A particle moving through space has position at time t given by s(t) = 14+20 ( sqrt) t where t is in seconds and s(t) is in meters. What is the acceleration of the object at t = 4 ? A. 5 m/s^2 B. -5/2 m/s^2 C. 15/8 m/s^2 D. -5 8 m/s^2 E. 40 m/s^2

Answers

Answer 1

The acceleration of the object at t = 4 is [tex]-5/2 \ m/s^2[/tex]. The correct answer is B.

The acceleration of the object at t = 4 can be found by taking the second derivative of the position function s(t). Acceleration is the rate at which an object changes its velocity with respect to time. It is a vector quantity, meaning that it has both magnitude and direction. The first derivative of s(t) is the velocity function v(t), and the second derivative is the acceleration function a(t).

The first derivative of s(t) is:
[tex]v(t) = d/dt [14 + 20 \sqrt t] \\

= 20/(2\sqrt t)

\\= 10/\sqrt t[/tex]
The second derivative of s(t) is:
a(t) =[tex]d/dt [10\sqrt t][/tex]

=> [tex]-10/(2t^{(3/2)})[/tex]

=>[tex]-5/(t^{(3/2)})[/tex]
Plugging in t = 4 into the acceleration function gives:
a(4) = [tex]-5/(4^{(3/2)})[/tex]

= -5/(8)

= -5/2

To learn more about Acceleration :

https://brainly.com/question/26408808

#SPJ11


Related Questions

Even when shut down after a period of normal use, a large commercial nuclear reactor transfers thermal energy at the rate of 150 MW by the radioactive decay of fission products. This heat transfer causes a rapid increase in temperature if the cooling system fails (1 watt = 1 joule/second or 1 W = 1 J/s and 1 MW = 1 megawatt).
(a) Calculate the rate of temperature increase in degrees Celsius per second (

C/s) if the mass of the reactor core is 1.60
×
10
5
kg and it has an average specific heat of 0.3349 kJ/kg


C.
(b) How long would it take to obtain a temperature increase of 2000

C, which could cause some metals holding the radioactive materials to melt? (The initial rate of temperature increase would be greater than that calculated here because the heat transfer is concentrated in a smaller mass. Later, however, the temperature increase would slow down because the 5
×
10
5
-kg steel containment vessel would also begin to heat up.)

Answers

(a) The rate of temperature increase is about 1.40 degrees Celsius per second. (b) It would take about 1428.57 seconds or 23.81 minutes to obtain a temperature increase of 2000 degrees Celsius.

(a) The rate of temperature increase can be calculated by first finding the total energy being transferred per second by the decay of fission products, which is 150 MW. This is equivalent to 150 x 10⁶ J/s. Then, we can use the formula:

rate of temperature increase = (energy transferred per second) / (mass x specific heat)

Plugging in the values, we get:

rate of temperature increase = (150 x 10⁶ J/s) / (1.60 x 10⁵ kg x 0.3349 kJ/kg∘C)
rate of temperature increase ≈ 1.40∘C/s

Therefore, the rate of temperature increase is about 1.40 degrees Celsius per second.

(b) To find the time it would take to obtain a temperature increase of 2000 degrees Celsius, we can use the formula:

time = (change in temperature) / (rate of temperature increase)

Plugging in the values, we get:

time = (2000∘C) / (1.40∘C/s)
time ≈ 1428.57 s

Therefore, it would take about 1428.57 seconds or 23.81 minutes to obtain a temperature increase of 2000 degrees Celsius.

Learn more about radioactive decay here: brainly.com/question/1770619

#SPJ4

Complete question:

Even when shut down after a period of normal use, a large commercial nuclear reactor transfers thermal energy at the rate of 150 MW by the radioactive decay of fission products. This heat transfer will cause a rapid increase in temperature if the cooling system fails.

(a) Calculate the rate of temperature increase, in degrees Celsius per second (°C/s), if the mass of the reactor core is 1.4 × 105 kg and it has an average specific heat of 0.3349 kJ/(kg.°C).

(b) How long, in minutes, would it take for the temperature to increase by 2000°C, which could cause some metals holding the radioactive materials to melt? (The initial rate of temperature increase would be greater than that calculated here because the heat transfer is concentrated in a smaller mass. Later, however, the temperature increase would slow down because the 5 x 105-kg steel containment vessel would also begin to heat up.)

which of the following changes will result in a larger frequency for an oscillating spring-mass system?

Answers

An increase in the spring constant changes will result in a larger frequency for an oscillating spring-mass system.

About mass -spring system

The mass spring system is a system composed of objects that have mass and are connected to springs. The spring circuit can be composed of several springs mounted in series or parallel as needed. Springs connected in series will decrease the value of the spring constant, while the installation of springs in parallel will increase the value of the spring constant.

