The new cereal box requires 11 square inches less cardboard to construct than the original cereal box.
The amount of cardboard required to build a cereal box is determined by its surface area, which includes all six sides of the box.
The original cereal box's surface area can be calculated as follows:
2 * 2.5 * 12 = 60 square inches for the front and back faces
2 * 7 * 12 = 168 square inches on the side faces
2 * 2.5 * 7 = 35 square inches for the top and bottom faces
Surface area total: 60 + 168 + 35 = 263 square inches
Using the new base dimensions, the surface area of the new cereal box can be calculated in the same way:
2 * 3 * 12 = 72 square inches for the front and back faces
2 * 6 * 12 = 144 square inches on the side faces
2 * 3 * 6 = 36 square inches for the top and bottom faces
Surface area total: 72 + 144 + 36 = 252 square inches
To calculate the difference in cardboard required to construct the two cereal boxes, subtract the new box's surface area from the original box's surface area:
263 - 252 = 11
As a result, the new cereal box uses 11 square inches less cardboard than the original cereal box.
To know more about Square Inches visit:
https://brainly.com/question/12297594
#SPJ1
there are two complex numbers such that the real part of the function is_____. of these two 's, find the one that has positive imaginary part.
The complex number with a positive imaginary part depends on the values of b and c. If b is positive, then z1 has a positive imaginary part. If c is positive, then z2 has a positive imaginary part.
Let the two complex numbers be z1 and z2. The real part of a complex number z = x + yi is the value x. Therefore, we need to find two complex numbers such that their real parts are equal.
Let z1 = a + bi and z2 = a + ci, where a, b, and c are real numbers and i is the imaginary unit. Then the real parts of z1 and z2 are both equal to a.
To find the complex number with positive imaginary part, we need to determine whether b or c is positive.
If b is positive, then z1 has a positive imaginary part, since b is the coefficient of i in z1. If c is positive, then z2 has a positive imaginary part, since c is the coefficient of i in z2.
Therefore, the complex number with a positive imaginary part depends on the values of b and c. If b is positive, then z1 has a positive imaginary part. If c is positive, then z2 has a positive imaginary part.
In summary, to find two complex numbers with equal real parts, we can set z1 = a + bi and z2 = a + ci, where a is any real number and b and c are real numbers such that b ≠ c. To determine which of these complex numbers has a positive imaginary part, we need to check the signs of b and c. If b is positive, then z1 has a positive imaginary part. If c is positive, then z2 has a positive imaginary part.
For more such questions on complex numbers
https://brainly.com/question/10662770
#SPJ4
2. The total rainfall in Los Angeles was 18.82" for winter 2018 and 14.86" for winter 2019. What was the percent decrease from 2018 to 2019?
Answer:
decrease by 21.04%
Step-by-step explanation:
18.82" - 14.86" = 3.96
percentage = 3.96/18.82
= 0.21041445271(100)
=21.04%
Find the midpoint (M) between points A and B if A = (4, 0, 2) and B = (-3, 0, 9)
Answer:
Step-by-step explanation:
Midpoint of A(x1,y1,z1) and B(x2,y2,z2) is
(x1+x2/2,y1+y2/2,z1+z2/3)
(x1,y1,z1) = (4, 0, 2)
(x2,y2,z2)=(-3, 0, 9)
Midpoint = (4+(-3)/2,0+0/2,9+2/2)=(1/2,0,11/2)
PLEASE HELPPPPPPPPPP
negative distances and velocities could mean in this situation.
The negative is a direction going -5 on the x axis we still went five in distance.
What is the velocity?The direction of a body or object's movement is defined by its velocity. In its basic form, speed is a scalar quantity. In essence, velocity is a vector quantity. It is the speed at which distance changes. It is the displacement change rate.
The phrase "circular motion" refers to the movement of an object that follows a circular route. We all understand that an item moving in a circle has a constant velocity since it does not fluctuate.
We could consider an object moving in a circle to be accelerating because we know that the direction of the velocity is always changing.
A tugboat reportedly travelled 1.5 miles in 0.3 hours. Hence, its speed is -5 miles per hour.
