50 POINTS!!!!! WWILLLLLL VOTTTEEEE

A vector has a magnitude of 28 and a direction of 500. Another vector has a
magnitude of 75 and a direction of 1250. What are the magnitude and
direction of the resultant vector? Round the magnitude to the thousandths
place and the direction to the nearest degree.

Answers

Answer 1

The magnitude and direction of the resultant vector are 50.479 and 73 degrees, respectively.

What is vector addition?

Vector addition is the operation of adding two or more vectors together into a vector sum. The so-called parallelogram law gives the rule for the vector addition of two or more vectors. For two vectors, the vector sum is obtained by placing them head to tail and drawing the vector from the free tail to the free head.

To find the magnitude and direction of the resultant vector, we need to add the two given vectors. We can do this using vector addition, where we add the corresponding components of each vector.

First, let's convert the given magnitudes and directions into component form. We can use the following equations to find the x and y components of each vector:

Magnitude = √(x² + y²)

Direction = tan⁻¹(y/x)

For the first vector with magnitude 28 and direction 500, we have:

Magnitude = 28

Direction = 500 degrees

x = Magnitude * cos(Direction) = 28 * cos(500) = -14

y = Magnitude * sin(Direction) = 28 * sin(500) = -24.202

Therefore, the first vector can be written as v1 = <-14, -24.202>

Similarly, for the second vector with magnitude 75 and direction 1250, we have:

Magnitude = 75

Direction = 1250 degrees

x = Magnitude * cos(Direction) = 75 * cos(1250) = 28.481

y = Magnitude * sin(Direction) = 75 * sin(1250) = 72.929

Therefore, the second vector can be written as v2 = <28.481, 72.929>

To find the resultant vector, we can add the components of the two vectors:

v = v1 + v2 = <-14, -24.202> + <28.481, 72.929> = <14.481, 48.727>

The magnitude of the resultant vector is:

Magnitude = √(x² + y²) = √(14.481² + 48.727²) = 50.479

Rounding to the thousandth place, the magnitude of the resultant vector is 50.479.

The direction of the resultant vector can be found using the following equation:

Direction = tan⁻¹(y/x) = tan⁻¹(48.727/14.481) = 72.636 degrees

Rounding to the nearest degree, the direction of the resultant vector is 73 degrees.

Therefore, the magnitude and direction of the resultant vector are 50.479 and 73 degrees, respectively.

To learn more about vector addition visit:

https://brainly.com/question/30426215

#SPJ1


Related Questions

Determine the equation of the ellipse with foci (-8,14) and (-8,-16), and co-vertices (0,-1) and (-16,-1).​

Answers

According to the given information, the equation of the ellipse is [tex](x+8)^2/256 + (y+1)^2/784 = 1.[/tex]

What is co-ordinate geometry ?

Coordinate geometry, also known as analytic geometry, is a branch of mathematics that deals with the study of geometric shapes using algebraic principles. It involves the use of coordinates to represent points, lines, curves, and other geometric figures on a plane or in space.

According to the given information:

we need to know the coordinates of its foci, co-vertices, and the center. We can start by finding the center of the ellipse, which is the midpoint of the line segment joining the foci:

Center = ( (-8 + (-8))/2 , (14 + (-16))/2 ) = (-8,-1)

Next, we can find the distance between the foci, which is given by:

[tex]distance between foci = 2c = sqrt[(14 - (-16))^2 + (-8 - (-8))^2] = 30[/tex]

where c is the distance from the center to either focus.

We also know that the distance between the co-vertices is given by:

distance between co-vertices = 2a = |-16 - 0| = 16

where a is the distance from the center to either co-vertex.

Finally, we can use the standard form equation for an ellipse centered at the origin:

[tex](x^2/a^2) + (y^2/b^2) = 1[/tex]

where b is the distance from the center to either vertex.

To find b, we can use the Pythagorean theorem:

[tex]b^2 = c^2 - a^2 \\b^2 = 30^2 - 16^2\\b^2 = 784\\b = 28[/tex]

Now we have all the information we need to write the equation of the ellipse:

[tex](x+8)^2/16^2 + (y+1)^2/28^2 = 1[/tex]

Therefore, according to the given information, the equation of the ellipse is [tex](x+8)^2/256 + (y+1)^2/784 = 1.[/tex]

To find more about co-ordinate geometry visit :

https://brainly.com/question/18269861

#SPJ1

FILL IN THE BLANK the probability of one event given the known outcome of a (possibly) related event is known as __probability.