Spring system formation is a simple spring system formation arranged in series or parallel. The stages of the research carried out included determining the mathematical equation for mass movement determined from the equilibrium position in the formation of a spring system, including a spring system of a mass connected to two springs arranged in series, a spring system of a mass connected to two springs arranged in parallel and a spring system of two masses. connected by two springs arranged in series, then create a spring system simulation program.

Learn more about spring mass at

https://brainly.com/question/23312582

#SPJ4

a recursive function is a function that: group of answer choices calls itself, directly or indirectly. returns a double. is inside of another function. takes 3 arguments.

Answers

A recursive is a function that eventually calls itself.

Base recursive functions are defined as the recursive functions where the last statement performed is the recurrent call.

Recursive function: what is it?

A recursive function is a function which explains that one that generates a series of phrases by repeating or using its own prior term as input. The math sequence, which has presence of some words with a following differences between them, is typically the basis on which we study about this function.

How does a recursive function operate?

The function is defined as something which is repeatedly through recursion within the function. Until and unless we have the base case which is satisfied, the recursive condition makes repeated calls to the function. The base case is contained in the function, and it causes the execution to stop when its condition is met.

To know more about recursive function:

brainly.com/question/23896867

#SPJ4

An object that can move in either direction along a horizontal line ( the positive axis). Assume that friction is so small that it can be neglected. Sketch the shape of the graph of the force applied to the object that would produce the motion described.
A) The object moves away from the origin with a constant velocity.
B)The object moves toward the origin with a constant velocity.
C) The object moves away from the origin with a steadily increasing velocity (a constant acceleration)

Answers

A) and B): No force whenever, F(t) = 0, ∀t. C): A constant force,

F(t) = F0,∀t.

Newton's Laws

In the year 1687, Isaac Newton distributed his fundamental work "Philosophiae Naturalis Principia Mathematica", in which he included three essential standards of movement. These standards are referred to now as Newton's maxims or Newton's laws.

A) and B): No force whenever,

F(t) = 0, ∀t.

As indicated by Newton's most memorable regulation, an article moves with constant velocity when no net force is following up on it.

C): A constant force,

F(t) = F0,∀t.

As indicated by Newton's subsequent regulation, the speed increase is corresponding to the acting force. Assuming that the speed increase is constant, the force is constant.

to know more about Newton's law click here:

https://brainly.com/question/28171613

#SPJ4

An object is launched from the origin with a velocity of 10.0 m/s at an angle of 30.0 degrees above the horizontal. What is the velocity of the object 2.00 seconds later? A. Vx=8.7 m/s, Vy=-14.6 m/s B. Vx - 14.6 m/s, Vy=-5.6 m/s C. Vx = -8.7 m/s, Vy=-14.6 m/s D. Vx-14.6 m/s. Vy - 8.7 m/s E. Vx = 5.6 m/s, Vy=-14.6 m/s

Answers

The velocity of the object both horizontally and vertically at 2.00 seconds is (A) 8.7 m/s and - 14.6 m/s. The result is obtained by us using formula for projectile motion.

How to find horizontal and vertical velocity of projectile motion?

In horizontal motion, the velocity is not affected by the gravitational acceleration. It can be calculated by

vx = v₀ cos θ

In vertical motion, the velocity is affected by the gravitational acceleration. It ca be expressed as

vy = v₀ sin θ - gt

An object is moving in projectile motion.

we have:

initial velocity, v₀ = 10.0 m/sAngle above the horizontal, θ = 30°Time, t = 2.00 s

The horizontal velocity of the object is

vx = 10.0 × Cos 30°

vx = 10.0 × ½ √3

vx = 5√3

vx = 8.7 m/s

The vertical velocity of the object is

vy = v₀ sin 30 - gt

vy = 10.0 (½) - 9.8 (2.00)

vy = 5 - 19.6

vy = - 14.6 m/s

Hence, the velocity of the object is vx = 87 m/s and vy = - 14. m/s.

The correct option is (A).

Learn more about projectile motion here:

brainly.com/question/30579228

#SPJ4

newtons ring experiment for engineering

Answers

Newton's ring is a phenomenon of interference pattern of the light rays which is created by reflection of light rays.

What is Newton's ring experiment?

Newton's rings is a phenomenon in which an interference pattern of the light is generally created by the reflection of light rays between the two surfaces, typically a spherical surface and an adjacent touching flat surface in space.

Newton's rings, in optics, is a series of concentric light- and dark-colored bands which are observed between any two pieces of glass when one is convex and it rests on its convex side on another piece which is having a flat surface. Thus, a layer of air exists between the two.

Newtons ring experiment is used for the determination of wavelength of monochromatic lights. It is also used for the determination of refractive index of transparent liquid.

