Answer:
Explanation:
To solve this problem we need to know the direction in which the ball was moving to start with.
The answer will be different depending n the original angle of the ball's movement.
It might be reasonable to assume that the ball is meant to approach along the x-axis,
but if so, the initial speed of 6.42m/s would be irrelevant to the answer.
So I will solve the problem for the general case of two objects colliding at arbitrary angles, and
tell you how to specialize it for any assumption about the initial conditions.
Let
m1 = 7.5 kg be the mass of the ball,
m2 = 1.6 kg be the mass of the pin,
v1 = 6.42 m/s be the velocity of the ball before the strike,
v2 = 0 m/s be the velocity of the pin before the strike,
α1 be the angle of v1,
α2 be the angle of v2,
w1 be the velocity of the ball after the strike,
w2 = 14.8 m/s be the velocity of the pin after the strike,
β1 be the angle of w1,
β2 = -47° be the angle of w2.
By conservation of momentum:
m1v1 + m2v2 = m1w1 + m2w2
Since the velocities are vectors, the addition is vector addition, and the equality is vector equality.
"Vector equality" means that the x-coordinates are equal and the y-coordinates are equal.
The problem cares only about y-coordinates, specifically the y-coordinate of w1, which is w1sin(β1).
(In general, the y-coordinate of any vector is obtained by multiplying the vector's norm by the sine of its angle.)
Conservation of momentum in the y-coordinate is then
m1v1sin(α1) + m2v2sin(α2) = m1w1sin(β1) + m2w2sin(β2)
Expressing the sought quantity
w1sin(β1) = (m1v1sin(α1) + m2v2sin(α2) - m2w2sin(β2))/m1
Substituting known quantities:
w1sin(β1) = (7.5×6.42×sin(α1) + 1.6×0×sin(α2) - 1.6×14.8×sin(-47°))/7.5
= (48.15×sin(α1) + 17.3)/7.5
In the above expression we do not know α1.
If we assume that the ball is approaching along the x-axis then α1 = 0, and
w1sin(β1) = 17.3/7.5 = 2.3
Under that assumption the y-component of the ball's final velocity is 2.3 m/s;
being positive, it is opposite the direction of the pin.
A ball is travelling 32° above the horizontal at a speed of 24 m/s. What is the horizontal component of its speed
A. 12.7 m/s
B. 13.0 m/s
C. 29.2 m/s
D. 20.4 m/s
Answer:
Since the ball is travelling 32 degrees above the horizontal, the value of Θ is 32
In the figure, v vector is the vertical component whereas h vector is the horizontal component
Using trigonometry:
CosΘ = h /24
Cos 32 = h/ 24
0.85 = h / 24
h = 24*0.85
h = 20.4 m/s
Energy from food
(Choose all that are correct )
Can be stored for later
Can be used to keep your heart beating
Can keep you warm
All of the above
Answer:
all of the above I think??
A campus shuttle bus makes 1 revolution per second round a circular track of radius 100 cm. Determine its periodic time.
The periodic time of the campus shuttle is = 1 sec
What is periodic time ?The periodic time is also known as revolution per second is the time it takes object in motion ( revolving ) to pass through a point twice ( usually the starting position ) of the object and it calculated as :
For a simple pendulum = 2π√L/g
But a campus shuttle bus in motion
since it takes
1 revolution = 1 sec therefore the time period is = 1 sec
Hence we can conclude that the periodic time of the campus shuttle = 1 second.
Learn more about time period : https://brainly.com/question/25699025
2. Calculate the work done by a 47 N force pushing a 0.025 kg pencil 0.25 m against a force of 23 N.
Answer: 6 J
Explanation:
Total force applied = 47 N Assuming that direction of movement of pencil and applied force is same. Work done by force in moving the pencil W = Force × Distance through which force moves ⇒ W = 47 × 0.25 = 11.75 J .-.-.-.-.-.-.-.-. In case we are asked useful work done then we calculate net force used for pushing the pencil: Net force used for pushing the pencil = 47 − 23 = 24 N Assuming that direction of movement of pencil and net force is same. Useful Work done by force in moving the pencil W u = Force × Distance ⇒ W u = 24 × 0.25 = 6 J
The work done the pushing force is required.