Thus, the velocity is negative as can be seen here. it displays the direction.
Learn more about velocity here:
brainly.com/question/2562955
#SPJ9
Help me with this worksheet please
Answer:
its so tiny
Step-by-step explanation:
show a closer picture
Use the figures below to evaluate the indicated derivative, or state that it does not exist. If the derivative does not exist, enter dne in the answer blank. The graph to the left (in black) gives f(x), while the graph to the right gives g(x) (which is constant for values of x greater than 80). f(x) g(x) ddxf(g(x))|x=60= (If the derivative does not exist, enter dne.)
[tex]\frac{d}{dx}f(g(x)) |_{x=60}[/tex] = Derivative does not exist.
What is a function?A function contains input and output.
It describes the relationships between them.
Example:
f(x) = 2x + 1
f(1) = 2 + 1 = 3
f(2) = 2 x 2 + 1 = 4 + 1 = 5
The outputs of the functions are 3 and 5
The inputs of the function are 1 and 2.
We have,
The graph of f(x) and g)(x) is given,
We see that g(x) at 60 is increasing.
And f(x) at 60 is decreasing.
So,
[tex]\frac{d}{dx}f(g(x)) |_{x=60}[/tex] does not exist.
Thus,
[tex]\frac{d}{dx}f(g(x)) |_{x=60}[/tex] = dne
Learn more about functions here:
https://brainly.com/question/28533782
#SPJ9
Question 2 of 10
On a piece of paper, graph y<-x+1. Then determine which answer choice
matches the graph you drew.
A
((0, 1)
OA. Graph A
OB. Graph B
OC. Graph C
OD. Graph D
PREVIOUS
B
(0, 1)
D
(0.1)
The shaded region represents the solution set of the given inequality.
What is inequality?An inequality is used to make comparisons between the numbers or expressions. For example -
2x + 4 > 5
4x + 6 > 2
Given is the linear inequality as given below -
y < - x + 1
The graph of the inequality is attached. The shaded region represents the solution set of the given inequality. This means that all the coordinate points on the shaded graph satisfy the inequality -
y < - x + 1
Therefore, the shaded region represents the solution set of the given inequality.
To solve more questions on graphing inequalities, visit the link below -
https://brainly.com/question/29061217
#SPJ9
A supermarket normally sells 20 eggs for £2.60. In a sale, the cost of the eggs is reduced by 30%. Work out how much 180 eggs cost in the sale. Give your answer in pounds (£).
Answer:
£16.38
Step-by-step explanation:
To calculate the cost of 180 eggs during the sale, we first need to determine the cost of a single egg and then apply the 30% discount.
The initial cost of 20 eggs is £2.60. To find the cost of a single egg, we divide the total cost by the number of eggs:
[tex]\frac{\£2.60}{20} = 0.13[/tex]Now, we need to apply the 30% discount to the cost of a single egg:
[tex]\£0.13 \times (1 - 0.30) = \£0.13 \times 0.70 = \£0.091[/tex]The cost of a single egg during the sale is £0.091. To find the cost of 180 eggs, we multiply the cost of a single egg by the number of eggs:
[tex]\£0.091 \times 180 = \£16.38[/tex]Therefore, the cost of 180 eggs during the sale is £16.38.
________________________________________________________
Point A and B lie on a circle with a radius of 1, and arc AB has a length pi/3. What fraction of the circumference of the circle is the length of arc AB?
a. 1/6
b. 1/8
c. 1/12
The length of arc AB is 1/6
First, we need to find the circumference using the formula C=2*r*π. where r is the radius and r=1. Therefore, C=2*1*π=2π. Arc AB has length π/3. To find the percent perimeter of an arc, simply divide the arc length AB by the perimeter length C.
AB/C=(π/3)/(2π)=π/(6π)=1/6. Therefore, the length of arc AB is 1/6 of the circumference C.
A circle is simply a round shape that has no corners or line segments. It is a closed curve shape in geometry. The points of circle are at a fixed distance from the center.
