would it cost to tile the training room Can psychology add further insight to a biblical view of human nature? Two spheres with uniform surface charge density, one with a radius of 7.4 cm and theother with a radius of 5.0 cm, are separated by a center-to-center distance of 38 cm. Thespheres have a combined charge of +55C and repel one another with a force of 0.62 N.Assume that the charge of the first sphere is greater than the charge of the second sphere.Question 1. What is the surface charge density in the sphere of radius 7.4?Question 2What is the surface density on the 2nd sphere?EXPRESS ANSWER USING TWO SIGNIFICANT FIGURES. This figure represents a design found in a glass panel. ABCD is a rectangle withmidpoints X, Y, Z, and W. Emily states that the quadrilateral formed by the segmentsthat join the midpoints of the sides is a rhombus. Do you agree with her? Explain whyor why not. Which two meta solutions enable businesses to communicate privately and instantly with customers? All members of Kingdom Protista are ____________ , since their cell(s) possess a nucleus and membrane-bound organelles. Protista species can be distinguished from Kingdom Fungi by the lack of ____________ in their cell walls, and from Kingdom Plantae by their ____________ reproductive structures.