The work done by the pushing force is [tex]6\ \text{J}[/tex]
[tex]F_1[/tex] = Pushing force = 47 N
[tex]F_2[/tex] = Opposing force = 23 N
m = Mass of object = 0.025 kg
s = Displacement = 0.25 m
Work done is given by
[tex]W=F_ns[/tex]
[tex]\Rightarrow W=(47-23)\times 0.25[/tex]
[tex]\Rightarrow W=6\ \text{J}[/tex]
Learn more:
https://brainly.com/question/14667371?referrer=searchResults
Kepler's work revealed that the Earth was at the center of the circular orbits of the planets at the center of the elliptical orbits of the planets orbiting the Sun in an elliptical orbit O at one focus of the elliptical orbit of the planets
Answer:
orbiting the Sun in an elliptical orbit
Explanation:
When orbits are circular, the center and the focus are the same point. For an elliptical orbit, the orbited object is at one focus of the ellipse. Kepler found planetary orbits to be elliptical with the sun at one focus.
__
As with a lot of scientific theories, it only explained some of the motion. As with a lot of scientific theories, explaining the discrepancies resulted in new discoveries.
Answer:
at one focus of the elliptical orbit of the planets.
what is the order of magnitude of the final velocity of an object that begins from rest and accelerates at a rate of 20 meters per second2 for 5.0 seconds
The order of magnitude of the final velocity of an object that begins from rest and accelerates at a rate of 20m/s² for 5.0 seconds is 100m/s
The acceleration of a body is the change in velocity with respect to time as shown:
[tex]a=\frac{v-u}{t}[/tex]
Given the following parameters
a is the acceleration = 20m/s²
u is the initial velocity = 0m/s
t is the time taken = 5.0seconds
Required
Final velocity "v"
Substitute the given parameters into the formula:
[tex]20=\frac{v-0}{5} \\20 =\frac{v}{5}\\v = 20 \times 5\\v =100m/s[/tex]
Hence the order of magnitude of the final velocity of an object that begins from rest and accelerates at a rate of 20m/s² for 5.0 seconds is 100m/s
Learn more here: https://brainly.com/question/24175401
A body, with a volume of 2 m3, weighs 40 kN. Determine its weight when
submerged in a liquid with SG = 1.59.
Answer:
8.8 kN
Explanation:
V = 2 m³, W = 40 kN, SG = 1.59
Bouyant force N = 1.59 * 1000 kg/m³ * 9.81 N/kg * 2 m³ = 31.2 kN
So the weight becomes 40 - 31.2 = 8.8 kN
At low pressures and high temperatures, the density of a gas
Answer:
Higher denisty
Explanation:
High pressure=high denisty
A force of 3N acts on 90degree to a force of 4N.find the magnitude and direction of the resultant R.
R=A2+B2+2ABcosβ−−−−−−−−−−−−−−−−√R=A2+B2+2ABcosβ
A=4NA=4N , B=3NB=3N , β=90°β=90° , cosβ=0cosβ=0
R=A2+B2−−−−−−−√R=A2+B2
R=42+32−−−−−−√=25−−√=5NR=42+32=25=5N
tanα=Bsin90°A+Bcos90°=34tanα=Bsin90°A+Bcos90°=34
α=37°α=37°
Therefore the resultant of the two forces has a magnitude of 5N5N and is at an angle of 37°37° with respect to
An image of the Earth-moon-sun system is shown.The moon remains in orbit around Earth because of the force of —
I need to know what the answer is to this
Answer:
i think its the top one
Explanation:
pls tell me if im wrong
Calculate the wave speed (in m/s) for the following waves:
a) A sound wave in steel with a frequency of 500 Hz and a wavelength of 3.0 meters. (2pts)
b) a ripple on a pond with a frequency of 2 Hz and a wavelength of 0.4 meters. (2pts)
Calculate the wavelength (in meters) for the following waves:
A wave on a slinky spring with a frequency of 2 Hz travelling at 3 m/s. (2pts)
An ultrasound wave with a frequency 40,000 Hz travelling at 1450 m/s in fatty tissue. (2pts)
Calculate the frequency (in Hz) for the following waves:
A wave on the sea with a speed of 8 m/s and a wavelength of 20 meters. (2pts)
A microwave of wavelength 0.15 meters travelling through space at 300,000,000 m/s. (2pts)
Answer: A : 250 is the answer
B; The frequency of a wave is the number of complete oscillations (cycles) made by the wave in one second.
Instead, the wavelength is the distance between two consecutive crests (highest position) or 2 troughs (lowest position) of the wave.