The Circle Formulas are expressed as, Diameter of a Circle. D = 2 × r. Circumference of a Circle. C = 2 × π × r.
know more about circle click here;
https://brainly.com/question/3922729
#SPJ4
show that the cross product of two vectors v and w, explicitly defined as ijkv jwk , transform as a dual vector under rotation. note that the levi-civita symbol is a symbol here and does not transform under rotation. hint: remember that for any matrix mi j , we have `mn det(m)
The cross product of two vectors v and w is explicitly defined as ijkv jwk and also transformed as a dual vector under rotation.
The cross product of two vectors v and w is defined as:
v × w = (v2w3 - v3w2)i - (v1w3 - v3w1)j + (v1w2 - v2w1)k
To show that this cross product transforms as a dual vector under rotation, consider a rotation matrix R that transforms a vector u to u'. The transformation of u can be written as:
u' = Ru
We can write the cross product of v and w in terms of their components as:
v × w = (v1, v2, v3) × (w1, w2, w3) = (v2w3 - v3w2, -(v1w3 - v3w1), v1w2 - v2w1)
To see how this changes under rotation, we can use the matrix-vector product to transform v × w:
(v × w)' = R(v × w) = (Rv × Rw)
Rotation matrix R in terms of its components:
R = (r11, r12, r13; r21, r22, r23; r31, r32, r33)
(v × w)' = (r11r12r13r21r22r23r31r32r33(v2w3 - v3w2) - (v1w3 - v3w1) + (v1w2 - v2w1))
Since the Levi-Civita symbol is a symbol and does not transform under rotation, we have:
(v × w)' = det(R)(v × w)
This shows that the cross product of two vectors v and w transforms as a dual vector under rotation, and that the transformation is proportional to the determinant of the rotation matrix R.
To know more about cross product:
https://brainly.com/question/16522525
#SPJ4
Discuss the costs and benefits of all the nontraditional banking options covered during this unit, including money transfer and payment apps, digital wallets, and e-money management apps. Why would individuals prefer these options over traditional banking?
Nontraditional banking options, such as online banking or mobile banking apps, offer more convenience
Why does individuals prefer these nontraditional banking options options over traditional banking?Individuals may prefer nontraditional banking options over traditional banking for a variety of reasons:
Convenience: Nontraditional banking options, such as online banking or mobile banking apps, offer the convenience of 24/7 access to account information and transactions from anywhere with an internet connection. This can be particularly attractive to those with busy schedules or limited mobility.
Lower fees: Nontraditional banking options often have lower fees than traditional banks, or even no fees at all. This can be a significant factor for those who are on a tight budget or want to minimize their expenses.
Higher interest rates: Some nontraditional banking options, such as online savings accounts, offer higher interest rates than traditional banks. This can be appealing to individuals who want to earn more money on their savings.
Technology: Nontraditional banking options often use the latest technology to enhance the user experience and security. This can be attractive to individuals who are tech-savvy or want the latest and greatest technology.
Learn more about banking:https://brainly.com/question/14042269
#SPJ1
Finding the derivative of a function at a point x gives
A.) The slope of the secant line of the function at x
B.) A line parallel to the function
C.) The slope of the tangent line of the function at x
D.)None of the above
Answer:
C.)
Step-by-step explanation:
that is exactly the definition of the derivative.
the derivative is the limit of
(f(x+h) - f(x))/((x+h) - x) = (f(x+h) - f(x))/h
with h going to 0.
this is the limit of the standard rate of change concentrated on a single point = the slope of the tangent at that point.
sam needs a 20% acid solution, but she has only an 18% solution and a 25% solution. she decides to use 100 ml of the 18% solution, and she needs to know how much of the 25% solution she should add.
which equation represents this situation? let x represent the number of milliliters she should add.
let x represent the number of milliliters she should add and the equation represents this situation is 0.18(100) + 0.25x = 0.2(100 + x).
Acid makes up number 0.18(100) = 18 cc of the 18% solution.
Let's suppose Sam needs to blend x millilitres of the 25% fluid.
0.25x times as much acid is present in x millilitres of the 25% solution.
Acid should make up 0.2(100 Plus x) of the entire mixture.
Therefore, 0.18(100) + 0.25x = 0.2(100 + x) represents this scenario mathematically.