Learn more about Newton's ring experiment here:

https://brainly.com/question/16979383

#SPJ9

The type of ion channel that will open and close depending on changes in electrical potential across the membrane is referred to as _________________. Those ion channels that require a chemical messenger to bind to them in order to open or close are called____________________. voltage-gated; mechanically-gated ligand-gated; stretch-gated voltage-gated; ligand-gated ligand-gated; voltage-gated stretch-gated; ligand-gated

Answers

The type of ion channel that will open and close depending on changes in electrical potential across the membrane is referred to as voltage-gated. In this case the word “voltage” is already telling you that it functions with electrical potential

Those ion channels that require a chemical messenger to bind to them in order to open or close are called ligand-gated. The word “ligand” tells you that there is a compound (chemical messenger) that is ligand of a receptor, once it binds with the receptor, the channels will be active.

To know more about Ion Channel, visit: brainly.com/question/29415412

#SPJ4

The kinetic energy is 4400 joules. The mass is 29 kg. What is the speed?

Answers

Answer:F=6*10\4N

Explanation:the 4 is th sqaer

a) Write a selected signal assignment statement to represent the 4-to-1 MUX shown below. Assume that there is an inherent delay in the MUX that causes the change in output to occur 15 ns after a change in input.
(b) Repeat (a) using a conditional signal assignment statement.

Answers

Selected signal assignment statement to represent the 4-to-1 MUX has been shown below.

a)entity mux4to1 is

port(A,B: in std_logic;

      CD : in std_logic_vector(1 down to 0),

      F: out std_logic);

end mux4to1;

Architecture behavioral of mux4to1 is

begin

with CD select

F<= transport (not A) after 10 ns when "00",

       transport B after 10 ns when "01",

      transport  (not B) after 10 ns when "10",

      transport  "0" after 10 when "11";

end behavioral;

b)entity mux4to1 is

port(A,B: in std_logic;

      CD : in std_logic_vector(1 down to 0),

      F: out std_logic);

end mux4to1;

Architecture behavioral of mux4to1 is

begin

F <= inertial (not A) after 10 ns  WHEN (CD = “00”) ELSE

        inertail B after 10 ns WHEN (sel = “01”) ELSE

       inertail (not B) after 10 ns WHEN (sel = “10”) ELSE

       inertail "0" after 10 ns WHEN (sel = “11”) ELSE

        ‘X’;

end behavioral;

c)entity mux4to1 is

port(A,B: in std_logic;

      CD : in std_logic_vector(1 down to 0),

      F: out std_logic);

end mux4to1;

Learn more about 4-to-1 MUX here brainly.com/question/15052768

#SPJ4

Question 10 of 10
A car drives to the right. There is a large amount of air resistance, and the
car's engine provides the car's forward motion. Which force on the free-body
diagram below represents the weight of the car?
A. Force C
B. Force B
C. Force D
D. Force A

Answers

The free-body diagram that will represent the weight of the car is the one in which the weight of the car points downwards.

What are free-body diagrams?

Free-body diagrams are diagrams used in physics and engineering to represent an object and the forces acting on it. They are used to analyze the forces and determine the net force acting on an object, which is then used to determine the object's acceleration and motion.

The free-body diagram of the car will be as follows:

a large amount of air resistance - acts to the leftcar's engine provides the car's forward motion -  acts to the rightweight of the car - acts downwardsnormal reaction - acts upwards

Learn more about free-body diagrams at: https://brainly.com/question/17849049

#SPJ1

HELPPPPP MEE

LATE SCIENCE WORK

Answers

The true statement about the motion of the helicopter is " the helicopter travels at a greater speed between D and E than it did between A and B.

option D.

What is motion?

Motion is the process of an object changing its position with respect to a reference point over time. It involves the movement of an object from one point in space to another.

Motion can be described in terms of its speed, direction, and acceleration. Speed refers to the rate at which an object is moving, while direction refers to the path that the object is following. Acceleration refers to the rate at which an object's speed or direction changes.

v = Δx / Δt

where;

Δx is change in positionΔt is change in time

The change in position of the helicopter between A and B = 0

because, A = 100 m and B = 100 m

so the speed of the helicopter between A and B = 0 m/s.

Thus, the last statement is the only correct option,

Learn more about motion here: https://brainly.com/question/25951773

#SPJ1

A capacitor consists of two metal plates each 10 cm by 20 cm; they are separated by a 2.0 mm thick insulator with dielectric constant 4.1 and dielectric strength 6.0107 V/m. What is the capacitance in pF(10 −12
F)?

Answers

The equation gives the capacitance of a parallel-plate capacitor:C = εA/d. Where C is the capacitance, ε is the permittivity of the dielectric material between the plates, A is the area of each plate, and d is the distance between the plates.

In this case, the area of each plate is 10 cm × 20 cm = 200 cm^2 = 0.02 m^2. The distance between the plates is 2.0 mm = 0.002 m. The permittivity of the dielectric material is ε = ε0εr, where ε0 is the vacuum permittivity (8.85 × 10^-12 F/m), and εr is the relative permittivity or dielectric constant (4.1).

So, substituting these values into the equation, we get:

C = εA/d

= (ε0εr)(0.02)/(0.002)

= (8.85 × 10^-12)(4.1)(0.02)/(0.002)

= 7.26 × 10^-11 F

= 72.6 pF

Therefore, the capacitance parallel-plate capacitor is 72.6 pF.