In this problem, we are told that the leaf does two full up and down bobs: this means that it completes 2 full cycles in one second. Therefore, its frequency is
where is called Hertz (Hz). So, the correct answer is
Explanation:
#Wavespeed
#1
[tex]\\ \rm\Rrightarrow v=\nu\lambda=500(3)=1500m/s[/tex]
#2
[tex]\\ \rm\Rrightarrow v=2(0.4)=0.8m/s[/tex]
#Wavelength
#1
[tex]\\ \rm\Rrightarrow \lambda=\dfrac{v}{\nu}=\dfrac{3}{2}=1.5m[/tex]
#2
[tex]\\ \rm\Rrightarrow \lambda= \dfrac{1450}{40000}=0.03625m[/tex]
#Frequency
[tex]\\ \rm\Rrightarrow \nu=\dfrac{v}{\lambda}=\dfrac{8}{20}=0.4Hz[/tex]
#2
[tex]\\ \rm\Rrightarrow \nu=\dfrac{3\times 10^8}{15\times 10^{-2}}=0.2\timee 10^{10}=2\times 10^9Hz[/tex]
A man slides on snow without friction starting at 8.96m/s at the top of an inclined plane with height 8.21m. What is his speed at the bottom of a plane?
Answer:
V2 = 15.53 [m/s]]
Explanation:
In order to solve this problem we must use the principle of energy conservation, where potential energy is transformed into kinetic energy. At the bottom is taken as a reference level of potential energy, where the value of this energy is equal to zero.
Above the inclined plane we have two energies, kinetics and potential. While when the sled is at the reference level all this energy will have been transformed into kinetic energy.
[tex]E_{1}=E_{2}\\ m*g*h+(\frac{1}{2} )*m*v_{1} ^{2}=\frac{1}{2}*m*v_{2} ^{2} \\(9.81*8.21)+(0.5*8.96^{2} )=(0.5*v_{2}^{2} )\\(0.5*v_{2}^{2} )=120.68\\v_{2} ^{2}=241.36\\v_{2} =\sqrt{241.36}\\ v_{2} =15.53[m/s][/tex]
What is an independent variable?
Describe the buoyant force and explain how
it relates to Archimedes principle.
Answer:
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the fluid that the body displaces.
A boy of mass 40kg eats bananas contains of 980 joule. If this energy is used to lift him up from ground,the height to which he can climb is
Answer:
h = 2.49 [m]
Explanation:
In order to solve this problem we must use the definition of potential energy, which tells us that energy is equal to the product of mass by gravity by height.
The potential energy can be calculated by means of this equation:
Ep = m*g*h
where:
Ep = potential energy = 980 [J]
m = mass = 40 [kg]
g = gravity acceleration = 9.81 [m/s^2]
h = elevation [m]
Now replacing:
980 = 40*9.81*h
h = 2.49 [m]
how does gravity change as it nears an object
A, B, or C for this question?
Answer:
A. right before it hits the ground.
Explanation:
because all the way down, it is building kinetic energy.
A student claims that the cart can only be at rest if it is experiencing balanced forces. Choose the statement that correctly evaluates this student’s claim.
A.) The student is correct because only objects that are experiencing unbalanced forces can move.
B.) The student is correct because an object experiences balanced forces will remain at rest. C.) The student is incorrect because experiencing unbalanced forces can cause an object to come to rest.
D.)The student is incorrect because objects moving at a constant velocity is experiencing balanced forces.
Which information did the Glomar Challenger study in 1968?
the rate of seafloor spreading
the direction of seafloor spreading
the age of rocks in various places in the ocean
the contents of rocks in various places in the ocean
Explanation:
Glomar Challenger studies about the "age of rocks in various places in the ocean" in 1968. EXPLANATION: Glomar Challenger was a "deep sea research vessel" for marine geology and oceanography studies.
I hope this helps you :)
Answer:
c no cappp :)
Explanation:
Harry is pushing a car down a level road at 2.0 m/s with a force of 243 N. The
total force acting on the car in the opposite direction, including road friction and
air resistance, is which of the following?
a. Slightly more than 243 N.
b. Exactly equal to 243 N.
c. Slightly less than 243 N.
Answer:
C, slightly less than 243 N
Explanation:
Road friction and air resistance aren't that much on a force. Try pushing something and see how much friction there is. Not that much.
a car moving at a speed shows that the force applied to the car is greater than the frictional force and air resistance
c. Slightly less than 243 N.
is water wet? If water is not wet does that make it dry?
Answer:
Water isn't wet by itself, but it makes other materials wet when it sticks to the surface of them.