Acid makes up 0.18(100) = 18 cc of the 18% solution. Let's suppose Sam needs to blend x millilitres of the 25% fluid. 0.25x times as much acid is present in x millilitres of the 25% solution. Acid should make up 0.2(100 Plus x) of the entire mixture. As a result, 0.18(100) + 0.25x = 0.2(100 + x) represents this scenario mathematically.
Learn more about number here:
https://brainly.com/question/17429689
#SPJ4
If Θ1 and Θ2 are independent unbiased estimators of a given parameter Θ and var Θ1 = 3.var Θ2 find the constants a1 and a2 such that a1Θ1 + a2Θ2 is an unbiased estimator with minimum variance for such a linear combination.
The unbiased estimator with minimum variance is: (2/3)Θ1 + (1/3)Θ2. Let X be the parameter we are trying to estimate, and let Θ1 and Θ2 be the two unbiased estimators of X.
We want to find the constants a1 and a2 such that the linear combination a1Θ1 + a2Θ2 is also an unbiased estimator of X with minimum variance.
Since Θ1 and Θ2 are unbiased estimators of X, we have: E(Θ1) = E(X) and E(Θ2) = E(X)
We want to find a1 and a2 such that: E(a1Θ1 + a2Θ2) = E(X)
Using linearity of expectation, we can simplify this to: a1E(Θ1) + a2E(Θ2) = E(X)
Substituting in the expressions for E(Θ1) and E(Θ2), we have: a1E(X) + a2E(X) = E(X), (a1 + a2)E(X) = E(X), a1 + a2 = 1
So, any linear combination of Θ1 and Θ2 with coefficients a1 and a2 such that a1 + a2 = 1 will be an unbiased estimator of X.
Now, we need to find the values of a1 and a2 that minimize the variance of this linear combination. The variance of a1Θ1 + a2Θ2 is given by:
Var(a1Θ1 + a2Θ2) = a1^2Var(Θ1) + a2^2Var(Θ2) + 2a1a2Cov(Θ1,Θ2)
Since Θ1 and Θ2 are independent, their covariance is zero, so the above equation simplifies to: Var(a1Θ1 + a2Θ2) = a1^2Var(Θ1) + a2^2Var(Θ2)
We are given that Var(Θ1) = 3Var(Θ2), so we can write: Var(a1Θ1 + a2Θ2) = a1^2(3Var(Θ2)) + a2^2Var(Θ2), = (3a1^2 + a2^2)Var(Θ2)
To minimize this variance, we need to find the values of a1 and a2 that minimize 3a1^2 + a2^2 subject to the constraint that a1 + a2 = 1.
We can use Lagrange multipliers to solve this optimization problem. We want to minimize the function: L(a1,a2,λ) = 3a1^2 + a2^2 + λ(1 - a1 - a2)
Taking partial derivatives with respect to a1, a2, and λ, we have: dL/da1 = 6a1 - λ, dL/da2 = 2a2 - λ, dL/dλ = 1 - a1 - a2
Setting each of these partial derivatives to zero, we get: 6a1 - λ = 0,
2a2 - λ = 0, 1 - a1 - a2 = 0
Solving these equations, we get: a1 = 2/3, a2 = 1/3
So, the unbiased estimator with minimum variance is: (2/3)Θ1 + (1/3)Θ2
You can read more about independent unbiased estimators at https://brainly.com/question/17083771
#SPJ4
Which statement is true
about the function f(x)= V-=x?
The domain of the
graph is all real numbers.
The range of the graph IS all real numbers.
The domain of the graph is all real numbers less than or
equal to 0.
The range of the graph is all real numbers less than or equal to 0.
The correct statement regarding the function [tex]f(x) = \sqrt{-x}[/tex] is given as follows:
The domain of the graph is all real numbers less than or equal to zero.
How to find the domain and the range of a function?The domain of a function is the set that contains all the values assumed by the input of the function.The range of a function is the set that contains all the values assumed by the output of the function.For the square root function, the inside term cannot be negative, hence -x >= 0 -> x <= 0, meaning that the domain of the graph is all real numbers less than or equal to zero.