To learn more about parallel-plate capacitor, visit here

https://brainly.com/question/12733413

#SPJ4

4) Collision in which K.E and momentum of system remain same is called__________
(*)Elastic Collision
(*) Inelastic collision
(*) Conserved collision
(*) Linear collision

Answers

A collision that is elastic occurs when there is no net loss of kinetic energy in the system as a result of the collision. Kinetic energy and momentum are both conserved in elastic collisions.

Give an example of an elastic collision.

When two balls collide at a pool table, that is an instance of an elastic collision. When you throw a ball on the ground and it bounces back into your hand, there is no net change in the kinetic energy, making it an elastic collision.

Give an illustration of what an elastic collision is.

Two balls colliding at a pool table is an example of an elastic collision. When a ball is tossed to the ground and subsequently returns to your hand, there is no net change in the kinetic energy, making it an elastic collision.

To know more about collision visit:

brainly.com/question/12550364

#SPJ1

A physics instructor walks with increasing speed across the front of the room, then suddenly reverses direction and walks backwards with constant speed. Which of the following graphs correctly depicts the acceleration vs. time of the physics instructor?

Answers

According to the physics professor's acceleration vs. time graph, a change in speed could also mean a change in velocity.

What is acceleration, using an example?

An object's velocity may alter depending on whether it is moving faster, slower, or in a different direction. The moon orbiting the earth and an apple falling to the ground are two instances of acceleration.

What exactly are velocity and acceleration?

The pace at which displacement changes is known as velocity. The rate at which velocity changes is known as acceleration. Because it includes both magnitude and direction, mass and velocity quantity. Since acceleration is merely the rate at which velocity changes, acceleration is likewise a vector quantity.

To know more about Acceleration visit:

https://brainly.com/question/30660316

#SPJ1

the silicon sample has been uniformly illuminated with light resulting in an optical generation rate is?

Answers

The optical generation rate of a silicon sample illuminated with light is the rate at which photogenerated carriers are created in the sample.

Optical generation rate is typically expressed in units of A/cm2. The optical generation rate is a function of the light intensity, the wavelength of the light, and the material properties of the silicon sample. The rate of generation of electron-hole pairs through photon absorption is known as "optical generation rate". Optical generation rate is usually denoted by G(x) and in unit of electrons/cm³s.

To know more about  light intensity please refer:

https://brainly.com/question/30499504

#SPJ4

A pool ball moving 1.83 m/s
strikes an identical ball at rest.
Afterward, the first ball moves
1.15 m/s at a 23.3° angle. What is
the x-component of the velocity of
the second ball?

Answers

Answer:n to the right to the right

Explanation:

The motion of the kangaroo is under free-fall. We are looking for the initial velocity, and we know that the velocity in the highest position is zero.
From
v
2
=
(
v
0
)
2
+
2
ay
,
v 2

=(v 0

) 2
+2ay,

we have
v
2
=
(
v
0
)
2
+
2
ay
v
2

2
ay
=
(
v
0
)
2
v
0
=
v
2

2
ay
v 2
v 2
−2ay
v 0


=(v 0

) 2
+2ay
=(v 0

) 2
= v 2
−2ay


Substituting the known values,
v
0
=
v
2

2
ay
v
0
=
0
2

2
(

9.81
m/s
2
)
(
2.50
m
)
v
0
=
7.00
m/s
v 0

v 0

v 0


= v 2
−2ay

= 0 2
−2(−9.81m/s 2
)(2.50m)

=7.00 m/s

Therefore, the vertical speed of the kangaroo when it leaves the ground is 7.00 m/s.
Part B
Since the motion of the kangaroo has uniform acceleration, we can use the formula
y
=
v

t
+
1
2
a
t
2
y=v o

t+ 2
1

at 2
The initial and final position of the kangaroo will be the same, so �
y is equal to zero. The initial velocity is 7.00 m/s, and the acceleration is -9.81 m/s2.
y
=
v
0
t
+
1
2
a
t
2
0
=
(
7.00
m/s
)
t
+
1
2
(

9.81
m/s
2
)
t
2
0
=
7
t

4.905
t
2
7
t

4.905
t
2
=
0
t
(
7

4.905
t
)
=
0
t
=
0
or
7

4.905
t
=
0
y
0
0
7t−4.905t 2
t(7−4.905t)
t=0

=v 0

t+ 2
1

at 2
=(7.00 m/s)t+ 2
1

(−9.81 m/s 2
)t 2
=7t−4.905t 2
=0
=0
or7−4.905t=0

Discard the time 0 since this refers to the beginning of motion. Therefore, we have
7

4.905
t
=
0
4.905
t
=
7
t
=
7
4.905
t
=
1.43
s
7−4.905t
4.905t
t
t

=0
=7
= 4.905
7

=1.43 s

The kangaroo is about 1.43 seconds long in the air.