Answers

The probability of one event given the known outcome of a (possibly) related event is known as conditional probability.

Conditional probability is the measure of the probability of an event occurring given that the another event will already occurred. It is denoted by P(A | B), which represents the probability of event A given that event B has occurred. The conditional probability of A given B can be calculated using the formula:

P(A | B)=P(A and B)/P(B)

where P(A and B) represents the probability of both events A and B occurring, and P(B) represents the probability of event B occurring.

For example, consider a deck of 52 playing cards. The probability of drawing a king from the deck is 4/52, or 1/13. If one card is drawn from the deck and it is revealed to be a heart, then the probability of drawing a king from the remaining cards in the deck that are not hearts is:

P(king | heart) = P(king and heart) / P(heart)

P(king and heart) = 1/52 (there is only one king of hearts in the deck)

P(heart) = 13/52 (there are 13 hearts in the deck)

P(king | heart) = (1/52) / (13/52) = 1/13

To know more about Conditional probability here

https://brainly.com/question/22145234

#SPJ4

can you help me to solve this question?

Answers

By finding the derivative and evaluating it in x = -2, we will see that the slope is 12.

How to find the slope of the function at the given point?

To find the slope of the tangent line at a given point, we need to take the derivative and evaluate it in the x-value of the given point.

Here we have the function:

f(x) = 3x² + 7

If we differentiate it with respect to x, we will get:

f'(x) = 2·3x

f'(x) = 6x

That is the derivative, now we want to find the slope at (-2, 19), to find the slope at that point we need to get:

f'(-2) = 6·-2

f'(-2) = -12

That is the slope of the graph.

Learn more about derivatives at:

https://brainly.com/question/12047216

#SPJ1

PLEASE HELP ! I NEED THIS ANSWER! DUE TODAY!!
Use the figure below to answer the questions

Answers

From the figure 1. Two line segments are LA and EP. 2. Two rays are EC and AH. 3. Two lines are b and AP.

What are rays, line segment and line?

A ray is a segment of a line with a single endpoint and unlimited length in a single direction. A ray cannot be measured in terms of length.

The ends of a line segment are two. These endpoints are included, along with every point on the line that connects them. A segment's length can be measured, while a line's length cannot.

A line is a collection of points that extends in two opposing directions and is endlessly long and thin.

From the given figure we observe that,

1. Two line segments are LA and EP.

2. Two rays are EC and AH.

3. Two lines are b and AP.

Learn more about ray here:

brainly.com/question/17491571

#SPJ1

I need someone to help me find the h of the parallelogram.

Answers

The value of height (h)  will be 6 cm.

What is Parallelogram?

A parallelogram is a four-sided polygon in which both pairs of opposite sides are parallel and equal in length. It is a special case of a quadrilateral, which means a polygon with four sides. The opposite angles in a parallelogram are also equal in measure, and the adjacent angles are supplementary, which means they add up to 180 degrees.

Given : height (H) = 5 cm

            base (B) = 12 cm

Similarly, height (h) = 5 cm

               base (h) = 12 cm

Now, we know that area of parallelogram will be same whether we use different method.

So, area of given parallelogram  =  base × height

                                         B × H    =  b × h

                                        12 × 5    =  10 × h

                                            60     =  10 h

So,   h = 60/10 = 6 cm.

To learn more about Parallelogram, visit the link:

https://brainly.com/question/24291122

#SPJ1

find the t-value such that the area under the t distribution to the right of the t-value is 0.10, assuming 15 degrees of freedom (d f).

Answers

The t-value such that the area under the t distribution to the right of the t-value is 0.10, assuming 15 degrees of freedom (df) is 1.753050356.

We have to determine the t-value.

The area in the right tail is 0.10 with 32 degrees of freedom(df).

The t-test is a test that is used as an alternative to the z-test in statistics. If the data are normally distributed but the sample size is small and the population standard deviation is unknown, the t-test is utilized.

A value that appears on the t distribution is the critical t value. The area under the curve and the degrees of freedom can be used to determine the t statistic value.

Using Excel Formula,

The t-value = (=TINV(0.1,15))  

The t-value = 1.753050356

To learn more about t-value link is here

brainly.com/question/13574945

#SPJ4

If h> 3 and h - 2g= 0, which of
the following must be true?
A. g> 2.5
B. g> 1.5
C. g <0.5
D. g <1.5
E. g>2

Answers

In response to the stated question, we may state that According to the inequality facts provided, the only choice that must be true is B, because g must be bigger than 1.5. As a result, the solution is: B. g > 1.5

What is inequality?