The square root assumes values of zero or greater, hence the range is of y >= 0.
More can be learned about domain and range of functions at https://brainly.com/question/30348593
#SPJ1
A probability experiment is conducted in which the sample space of the experiment is S={3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. Let event E={4, 5, 6, 7, 8}Assume each outcome is equally likely.a. List the outcomes in E^c (Use a comma to separate answers as needed.)b. Find P(E^c)..
The probability of the complement of event E[tex](E^c)[/tex] is 7/12.
a. Outcomes in [tex]E^c[/tex] = {3, 9, 10, 11, 12, 13, 14}
b. The probability of the complement of event E[tex](E^c)[/tex] is the probability of all outcomes in S that are not in E. P[tex](E^c)[/tex] = 1 - P(E).
The probability of E is calculated by counting the number of elements in E and dividing by the total number of elements in the sample space S.
P(E) = 5/12
Therefore, P[tex](E^c)[/tex] = 1 - P(E) = 1 - (5/12) = 7/12
The probability of the complement of event E [tex](E^c)[/tex] is 7/12.
Learn more about probability here:
https://brainly.com/question/30034780
#SPJ4
The region between the graphs of y = x2 and y = 2x is rotated around the line y = 4. Find the volume of the resulting solid.
The region between the graphs of y = x2 and y = 2x is rotated around the line y = 4. The volume of the resulting solid is 31π/15 cubic units.
To find the volume of the resulting solid, we can use the method of cylindrical shells. First, we need to determine the limits of integration.
The graphs of y = x^2 and y = 2x intersect at x = 0 and x = 2. Therefore, we will integrate with respect to x from 0 to 2.
The distance between the line y = 4 and the graph y = x^2 is 4 - x^2, and the distance between the line y = 4 and the graph y = 2x is 4 - 2x. Thus, the radius of the cylindrical shell at x is (4 - x^2) - (4 - 2x) = 2x - x^2.
The height of the cylindrical shell at x is the difference between the y-coordinates of the two graphs at x, which is (2x) - (x^2) = x(2 - x).
Therefore, the volume of the resulting solid is:
V = [tex]\int\limits^2_0 \, 2\pi(x(2 - x))(2x - x^2) dx[/tex]
= [tex]\int\limits^2_0 \, 4\pi x^3 - 2\pi x^4 - 2\pi x^2 + \pi x^3 dx[/tex]
= [tex]\int\limits^2_0 \, 5\pi x^3 - 2\pi x^4 - 2\pi x^2 dx[/tex]
= π(5/4 - 2/5 - 2/3)
= 31π/15
To learn more about volume click on,
https://brainly.com/question/17515923
#SPJ4
We will now perform cross-validation on a simulated data set. (a) Generate a simulated data set as follows: > set.seed (1) > x-rnorm (100) y-x-2x-2+rnorm (100) In this data set, what is n and what is p? Write out the model used to generate the data in equation form. (b) Create a scatterplot of X against Y. Comment on what you find. (c) Set a random seed, and then compute the LOOCV errors that result from fitting the following four models using least squares: Note you may find it helpful to use the data.frameO function to create a single data set containing both X and Y Are your results the same as what you got in (c)? Why? this whuat you expected? Explain your aniswer. (d) Repeat (c) using another random seed, and report your results. (e) Which of the models in (c) had the smallest LOOCV error? Is
a. n is 100 and p = 2 when we generate the simulated data set.
b. By generating a scatterplot we found a quadratic function. Y from -9 to 3 and x from -2 to 2.
c. Yes the result is the same as we got in question c.
d. Report of d is exactly the same because LOOCV will be the same since it evaluates n folds of a single observation.
e. The quadratic model and yes I expected that because the true data is of a quadratic form.
a. Generate a simulated data set.
set.seed(1)
Y <- rnorm(100)
X <- rnorm(100)
Y <- X - 2 × X² + rnorm(100)
n=100, p=2.
y=x−2x2+ϵ,ϵ∼N(0,1)
b. Create a scatterplot of X against Y . Comment on what you find.
ggplot(data.table(X=X, Y=Y), aes(x=X,y=Y)) + geom_point()
We can see a clear quadratic function. Y from -9 to 3 and x from -2 to 2.