Answers

The motion of the kangaroo is under free-fall, its vertical speed when it leaves the ground 7.00m/s and it is in air for 1.43s.

The stir of the kangaroo is under free- fall. We're looking for the original haste, and we know that the haste in the loftiest position is zero.

From,

v ² = ( vo) ² 2ay,

we have,

v ² = ( vo) ² 2ay,

v ²- 2ay = vo ²

vo = √ v ²- 2ay

Vo = 7.00 m/ s

thus, the perpendicular speed of the kangaroo when it leaves the ground is 7.00 m/s.

Since the stir of the kangaroo has invariant acceleration, we can use the formula,

y = vo * t1/2 at ²

7t-4.905 t ²

t = 0 or t = 1.43

thus, kangaroo is about 1.43 seconds long in the air.

Learn more about Vertical speed question:

https://brainly.com/question/30462853

#SPJ4

Complete question:

A kangaroo can jump over an object 2.50 m high. (a) Calculate its vertical speed when it leaves the ground. (b) How long is it in the air?

Multiple Choice: Suppose the electric field is zero in a certain region of space. Which of the following statements best describes the electric potential in this region?
a) The electric potential is zero everywhere in this region.
b) The electric potential is zero at at least one point in this region.
c) The electric potential is constant everywhere in this region.
d) There is not enough information given to distingush which of the above answers is correct.

Answers

Option c) is correct as in a region where electric field is zero, electric potential is constant and independent region location.

The statement that best describes the electric potential in a region of space where the electric field is zero is (c) the electric potential is constant everywhere in this region.

This can be explained by the fact that:

electric potential is amount of work done to get a unit charge from infinity to a particular point in electric field. When electric field is zero, there's zero force acting on charge and therefore work done is zero.

In such a scenario, the electric potential is said to be constant throughout the region because the amount of work required to move as charge one to another point doesn't depend on path. Any path will have no charge and thus potential difference will become zero.

Learn more about electric field here:

https://brainly.com/question/15800304

#SPJ4

circulation of heat in the oceans and atmosphere is an example of energy movement through _________________.

Answers

Circulation of heat in the oceans and atmosphere is an example of energy movement through convection.

What is convection?

The movement of heat energy through a fluid is known as convection. This kind of heating is most frequently seen in the kitchen, typically with a liquid that is brought to a boil. The air that makes up the atmosphere behaves like a fluid. The rocks are warmed up as a result of the sun's radiation penetrating the ground.

As a result of conduction, the temperature of the rock will increase, which will cause heat energy to be released into the environment. This will result in the formation of a bubble of air that is warmer than the air around it. This pocket of air climbs into the atmosphere and continues its journey. The heat that was held within the bubble dissipates into the atmosphere as it rises, causing the bubble to gradually become cooler.

To learn more about convection, click here:

https://brainly.com/question/12864792

#SPJ4

A 10,000 kg railroad car is rolling at 8.00 m/s when a 6000 kg load of gravel is suddenly dropped in. What is the car's speed just after the gravel is loaded? Express your answer with the appropriate units.

Answers

The car's speed just after the gravel is loaded is 4.00 m/s.

The momentum of the system (railroad car + gravel) is conserved before and after the gravel is dropped.

Therefore, we can use the law of conservation of momentum to find the velocity of the combined system just after the gravel is loaded.

Before the gravel is dropped, the momentum of the railroad car is:

p1 = m1v1 = (10000 kg)(8.00 m/s) = 80000 kg*m/s

where m1 is the mass of the railroad car and v1 is its velocity.

When the gravel is dropped, the total mass of the system becomes:

m2 = m1 + m_gravel = 10000 kg + 6000 kg = 16000 kg

where m_gravel is the mass of the gravel.

The momentum of the system just after the gravel is dropped is:

p2 = m2v2

where v2 is the velocity of the combined system just after the gravel is loaded.

Since momentum is conserved, we can equate p1 to p2:

p1 = p2

m1v1 = m2v2

Solving for v2, we get:

v2 = (m1v1) / m2

Substituting the given values, we have:

v2 = (10000 kg)(8.00 m/s) / 16000 kg

v2 = 4.00 m/s

Therefore, the car's speed just after the gravel is loaded is 4.00 m/s.

To learn more about the law of conservation:

https://brainly.com/question/7538238

#SPJ4

Suppose that a right-moving em wave overlaps with a left-moving em wave so that, in a certain region of space, the net electric field in the y direction and magnetic field in the z direction are given by Ey = E0 sin(kx-wt)+E0 sin(kx+wt) and Bz =B0 sin(kx-wt)+B0 sin(kx+wt). (a) Find the mathematical expression that represents the standing electric and magnetic waves in the y and z directions, respectively. (b) Determine the Poynting vector and find the x locations at which it is zero at all times.