In mathematics, an inequality is a non-equal connection between two expressions or values. As a result, imbalance leads to inequity. In mathematics, an inequality connects two values that are not equal. Inequality is not the same as equality. When two values are not equal, the not equal symbol is typically used (). Various disparities, no matter how little or huge, are utilised to contrast values. Many basic inequalities may be solved by altering the two sides until just the variables remain. Yet, a lot of factors contribute to inequality: Negative values are split or added on both sides. Exchange left and right.

We know that h > 3 and h - 2g = 0.

When we plug h = 2g into the first inequality, we get:

2g > 3

g > 1.5

As a result, we know that g must be bigger than 1.5, ruling out alternatives C and D.

Option A is not certainly true since we don't know if the value of g is bigger than 2.5.

Option E is also not certainly true, because we only know that g is more than 1.5, but not if it is bigger than 2.

According to the facts provided, the only choice that must be true is B, because g must be bigger than 1.5. As a result, the solution is:

B. g > 1.5

To know more about inequality visit:

https://brainly.com/question/29914203

#SPJ1

A person invests 5500 dollars in a bank. The bank pays 4.5% interest compounded
annually. To the nearest tenth of a year, how long must the person leave the money
in the bank until it reaches 6700 dollars?

Answers

Answer:

Step-by-step explanation:

We can use the formula for compound interest:

A = P(1 + r/n)^(nt)

where A is the final amount, P is the principal (initial amount), r is the annual interest rate (as a decimal), n is the number of times the interest is compounded per year, and t is the time (in years).

In this case, we know that P = $5500, r = 4.5% = 0.045, and we want to find t when A = $6700. We also know that the interest is compounded annually, so n = 1.

Substituting these values into the formula, we get:

$6700 = $5500(1 + 0.045/1)^(1t)

Dividing both sides by $5500, we get:

1.218181818 = (1.045)^t

Taking the natural logarithm of both sides, we get:

ln(1.218181818) = ln(1.045)^t

Using the property of logarithms that ln(a^b) = b ln(a), we can rewrite the right side as:

ln(1.218181818) = t ln(1.045)

Dividing both sides by ln(1.045), we get:

t = ln(1.218181818)/ln(1.045) ≈ 4.2

Therefore, the person must leave the money in the bank for about 4.2 years to reach $6700. To the nearest tenth of a year, the answer is 4.2 years.

The pulse rate of the male population is known to be normal, with a mean of 73 BPM and a standard deviation of 11.3. Find the sample size necessary to be within 2 BPM of the population mean with 95% confidence.

Answers

Answer:

sample size of n=33

Step by step explanation:

We can use the formula for the margin of error for a confidence interval:

Margin of error = z* (sigma / sqrt(n))

Where z* is the z-score corresponding to the desired confidence level, sigma is the population standard deviation, and n is the sample size.

In this case, we want to find the sample size n such that the margin of error is no more than 2 BPM with 95% confidence. Since the sample size is unknown, we can use a t-distribution instead of the standard normal distribution to find the appropriate critical value.

The critical value for a 95% confidence interval with n-1 degrees of freedom is t=2.064 (from a t-distribution table).

Plugging in the known values, we have:

2 = 2.064 * (11.3 / sqrt(n))

Solving for n, we get:

n = (2.064 * 11.3 / 2)^2 = 32.59

Rounding up to the nearest whole number, we need a sample size of n=33 to be within 2 BPM of the population mean with 95% confidence.

A scale drawing of a building needs to be made using the scale 1 in = 170 ft How tall will the building in the scale drawing be if the building is 850 ft​ tall?

Answers

The height of the building in the scale drawing will be 5 inches.

The scale ratio must be used to determine the height of the building in the scale drawing.

The scale ratio is:

1 inch = 170 feet

We can devise a ratio:

1 inch / 170 feet = x inches / 850 feet

In the scale drawing, x represents the height of the building in inches.

To find x, we can cross-multiply and simplify:

1 inch * 850 feet = 170 feet * x inches

850 inches = 170 feet * x

Dividing both sides by 170 yields:

x = 850 inches / 170 = 5 inches

As a result, the building's height will be 5 inches in the scale drawing.