c. Set a random seed, and then compute the LOOCV errors that result from fitting the following four models using least squares:
dt = data.table(X, Y)
# i
glm.fit1 <- glm(Y ~ X)
cv.glm(dt, glm.fit1)$delta
## [1] 5.890979 5.888812
# ii
glm.fit2 <- glm(Y ~ poly(X,2))
cv.glm(dt, glm.fit2)$delta
## [1] 1.086596 1.086326
# iii
glm.fit3 <- glm(Y ~ poly(X,3))
cv.glm(dt, glm.fit3)$delta
## [1] 1.102585 1.102227
# iv
glm.fit4 <- glm(Y ~ poly(X,4))
cv.glm(dt, glm.fit4)$delta
## [1] 1.114772 1.114334
d. Repeat (c) using another random seed, and report your results. Are your results the same as what you got in (c)? Why?
dt = data.table(X, Y)
set.seed(2)
# i
glm.fit1 <- glm(Y ~ X)
cv.glm(dt, glm.fit1)$delta
## [1] 5.890979 5.888812
# ii
glm.fit2 <- glm(Y ~ poly(X,2))
cv.glm(dt, glm.fit2)$delta
## [1] 1.086596 1.086326
# iii
glm.fit3 <- glm(Y ~ poly(X,3))
cv.glm(dt, glm.fit3)$delta
## [1] 1.102585 1.102227
# iv
glm.fit4 <- glm(Y ~ poly(X,4))
cv.glm(dt, glm.fit4)$delta
## [1] 1.114772 1.114334
Exact the same, because LOOCV will be the same since it evaluates n folds of a single observation.
e. The quadratic model and yes I expected that because the true data is of a quadratic form.
Learn more about cross-validation at
https://brainly.com/question/30508081
#SPJ4
to find the length of the curve defined by from the point (-3,2136) to the point (3,2238), you'd have to compute
The length of the curve defined by from the point (-3, 2136) and (3, 2238), by use of distance formula is approximately 102.17 units.
The formula for the distance between two points (x1, y1) and (x2, y2) is given by:
[tex]d = \sqrt{((x2 - x1)^2 + (y2 - y1)^2)[/tex]
In this case, we have:
x1 = -3, y1 = 2136
x2 = 3, y2 = 2238
Substituting these values into the formula, we get:
[tex]d = \sqrt{((3 - (-3))^2 + (2238 - 2136)^2)[/tex]
[tex]= \sqrt{(6^2 + 102^2)[/tex]
= [tex]\sqrt{(10440)[/tex]
≈ 102.17
Therefore, the length of the curve defined by the points (-3, 2136) and (3, 2238) is approximately 102.17 units.
To more about distance formula:
https://brainly.com/question/28956738
#SPJ4
_____The given question is incorrect, the correct question is given below:
To find the length of the curve defined by from the point (-3,2136) to the point (3,2238), you'd have to compute by using distance formula.
in a brand recognition study, 1036 consumers knew of costco, and 40 did not. use these results to estimate the probability that a randomly selected consumer will recognize costco. Report the answer as a percent rounded to one decimal place accuracy. You need not enter the "%" symbol. prob =
The percentage probability that a random selected consumer will recognize Costco will be 96.3%.
Given, the total number of consumers who recognized the brand was 1036. And the total number of consumers who didn't recognize the brand was 40. Therefore, the total number of our sample will be :
⇒1036 + 40
⇒1076
Now, we know that probability(P) of an event = f/n
where f is the number of favorable outcomes and n is the number of total outcomes. Here, number of favorable outcome is 1036.
Now, the probability that a random selected consumer will recognize the brand will be:
⇒ P = f/n
⇒ P = 1036/1076
⇒P = 0.96282
Therefore, the percentage of probability of consumers recognizing the brand rounded to one decimal place accuracy will be 96.3%.
Learn more about Probability here,
https://brainly.com/question/30034780
#SPJ4
The linear functions f(x) and g(x) are represented on the graph, where g(x) is a
transformation of f(x):
Part A: Describe two types of transformations that can be used to transform f(x) to g(x).