Answers

The standing wave can be obtained by taking the sum of the two traveling waves with equal amplitude and opposite phase velocities. To do this, we can use the trigonometric identity:

How to use wave amplitude?

sin(A) + sin(B) = 2 cos((A+B)/2) sin((A-B)/2)

Applying this identity to the electric field Ey, we get:

Ey = 2 E0 cos(wt) sin(kx)

This represents a standing wave with nodes (zero amplitude) at x = nλ/2k, where n is an integer.

Similarly, for the magnetic field Bz, we have:

Bz = 2 B0 cos(wt) sin(kx)

This also represents a standing wave with nodes at the same positions as the electric field.(b) The Poynting vector represents the flow of energy of the electromagnetic wave and is given by:

S = E x B

where x represents the vector cross product. Substituting the expressions for E and B, we get:

S = E0 B0 sin^2(kx) / μ0

where μ0 is the permeability of free space.

The Poynting vector is zero when sin^2(kx) = 0, which occurs at x = nπ/k for n an integer. This represents positions where the electric and magnetic fields are out of phase and the energy flow is momentarily zero.

To know more about wave amplitude , check out :

https://brainly.com/question/19036728

#SPJ4

what a geologist sees. a geology student sits beside an outcrop on mont royal, the namesake of montreal. this exposure shows the intrusion of molten basalt into preexisting limestone.

Answers

The geologist sees depositional contact. Therefore, option A is correct.

What is depositional contact?

A sedimentary or volcanic rock is said to have been deposited on an older rock at a depositional contact (of any type). Where volcanic rocks encroach on older rock, this is known as an intrusive contact (of any type).

The ten different types of contacts are as follows: (1) bedding planes, (2) diastems, (3) angular irregularities, (4) disconformities, (5) para-conformities, (6) nonconformities, (7) pedologic contacts, (8) faults, 9) intrusive contacts, and 10) extrusive contacts.

Hence, option A is correct.

Learn more about depositional contact, here:

https://brainly.com/question/9000638

#SPJ1

your question is incomplete, most probably the full question is this:

what a geologist sees. a geology student sits beside an outcrop on mont royal, the namesake of montreal. this exposure shows the intrusion of molten basalt into preexisting limestone.

Allison exerts a steady net force of 54 N on a 24-kg
shopping cart initially at rest for 2.6 s. find the distance.

Answers

Answer:

Approximately [tex]7.6\; {\rm m}[/tex] while the force was applied.

Explanation:

Divide net force by mass to find acceleration:

[tex]\begin{aligned}(\text{acceleration}) &= \frac{(\text{net force})}{(\text{mass})} = 2.25\; {\rm m\cdot s^{-2}}\end{aligned}[/tex].

(Note that [tex]1\; {\rm N} = 1\; {\rm kg\cdot m\cdot s^{-2}}[/tex].)

The question states that this acceleration of [tex]a = 2.25\; {\rm m\cdot s^{-2}}[/tex] continued for [tex]t = 2.6\; {\rm s}[/tex]. Additionally, it is given that initial velocity was [tex]u = 0\; {\rm m\cdot s^{-1}}[/tex] (initially at rest.)

Let [tex]x[/tex] denote the distance travelled. Apply the SUVAT equation [tex]x = (1/2)\, a\, t^{2} + u\, t[/tex] to find this distance:

[tex]\begin{aligned}x &= \frac{1}{2}\, a\, t^{2} + u\, t \\ &= \frac{1}{2}\, (2.25)\, (2.6)^{2}\; {\rm m} + (0)\, (2.6)\; {\rm m} \\ &= \frac{1}{2}\, (2.25)\, (2.6)^{2}\; {\rm m} \\ &\approx 7.6\; {\rm m}\end{aligned}[/tex].

If a car is pushed with a force of 18N for 8m, how much work has been done?

Answers

According to the question, the work done by a car is calculated as 144Nm.

What is force?

Force may be defined as a process of pushing or pulling on an object that significantly produces acceleration in the body on which it acts. It is an external agent capable of changing a body's state of rest or motion. It has a magnitude and a direction.

According to the question,

The force applied on a car = 18 N

The displacement made by a car = 8m.

Now, the work done is calculated with the help of the given formula:

Work done = Force × Displacement.

                           = 18 N × 8m = 144Nm.

Therefore, the work done by a car is calculated as 144Nm.

To learn more about Force and displacement, refer to the link:

https://brainly.com/question/28356414

#SPJ9

Aluminum metal can be recycled from scrap metal by melting the metal to evaporate impurities. Calculate the amount of heat needed to purify 1.00 mole of Al originally at 298 K by melting it. The melting point of Al is 933K. The molar heat capacity of Al is 24 JI(mol K), and the heat of fusion of Al is 10.7 kJlmol: b_ The equation for the overall process of extracting Al from Al,O3 is shown below: Which requires less energy, recycling existing Al or extracting Al from Al,03? Justify your answer with a calculation_ 2AIzO3 (s) 2 Al (s) 302 (g) AH= 1675 kJ

Answers

To purify 1 mole of Al by melting it, we need to consider two processes: heating the Al from 298 K to 933 K, and melting the Al at its melting point.The heat required to heat the Al is Q1 = 20,832 J, and the heat required to melt the Al is Q2 = 10,700 J. The total heat required is Q_total = Q1 + Q2 = 31,532 J.To extract 1 mole of Al from Al2O3, we need 837.5 kJ of energy, according to the given equation for the reaction.Recycling existing Al requires significantly less energy than extracting Al from Al2O3, with the energy required for extraction being approximately 219 times greater than the energy required for purification by melting.