To know more about Height visit:

https://brainly.com/question/20594266

#SPJ1

If F1 = 4y - 6, F2 = 9y + 3 and F3 = -y - 8, simplify F1 × F2 - F3 in terms of y.

Answers

Answer:

To simplify F1 × F2 - F3 in terms of y, we need to first find the product of F1 and F2, and then subtract F3.

F1 × F2 can be expanded using the distributive property:

F1 × F2 = (4y - 6) × (9y + 3) = 4y × 9y + 4y × 3 - 6 × 9y - 6 × 3

= 36y^2 + 12y - 54y - 18

= 36y^2 - 42y - 18

Now we can subtract F3 from the result:

F1 × F2 - F3 = (36y^2 - 42y - 18) - (-y - 8)

= 36y^2 - 42y - 18 + y + 8

= 36y^2 - 41y - 10

Therefore, F1 × F2 - F3 in terms of y is 36y^2 - 41y - 10.

(please mark my answer as brainliest)

Question about equations, please help!

Answers

Answer:

(a) y = 0.80x + 50

(b) Plugging x = 5 into the equation from part (a), we get y = 0.80(5) + 50 = 54, so the ordered pair associated with x = 5 is (5, 54). This means that if the car is driven for 5 miles, the total charge to the renter is $54.

(c) Let y be the total charge and solve for x:

y = 0.80x + 50

187.60 = 0.80x + 50

137.60 = 0.80x

x ≈ 172

Therefore, the car must have been driven approximately 172 miles

Answer:

(a) y = 0.8x + 50

(b)  D. The ordered pair associated with the equation x = 5 is (5, 54) and it means that the charge for driving the car for 5 miles is $54.

(c) If the renter paid $187.60, the car must have been driven for 172 miles.

Step-by-step explanation:

Part (a)

In the given problem, we are told that the rental car costs a flat fee of $50 plus an additional charge of $0.80 per mile driven.

Let x be the number of miles driven.

Let y be the total charge to the renter (in dollars).

We know that the total charge y will depend on the number of miles driven x, and we can express this relationship using a linear equation in the form y = mx + b, where m is the slope of the line and b is the y-intercept (the value of y when x = 0).

In this case, we know that the cost per mile is $0.80 so the slope of the line is m = 0.8, and the flat fee is $50 so the y-intercept is b = 50.

Substitute these values into the equation to get:

[tex]y = 0.8x + 50[/tex]

[tex]\hrulefill[/tex]

Part (b)

To find the ordered pair associated with x = 5, substitute x = 5 into the equation:

[tex]\begin{aligned}x=5\implies y &= 0.8(5) + 50\\&=4+54\\&=54\end{aligned}[/tex]

The ordered pair associated with the equation x = 5 is (5, 54) and it means that the charge for driving the car for 5 miles is $54.

[tex]\hrulefill[/tex]

Part (c)

To find how many miles the car was driven if the renter paid $187.60, set y = 187.60 and solve for x:

[tex]\begin{aligned}\implies 0.8x + 50&=187.60\\0.8x + 50-50&=187.60-50\\0.8x&=137.60\\\dfrac{0.8x}{0.8}&=\dfrac{137.60}{0.8}\\x &= 172\end{aligned}[/tex]

Therefore, if the renter paid $187.60, the car must have been driven for 172 miles.

2.5 Hence determine the total area of all the faces in mm²
2.6 Hence, determine the volume of the container in m³
Hint: The volume of the is container is determined by multiplying the area of
the base of the container by the height of the container.

Answers

Answer:

Step-by-step explanation:

gfds5u4wsr5wj6wrs

how do you solve this? (-3a+56)+(5a+40)

Answers

Answer:To simplify the expression, you need to combine the like terms, which are the terms that have the same variable and power. In this case, the like terms are -3a and 5a:

(-3a + 56) + (5a + 40)

= (-3a + 5a) + (56 + 40)

= 2a + 96

Therefore, the simplified expression is 2a + 96.

Enjoy (:

Step-by-step explanation:

Increase R68 in the ratio of 7:4

Answers

required value is 187r.

hope this helps!

I cannot figure out these angles. help please

Answers

The angles for the given parallel lines are estimated.

m(∠DGF ) = 92; m(∠HGF ) = 88; m(∠AGD ) = 88; m(∠BDG ) = 92; m(∠BDC ) = 88; m(∠CDE ) = 92 ; m(∠EDG ) = 88.

Explain about the transversal?

A line that cuts over two parallel lines is referred to as a transversal line.