Explanation:
Answer:
water is wet
it is a liquid
Explanation:
True or false: humans have to find a balance with their environment, using sparingly so we don’t run out of them
Answer:
False
Explanation:
in my point of view the human race has adapted to being greedy in some ways we can save resources but its very rare
hope this helps! : )
Please I need help with this :(
three charged particals are located at the corners of an equil triangle shown in the figure showing let (q 2.20 Uc) and L 0.650
onsider what happens when you jump up in the air. Which of the following is the most accurate statement?A) Since the ground is stationary, it cannot exert the upward force necessary to propel you into the air.Instead, the internal forces of your muscles acting on your body itself propels the body into the air.B) The upward force exerted by the ground pushes you up, but this force can never exceed your weight.C) When you jump up the earth exerts a force F1on you and you exert a force F2 on the earth. You go upbecause F1 > F2, and this is so because F1 is to F2 as the earth's mass is to your mass.D) You are able to spring up because the earth exerts a force upward on you which is stronger than thedownward force you exert on the earth.E) When you push down on the earth with a force greater than your weight, the earth will push back with thesame magnitude force and thus propel you into the air.
Answer: D
Explanation: it seem right to me I really don't know if this right but I hope this helps
The magnitude of the vertical velocity vector for an upwardly launched projectile _________. a stays constant b gets smaller and then larger c decreases throughout the flight d increases throughout the flight
Answer:
changes by 9.8 m/s each second.
Can someone help pleaseeee
Answer:
Motion with constant velocity of magnitude 1 m/s (uniform motion) for 4 seconds in a positive direction and then for 2 seconds uniform motion with constant velocity of magnitude 3 m/s in reverse direction .
Explanation:
The graph shows a constant velocity of 1 m/s for 4 seconds in the positive direction. After that, between 4 seconds and 6 seconds, the object reverses its motion with constant velocity of magnitude 3m/s.
1. Allen is driving North on Highway 69 at 90 km/h and sees a large moose on the road. He
quickly slams on his brakes, but his reaction time is 0.85 s (as he sees the moose, thinks
about his response, and then presses the brake pedal). He presses the brake for 3.5 s and
comes to a stop just in time.
a) Find the distance travelled after seeing the moose and before pressing the brake.
b) Find the total distance he travelled before coming to a stop.
c) Find the average acceleration once he presses the brake.
Take the moment Allen sees the moose to be the origin.
First, convert his speed to m/s.
90 km/h = (90 km/h) • (1000 m/km) • (1/3600 h/s) = 25 m/s
(a) For the time it takes him to react (0.85 s), Allen is moving at a constant speed of 25 m/s, so that before he actually does anything, he covers a distance of
(25 m/s) • (0.85 s) = 21.25 m
(b) Once he presses the brakes, Allen's vehicle covers a distance x in time t of
x = 21.25 m + (25 m/s) t + 1/2 a t²
and has a speed v of
v = 25 m/s + a t
It takes him 3.5 s to come to a full stop. Use this to find the acceleration:
0 = 25 m/s + a (3.5 s)
a = - (25 m/s) / (3.5 s)
a ≈ - 7.1 m/s²
After 3.5 s, he will have traveled a total distance of
x = 21.25 m + (25 m/s) (3.5 s) + 1/2 (- 7.1 m/s²) (3.5 s)²
x = 152.5 m ≈ 150 m
(c) This one is worded a bit strangely, specifically "once he presses the brake" seems to suggest instantaneous acceleration, not average. Average acceleration is defined for some duration of time. You're probably expected to report the acceleration of the car as it comes to a stop, which we found earlier to be
a ≈ - 7.1 m/s²
SAVE MEEEE WILL MARK BRAINLY
How much time would it take for a 0.17 kg ice hockey puck to decrease its speed by 9.0 m/s if the coefficient of kinetic friction between the ice and the puck is 0.05
How much time would it take for a 0.17 kg ice hockey puck to decrease its speed by 9.0 m/s if the coefficient of kinetic friction between the ice and the puck is 0.05
Given:- mass = 0.17 kg change in speed= 9 m/scoefficient of kinetic friction = 0.05 To Find :-Time taken to decrease the speed
Answer:-Equation :-
[tex]f {\tiny{k} }= u {\tiny{k}}.f \tiny{N}[/tex]
[tex]f {\tiny{N} }= mg = 0.17 \times 10 \\f {\tiny{N} }= 1.7 {N}[/tex]
[tex]u{ \tiny{N}} = 0.05[/tex]
[tex]mg = f {\tiny{k} }= u {\tiny{k}}.f {\tiny{N}} \\ 0.17a = 0.05 \times 1.7 \\ a = 0.05 \times \frac{ \cancel{1.7} {}^{ \: \: 10} }{ \cancel{0.17}} \\ a = 0.5m {s}^{ - 2} [/tex]
change in speed = 9 ms-1 (Given)
[tex]change \: in \: speed = at \\ 9 = 0.5 \times t \\ \frac{9 \times 10}{5} = t \\ \frac{9 \times \cancel{10} {}^{ \: \: 2} }{ \cancel{5}} = t \\ 18 \: sec = t \: [/tex]
Help real quick someone