What does energy extraction mean?

Energy extraction generally refers to the process of obtaining useful energy from a particular source or converting one form of energy to another. This can include extracting energy from fossil fuels, nuclear reactions, wind, solar power, hydropower, or other sources.

In the context of the given question about aluminum production, "energy extraction" refers specifically to the process of obtaining aluminum metal from its ore, which in this case is Al2O3. This process requires a significant amount of energy, as indicated by the high value of the heat of reaction in the equation given in the question. By contrast, recycling aluminum from scrap metal requires much less energy and is therefore generally considered to be more energy-efficient and environmentally friendly than extracting aluminum from its ore.

To calculate the amount of heat needed to purify 1.00 mole of Al originally at 298 K by melting it, consider two processes:

1. Heating the Al from 298 K to its melting point at 933 K, which requires heat Q1:

Q1 = n * Cp * delta T

= 1.00 mol * 24 J/(mol K) * (933 K - 298 K)

= 20,832 J

2. Melting the Al at its melting point, which requires heat Q2:

Q2 = n * delta H_fus

= 1.00 mol * 10.7 kJ/mol

= 10,700 J

The total heat required to purify 1.00 mole of Al by melting it is the sum of Q1 and Q2:

Q_total = Q1 + Q2

= 20,832 J + 10,700 J

= 31,532 J

Now, to determine whether it is more energy-efficient to recycle existing Al or to extract Al from Al2O3, compare the energy required for each process. The equation for extracting Al from Al2O3 shows that the reaction releases 1675 kJ of energy for every 2 moles of Al produced. Therefore, the energy required to extract 1 mole of Al from Al2O3 is:

energy required = 1675 kJ / 2

= 837.5 kJ

Comparison to the 31,532 J of energy required to melt and purify 1 mole of Al, we see that recycling existing Al requires significantly less energy than extracting Al from Al2O3.

Specifically, the energy required to extract 1 mole of Al from Al2O3 is approximately 219 times greater than the energy required to purify 1 mole of existing Al by melting it.

To know more about Energy Extraction, visit:

https://brainly.com/question/14547281

#SPJ4

Which of the quantities are zero throughout the flight?

Answers

The horizontal component of acceleration is always zero is the quantities are zero throughout the flight.

What is acceleration?

Acceleration was the representation rate In a change of velocity because the acceleration always depends on the object's speed. Acceleration determines the rate of the particles. Acceleration is the vector quantity. It is a vector quantity, but it has both extent and movement. Newton's law also has the acceleration of the magnitude described. The m.s-2 is the standard unit for acceleration.

What is velocity ?

The most important metric for determining an object's position and rate of movement is its velocity. The distance that an object travels in a certain amount of time might be used to define it. The object's displacement in a unit of time is referred to as velocity.

Therefore, The horizontal component of acceleration is always zero is the quantities are zero throughout the flight.

Learn more about acceleration from the given link.

https://brainly.com/question/460763

#SPJ1

A)How much heat does it take to increase the temperature of 2.10 molmol of an ideal gas by 60.0 KK near room temperature if the gas is held at constant volume and is diatomic?
B)What is the answer to the question in part A if the gas is monatomic?

Answers

A) It would take 2079 J of heat to increase the temperature of 2.10 mol of a diatomic gas by 60.0 K at a constant volume.

B) It would take 1244 J of heat to increase the temperature of 2.10 mol of a monatomic gas by 60.0 K at a constant volume.

What is the difference between diatomic and monoatomic?

The terms "diatomic" and "monoatomic" describe how many atoms make up a molecule or an ion. Diatomic molecules, like O2 or HCl, are made up of two covalently connected atoms of the same element. On the other hand, monoatomic species are made of a single atom, which could be neutral like helium or argon or charged like cations and anions. Diatomic molecules have unique chemical properties and are frequently involved in chemical processes, whereas monoatomic species normally exist as gases under normal conditions and are relatively inert. In the study of chemistry and physics, the contrast between diatomic and monoatomic particles is significant, particularly in understanding the behavior of various elements and their interactions with other substances.

(A) To calculate the amount of heat required to increase the temperature of 2.10 mol of a diatomic gas by 60.0 K at constant volume, we can use the formula: Q = nCvΔT

where Q is the amount of heat, n is the number of moles of the gas, Cv is the molar heat capacity at constant volume, and ΔT is the change in temperature. For a diatomic gas, Cv = (5/2)R, where R is the gas constant.