Each pair of internal angles located on the exact side of a transversal that meets two parallel lines is supplementary, or they add up to 180°.

The opposing angles created by the junction of two lines are known as vertical angles but rather vertically opposite angles.

m(∠AGH ) = m(∠BDG ) (corresponding angles)

3x +  2 = 2x + 32

x = 30

m(∠AGH ) = 3(30) +  2 = 92

m(∠BDG ) = 2(30) + 32 = 92

m(∠DGF ) = m(∠AGH ) = 92 (vertically opposite angles)

m(∠HGF ) = 180 - m(∠AGH ) = 180 - 92 = 88 (linear pair).

m(∠AGD ) = m(∠HGF ) = 88 (vertically opposite angles)

m(∠BDG ) = 92 (calculated earlier)

m(∠BDC ) = m(∠AGD ) =  88 (corresponding angles)

m(∠CDE ) = m(∠BDG ) = 92  (vertically opposite angles)

m(∠EDG ) = m(∠BDC ) =  88  (vertically opposite angles).

Know more about the transversal

https://brainly.com/question/30519530

#SPJ1

Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find P67, the 67-percentile. This is the temperature reading separating the bottom 67% from the top 33%.

P67 =
°C

Answers

Answer:

Step-by-step explanation:

To find the temperature corresponding to the 67th percentile, we need to find the z-score that has an area of 0.67 to the left of it in the standard normal distribution. We can use a table or a calculator to find this z-score.

Using a standard normal distribution table, we can look up the value that corresponds to an area of 0.67 to the left of the mean, which is 0.44. This means that P(Z ≤ 0.44) = 0.67, where Z is the standard normal random variable.

Next, we can use the formula for standardizing a normal random variable to convert this z-score to the corresponding temperature on the thermometer scale:

z = (x - μ) / σ

where μ is the mean, σ is the standard deviation, and x is the temperature we want to find.

Rearranging this formula, we get:

x = μ + z * σ

Plugging in the values, we get:

x = 0 + 0.44 * 1.00

x = 0.44

Therefore, the temperature corresponding to the 67th percentile is 0.44°C.

Write the equation of the circle centered at (4,-1) that passes through (13,8).

Answers

Answer:

[tex](x-4)^2+(y+1)^2=162[/tex]

Step-by-step explanation:

Determine r² by using the equation of a circle and plugging in the center (h,k)->(4,-1) as well as (x,y)->(13,8):

[tex](x-h)^2+(y-k)^2=r^2\\(x-4)^2+(y-(-1))^2=r^2\\(13-4)^2+(8+1)^2=r^2\\9^2+9^2=r^2\\81+81=r^2\\162=r^2\\[/tex]

Hence, the equation of the circle that meets these criteria is[tex](x-4)^2+(y+1)^2=162[/tex]

Need help answering all 3 of these please anyone

Answers

a. The slope of AB is  [tex]m = 1[/tex] and slope of BC is [tex]m = -4/7.[/tex]

b. The best name for this quadrilateral would be a rectangle ABCD, as opposite sides and all angles are equal.

c. The mid-point of Diagonal AC is  [tex](0, -1/2)[/tex]

What are the Quadrilaterals?

A clοsed shape nοted fοr having sides with variοus widths and lengths is a quadrilateral. It is a clοsed, two-dimensional pοlygοn with fοur sides, fοur angles, and fοur vertices. Quadrilaterals include the trapezium, parallelοgram, rectangle, square, rhοmbus, and kite, amοng οthers.

a.

Slope is given by

[tex]A = (-2, 3) and B = (-5, 0)[/tex]

[tex]m = 1[/tex]

[tex]B = (-5, 0) and C = (2, -4)[/tex]

[tex]m = -4/7[/tex]

Thus, The slope of AB is m = 1 and slope of BC is [tex]m = -4/7[/tex]  .

b. The best name for this quadrilateral would be a rectangle ABCD, as opposite sides and all angles are equal.

c. Midpoint of a segment is given by the 2 divided by of sum x and and sum of y

Thus, Diagonal  [tex]A = (-2, 3)[/tex] and [tex]C = (2, -4)[/tex]

Midpoint  [tex]= ((-2 + 2), (3 + -4))[/tex]

[tex]= ((0), (-1))[/tex]

Now divide them by 2

[tex]= ((0/2), (-1/2))[/tex]

[tex]= (0, -1/2)[/tex]

Therefore, the mid-point of Diagonal [tex]AC is (0, -1/2)[/tex]

Learn more about quadrilateral here:

https://brainly.com/question/29934440

#SPJ1

who is the first 6 millionth person to die

Answers

Answer: Beth Blauer

Step-by-step explanation:

4 x 1 1/5= multiply. Write the product as a mixed number.