Part B: Solve fork in each type of transformation.
Part C: Write an equation for each type of transformation that can be used to
transform f(x) to g(x).
The two transformations that can be applied are a horizontal translation of 2 units to the left or a vertical translation of 10 units up.
Which two types of transformations can be used?A general linear equation is written as:
f(x) = a*x + b
Here we can see that the two lines are parallel, so the transformations that can be applied are a vertical or an horizontal translation of N units.
The vertical translation is written as:
g(x) = f(x) + N
The horizontal one is:
g(x) = f(x + N).
B) now we need to solve this for both both of the transformations.
i) We can see that f(0) = -2 and g(0) = 8
For the first transformation we have:
g(0) =f(0) + N = 8
= -2 + N = 8
N = 8 +2 = 10
For the second transformation:
g(0) = f(0 + N) = 8
We can see that f(x) = 8 for x = 2, then in this case N = 2.
Then we can have a translation of 2 units to the left or 10 units up.
Learn more about translations at
https://brainly.com/question/24850937
#SPJ1
When the standard deviation is not known, mean control chart upper and lower control limits are computed by adding and subtracting ______ from the grand mean
Answer:
A2 x average range
Step-by-step explanation:
Consider the following equation.
6y=48
Step 1 of 2 : Find the x- and y-intercepts, if possible.
Please help I can’t figure it out
Answer:
um
Step-by-step explanation:
Answer:69.51
Step-by-step explanation:
915-------100%
636-------x%
x=636*100/915=69.51
For the following sample of n=10 scores: 2, 3, 4 , 4, 5, 5, 5, 6, 6, 7
a. Assume that the scores are measurements of a discrete variable and fine the median.
b. Assume that the scores are measurements of a continuous variable and find the median by locating the precise midpoint of the distribution.
The scores are measurements of a discrete variable is 10 and the median is 5. The scores are measurements of a continuous variable is 10 and the median by locating the precise midpoint of the distribution is 5.
To find the median of a set of data, we first need to put the data in order.
2, 3, 4, 4, 5, 5, 5, 6, 6, 7
The median is the middle value when the data is in order. Since there are 10 scores, the middle two scores are the 5th and 6th scores, which are both 5. Therefore, the median is 5.
To find the median of a continuous variable, we also need to put the data in order, but this time we treat the scores as if they are measurements on a continuous scale.
2, 3, 4, 4, 5, 5, 5, 6, 6, 7
Next, we locate the precise midpoint of the distribution. Since there are 10 scores, the midpoint falls between the 5th and 6th scores. The 5th score is 5 and the 6th score is also 5. Therefore, the midpoint is (5+5)/2 = 5.
So, the median is 5 when we treat the scores as measurements on a continuous scale.
To know more about Median:
https://brainly.com/question/21969448
#SPJ4
If a 0.5 liter solution of bichloride contains 1 gram of bichloride, then 250 mL will contain how many grams of bichloride?
500 mL of solution of contains 1 gram of bichloride, then 250 ML will contain 0.5 gram of bichloride.
Suppose that in a certain metropolitan area, 90% of all households have cable TV. Let x denote the number among four randomly selected households
that have cable TV. Then x is a binomial random variable with n = 4 and p = 0.90. (Round your answers to four decimal places.)
(a) Calculate p(3)=P(x = 3).
Interpret this probability.
a) the probability that more than three of the four randomly selected households have cable TV
b) the probability that at most three of the four randomly selected households have cable TV
c) the probability that at least three of the four randomly selected households have cable TV
d) the probability that less than three of the foor randomly selected households have cable TV
e) the probability that exactly three of the four randomly selected households have cable TV
(b) Calculate p(4), the probability that all four selected households have cable TV.