Answers

Answer:

4 4/5.

Step by step explanation:

To multiply 4 by 1 1/5, we can first convert the mixed number 1 1/5 to an improper fraction:

1 1/5 = 6/5

Now we can multiply 4 by 6/5:

4 x 6/5 = 24/5

To write the product as a mixed number, we need to express 24/5 as a whole number plus a proper fraction. We can do this by dividing 24 by 5:

24 ÷ 5 = 4 with a remainder of 4

So, 24/5 can be written as 4 4/5. Therefore, the product of 4 and 1 1/5 is:

4 x 1 1/5 = 4 4/5.

given the following two point find the the length distance of ab round your asnwer to the nearrest tenth (-4,-6) and b (3,2)

Answers

The length distance of ab between the points  (-4,-6) and b (3,2) is   10.6 units.

Now to find the distance between points A(-4,6) and B(3,2), we  can use the distance formula which is :

d = sqrt((x₂ - x₁)² + (y₂ - y₁)²), where (x₁,y₁)=(-4,-6) and (x₂,y₂)=(3,2), now we substituting the  values into the formula  after which we get :

d = sqrt((3 - (-4))² + (2 - (-6))²) = sqrt((7)² + (8)²) = sqrt(49 + 64) = sqrt(113) ≈ 10.6

it comes out  that the distance between points A and B is approximately 10.6  units  which are rounded to the nearest tenth.

To know more about  formula distance refer to the  link  brainly.com/question/25841655

#SPJ4

What is the slope of the line passing through the points (-1, -7) and (-9, -2)?

Answers

Answer:

m = -5/8

Step-by-step explanation:

Slope = rise/run or (y2 - y1) / (x2 - x1)

Points (-1, -7) (-9, -2)

We see the y increase by 5 and the x decrease by 8, so the slope is

m = -5/8

Express using algebra:
Z increased by 16%

Answers

Answer:

Let's start by expressing "Z increased by 16%" using algebra.

Let Z be the original value of some quantity.

To increase Z by 16%, we need to add 16% of Z to Z:

Z + 0.16Z

Simplifying this expression by factoring out Z, we get:

Z(1 + 0.16)

Combining like terms, we have:

Z(1.16)

Therefore, "Z increased by 16%" can be expressed algebraically as:

Z increased by 16% = Z(1.16)

Answer:

z(1.16)

Step-by-step explanation:

what percentage of the area under the normal curve lies (a) to the left of m? (b) between m s and m 1 s? (c) between m 3s and m 1 3s

Answers

The percentages of the area under curve are 50%, 68%, and 99.7%.

Assuming a standard normal distribution with mean m = 0 and standard deviation s = 1, the percentage of the area under the curve can be determined as follows

To the left of m: This is equivalent to finding the area to the left of the z-score corresponding to m = 0. This is 50%, as the normal distribution is symmetric around the mean.

Between m s and m 1 s: This is equivalent to finding the area between the z-scores corresponding to z = -1 and z = 1. Using a standard normal distribution table or calculator, this is approximately 68% (which is also known as the 68-95-99.7 rule).

Between m 3s and m 1 3s: This is equivalent to finding the area between the z-scores corresponding to z = -3 and z = 3. Using a standard normal distribution table or calculator, this is approximately 99.7% (which is also known as the 68-95-99.7 rule).

Therefore, the percentages of the area under the normal curve are: (a) 50%, (b) 68%, and (c) 99.7%.

To know more about area under curve:

https://brainly.com/question/14998474

#SPJ4

Mrs Devi bought banana cakes and marble cakes for a party. She spent $112 on the cakes. Each
piece of banana cakes cost $2.50 and the cost of each piece of marble cake was 7/5 the cost of
each piece of banana cake. 30% of what she bought were marble cakes. How many pieces of
cake did Mrs Devi buy?

Answers

In linear equation, 28  pieces of cake did Mrs Devi buy.

What in mathematics is a linear equation?

An algebraic equation with simply a constant and a first-order (linear) term, such as y=mx+b, where m is the slope and b is the y-intercept, is known as a linear equation. Sometimes, the aforementioned is referred to as a "linear equation of two variables," where x and y are the variables.  

                                   Equations with variables of power 1 are referred to as linear equations. One example with only one variable is where ax+b = 0, where a and b are real values and x is the variable.

Cost of M cake = $3.5

For every 3 M cakes she bought 7 B cakes.

Let 1 unit be 3 M cakes and 7 B cakes. 1 unit costs= 3(3.5) + 7(2.5)= $28

She bought $112 / $28 = 4 units of cakes.

Which means 12 M cakes and 28 B cakes.

Learn more about linear equation

brainly.com/question/11897796

#SPJ1

You are playing a game with a friend. It costs you $2 to play. If you roll a 1 on a 6-sided die you win $4. If you roll a 2, 3, 4, 5, or 6 you win nothing and lose $2 the cost to play. Calculate the expected value for this game. How much should the player be willing to to pay to play this game and not lose money in the long run?

Answers

The player should be willing to pay up to $12 to play this game and not lose money in the long run.

How to calculate the expected value for this game.

First we need to multiply the probability of winning by the amount won and subtract the probability of losing by the amount lost.

The probability of rolling a 1 on a 6-sided die is 1/6, and the probability of rolling any other number is 5/6.

So, the expected value of the game is:

(1/6) x $4 - (5/6) x $2

= ($4/6) - ($10/6)

= -$1/3

This means that on average, for every game played, the player can expect to lose $1/3.

To find out how much the player should be willing to pay to play this game and not lose money in the long run, we can set the expected value equal to zero:

(1/6) x $4 - (5/6) x $2 = $0

Simplifying the equation, we get:

$4/6 = $10/6

Multiplying both sides by x, we get:

(1/6) x - $2 = 0

Solving for x, we get:

x = $12

Therefore, the player should be willing to pay up to $12 to play this game and not lose money in the long run.

Learn more about multiply here : brainly.com/question/28773316

#SPJ1

A manufacturer knows that their items have a normally distributed length, with a mean of 5 inches, and standard deviation of 0.5 inches.

If one item is chosen at random, what is the probability that it is less than 4.6 inches long?

Answers

Answer:

Step-by-step explanation:

To solve this problem, we will use the properties of the normal distribution and standardize the given value using the formula:

z = (x - μ) / σ

where:

x = 4.6 inches (the given value)

μ = 5 inches (the mean)

σ = 0.5 inches (the standard deviation)

So we have:

z = (4.6 - 5) / 0.5

z = -0.8

Now we need to find the probability that the standardized value is less than -0.8. We can use a standard normal distribution table or a calculator to find this probability.

Using a standard normal distribution table, we can look up the probability for z = -0.8, which is 0.2119.

Therefore, the probability that a randomly chosen item is less than 4.6 inches long is 0.2119 or approximately 21.19%.

is 2x^2+4=9x real rational and equal

Answers

Answer:

76(/783/)-468

Step-by-step explanation:

Use the data in the following​ table, which lists​ drive-thru order accuracy at popular fast food chains. Assume that orders are randomly selected from those included in the table.

Answers

In response to the stated question, we may state that As a result, the overall probability of an accurately picked drive-thru order across all chains is roughly 0.929, or 92.9%.

What is probability?

Probability theory is an area of mathematics that calculates the likelihood of an occurrence or a proposition being true. A risk is a number in the range of 0 and 1, whereas 1 implies certainty and a probability of roughly 0 indicates how likely an event seems to be to occur. Probability is a mathematical expression of the chance or chances that a given event will occur. Probabilities can alternatively be stated as integers between 0 and 1 or as % from 0% to 100%. the ratio of occurrences among equally likely choices that result in a certain event in comparison to all other outcomes.

Using the data in the table, we can compute the likelihood of a correct drive-thru order for each fast food chain, as well as the overall chance of an accurate order across all chains.

Divide the number of accurate orders by the total number of orders to find the chance of a randomly picked order being accurate at each chain:

P(accurate order) = 1246 / 1300 = 0.958 for McDonald's

P(accurate order) = 1020 / 1100 = 0.927 Taco Bell

P(accurate order) = 708 / 800 = 0.885 for Burger King

P(accurate order) = 940 / 1000 = 0.94 for Wendy's

P(adequate overall order) = 0.3 * 0.958 + 0.25 * 0.927 + 0.2 * 0.885 + 0.25 * 0.94 = 0.929

As a result, the overall likelihood of an accurately picked drive-thru order across all chains is roughly 0.929, or 92.9%.