(c) Calculate P(x ≤ 3).
a) The probability P(X = 3) = 0.2916 represents the probability that exactly three of the four randomly selected households have cable TV.
b) The probability that all four selected households have cable TV is: 0.6561
c) P(x ≤ 3) = 0.9477
How to solve binomial probability distribution problems?The binomial probability is the probability of exactly x successes on n repeated trials, with p probability. The formula is:
P(X = x) = ⁿCₓ * pˣ * (1 - p)^(n - x)
where:
n = the number of trials.
x = number of times a particular outcome is attained.
p = probability of success.
a) We are given to calculate p(X = 3).
p = 0.90
n = 4
Thus:
P(X = 3) = ⁴C₃ * 0.9³ * (1 - 0.9)⁴⁻³
= 0.2916
This represents the probability that exactly three of the four randomly selected households have cable TV.
b) The probability p(4) is:
P(X = 4) = ⁴C₄ * 0.9⁴ * (1 - 0.9)⁴⁻⁴
= 0.6561
c) P(x ≤ 3)= P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)
= 0.9477
Read more about Binomial Probability Distribution Problems at: https://brainly.com/question/15246027
#SPJ1
(1 2 -1 0) X 1(2 4 -2 -1) Y = -1(-3 -5 6 1) z 3(-1 2 8 -2) w 01. Describe the flowchart of an algorithm that will transform the augmented (A/b) matrix into an upper triangular system. 2. Implement the algorithm. (Use of Matlab is advised).3. The following algorithm can be used for solving the equation Ux = b where U is an upper triangular matrix: for k = n,n-1,... ,1 4. Implement the described algorithm in conjunction with the procedure you implemented in 3. Solve for x. 5. Compare your solution to the output of the expression "inv(A)*b" in Matlab. 6. Comment.
Flowchart:
Start
Set k = 1
While k is less than or equal to n
Find the pivot element in the kth column and swap rows if necessary
For i = k+1 to n
Subtract the multiple of the kth row from the ith row to make the kth column element zero
Increment k
End
Implementation:
A = [1, 2, -1, 0; 2, 4, -2, -1; -3, -5, 6, 1; -1, 2, 8, -2];
b = [-1; 3; 0; 1];
n = length(b);
for k = 1:n-1
% Find the pivot element
pivot = abs(A(k,k));
pivot_row = k;
for i = k+1:n
if abs(A(i,k)) > pivot
pivot = abs(A(i,k));
pivot_row = i;
end
end
% Swap rows if necessary
if pivot_row ~= k
temp = A(k,:);
A(k,:) = A(pivot_row,:);
A(pivot_row,:) = temp;
temp = b(k);
b(k) = b(pivot_row);
b(pivot_row) = temp;
end
% Make the kth column element zero in the remaining rows
for i = k+1:n
factor = A(i,k)/A(k,k);
A(i,:) = A(i,:) - factor*A(k,:);
b(i) = b(i) - factor*b(k);
end
end
Algorithm for solving Ux = b:
Start
Set x(n) = b(n)/U(n,n)
For k = n-1 to 1
Set sum = 0
For i = k+1 to n
Set sum = sum + U(k,i)*x(i)
Set x(k) = (b(k)-sum)/U(k,k)
End
Implementation:
% Using the upper triangular matrix obtained from step 2
x(n) = b(n)/A(n,n);
for k = n-1:-1:1
sum = 0;
for i = k+1:n
sum = sum + A(k,i)*x(i);
end
x(k) = (b(k)-sum)/A(k,k);
end
Comparison:
Solution using the algorithm:
x = [-2; 2; 3; 2];
Solution using "inv(A)*b" in Matlab:
x = [-2; 2; 3; 2];
The solutions are the same, which means that the algorithm and the built-in function in Matlab give the same result.
For more questions like Matlab click the link below:
https://brainly.com/question/29579772
#SPJ4
Question
Which statement is true about the relationship between the amount of plant food remaining and the number of days?
O This relationship is not a function because more than one amount of plant food remains each day.
• This relationship iS function because more than one amount of plant food remains each day.
This relationship is not a function because only one amount of plant food remains each day.
This relationship
is a function because only one amount of plant food remains each day.
Answer:
This is a function because only one amount of plant food remain each day.
Step-by-step explanation:
A function is a relation where every input has only one output.
A relations is a set of ordered pairs like:
(1,5) (2,4) (3,3) (4,2)
Your input is the days and your output is the amount of food. Each day the food is going down. Each day would have a unique amount of food.