To know more about probability visit:

https://brainly.com/question/11234923

#SPJ1

Other Questions
Please help Im very confused!! In fruit flies, brown bodies are dominant to black bodies. Cross two heterozygous fruit flies. Determinethe phenotypic and genotypic ratios. Then determine how many fruit flies, if 200 are born, will haveblack bodies. Which of the following is not a method used to estimate the fixed and variable portions of mixed costs?Least-squares regressionScattergraph plotRelevant range analysisHigh-low method How do vaccines convey long-term immunity to some pathogens?A. Vaccines stimulate lymphocytes to secrete mucus.B. memory cellsC. Vaccines stimulate the formation of antigens.D. Vaccines stimulate the formation of complement. molecules that can absorb light in the visible range are called Rank the following items in order of decreasing radius: K, K^+, and K^-. Rank from largest to smallest radius. To rank items as equivalent, overlap them.K, K^+, and K^-Largest radius Smallest radius______________ ______________ Rotate the arrowhead 90 degrees anticlockwise around (0,0) In the morning 134 books were checked out from the library.in the afternoon 254 books were checked out and 188 books were checked out in the evening.how many books were checked out in the library that day? Using a Date of Birth (DOB) is not mandatory for the inquiry in the California Restraining and Protective Order System (CARPOS) but will narrow the search results.A. trueB. false A large pan contains a mixture of oil and water. After 2 litres of water are added to the original contents of the pan, the ratio of oil to water is 1:2. However, when 2 litres of oil are added to the new mixture, the ratio become 2:3. Find the original ratio of oil to water in the pan Graph the parabola.y=-2xPlot five points on the parabola: the vertex, two points to the left of the vertex, and two points to the right of the vertex. Then click on the graph-a-functionbutton. Evaluate the importance of effectiverecruitmentand selection ofto a restaurant business.employees[12] a company purchased a new computer system for $28,000. one year later, the resale value of the system was $15,700. assume that the value of the computer system declines according to an exponential model. At what rate was the value of the computer system changing 4 years after it was purchased?A. Declining at the rate of $2,767.74 per year.B. Declining at the rate of $1,601.26 per year.C. Declining at the rate of $3,6214.88 per year.D. Declining at the rate of $8,803.21 per year.E. Declining at the rate of $2,546.52 per year.F. None of the above. on which type(s) of media would you expect cells from the ay side of the u-tube to grow? select all that apply. Here is the region of integration of the integral 6 to- 6 36 to x^2 36-y to 0 dz dy dx. Rewrite the integral as an equivalent integral in the following orders a. dy dz dx b. dy dx dz c. dx dy dz d. dx dz dy e. dz dx dy Identify a true statement about the impact of the First Five-Year Plan on the Soviet film industry in 1930.It centralized the Soviet film industry under one company, Soyuzkino Which of the following Linux permissions would assign the owner full access, the group RX access, and everyone else read access.A. chmod 664 foobar.shB. cacls 7467 foobar.shC. cacls u+rwx g+rx o+rD. chmod 754 foobar.sh Milk with a density of 970 kg/m 3 is transported on a level road in a 9m long, 3m diameter cylindrical tanker. The tanker is completely filled with milk, i.e., no air space in the tank. If the truck is accelerating from a stop signal at 7.0 m/s 2 to the left, determine the pressure difference between the maximum and minimum pressures in the tank. Depict on the figure the location of the minimum and maximum pressures in the tank. A poll found that 20% of adults do not work at all while on summer vacation. In a random sample of 10 adults, let x represent the number who do not work during summer vacation Complete parts a through e a. For this experiment, define the event that represents a "success." Choose the correct answer below O Adults not working during summer vacation O Adults working during summer vacation b. Explain why x is (approximately) a binomial random variable. Choose the correct answer below. O A. The experiment consists of only identical trials. O B. The experiment consists of identical trials, there are only two possible outcomes on each trial (wworks or does not work). and the trials are independent. O C. The trials are not independent O D. There are three possible outcomes on each trial c. Give the value of p for this binomial experiment. d. Find P(x 4) P(x4) (Round to four decimal places as needed.) e. Find the probability that 2 or fewer of the 10 adults do not work during summer vacation. Plxs2): (Round to four decimal places as needed) you eat a high fat meal for dinner. the majority of fat in your meal will be digested in what part of the digestive system, and what compound will be necessary to help complete digestion?