So, substituting the given values, we get:

Q = (2.10 mol)(5/2)(8.31 J/mol·K)(60.0 K)

Q = 2079 J

Therefore, it would take 2079 J of heat to increase the temperature of 2.10 mol of a diatomic gas by 60.0 K at a constant volume.

B) For a monatomic gas, Cv = (3/2)R. So, using the same formula as above, we get:

Q = (2.10 mol)(3/2)(8.31 J/mol·K)(60.0 K)

Q = 1244 J

Therefore, it would take 1244 J of heat to increase the temperature of 2.10 mol of a monatomic gas by 60.0 K at a constant volume.

To know more about diatomic and monoatomic, check out:

https://brainly.com/question/16789083

#SPJ4

) To calculate the amount of heat required to increase the temperature of 2.10 mol of a diatomic gas by 60.0 K at constant volume, we can use the formula:

Q = nCvΔT

where Q is the amount of heat, n is the number of moles of the gas, Cv is the molar heat capacity at constant volume, and ΔT is the change in temperature. For a diatomic gas, Cv = (5/2)R, where R is the gas constant.

So, substituting the given values, we get:

Q = (2.10 mol)(5/2)(8.31 J/mol·K)(60.0 K)

Q = 2079 J

Therefore, it would take 2079 J of heat to increase the temperature of 2.10 mol of a diatomic gas by 60.0 K at constant volume.

B) For a monatomic gas, Cv = (3/2)R. So, using the same formula as above, we get:

Q = (2.10 mol)(3/2)(8.31 J/mol·K)(60.0 K)

Q = 1244 J

Therefore, it would take 1244 J of heat to increase the temperature of 2.10 mol of a monatomic gas by 60.0 K at constant volume.

A student in a science lab is investigating heat transfer and thermal energy conservation as she mixes hot and cold water. She first measures out her desired amount of cold water into a Styrofoam cup. She then measures out hot water from the faucet or from a pot hot water on her stove. After she measures the temperature of the hot and cold waters, she pours the hot water into the cold water. She monitors the temperature of the mixed waters and records the final temperature. She uses a standard thermometer to record the temperatures. She does three trials, which are shown below:
Trial 1:
For her first trial, the student decided to mix 250 mL of water at 20 °C with 250 mL of water at 98 °C. After waiting some time, she recorded the temperature of the mix to be 56 °C.
Trial 2:
For her second trial, the student decided to mix 200 mL of water at 20 °C with 400 mL of water at 98 °C. After waiting some time, she recorded the temperature of the mix to be 72 °C.
Trial 3:
For her third trial, the student decided to mix 300 mL of water at 15 °C with 150 mL of water at 90 °C. After waiting some time, she recorded the temperature of the mix to be 41 °C.
Include a data table that organizes the data collected from the three trials.
Make another table, or add to your table, to show data calculations. You will calculate the change in temperatures of the cold and hot water, as well as the mass of the cold and hot waters.
Use the beginning temperature of the hot and cold water and the final temperature of the mixture to calculate the change in temperature of the cold water and the change in temperature of the hot water. For example, the temperature of the cold water was raised from its beginning temperature to the final temperature of the mixture.
Since one milliliter (mL) of water has a mass of one gram (g), it is very easy to determine the mass of the cold and hot water. For example: If you have 100 mL of water, then the mass of the water is 100 g. Remember, 1 kg = 1000 g. Convert the mass of the hot and cold water to kilograms.
Use the equation Q = (m)(c)(Δ T) to calculate the heat gained by the cold water for each trial. Show your work using the problem-solving method shown in previous rubrics. The specific heat for water (c) is 4186 J/(kg * C°).
Use the equation Q = (m)(c)(Δ T) to calculate the heat "lost" by the hot water for each trial. Show your work using the problem-solving method shown in previous rubrics. The specific heat for water (c) is 4186 J/(kg * C°).
Compare the values for heat gain and heat loss in questions 3 and 4.
In an isolated system, the total heat given off by warmer substances equals the total heat energy gained by cooler substances. Now look at your answer to Question 5. What might have caused the difference you have reported? Even though this data was provided to you, think of the errors the student could have encountered when collecting the data.
Write a complete conclusion for this activity.

Answers

The heats gained by cold water in trials 1, 2 and 3 are 3048.6 J, 4311.52 J and 3048.6 J respectively and the heat lost are -6858 J, -4307.84 J and -3593.9 J respectively.

How to find heat gained and lost?

Calculation of Heat Gained by Cold Water:

Trial 1:

Q = (m)(c)(Δ T)

Q = (0.25 kg)(4186 J/(kg x C°))(36°C)

Q = 3048.6 J

Trial 2:

Q = (m)(c)(Δ T)

Q = (0.2 kg)(4186 J/(kg x C°))(52°C)

Q = 4311.52 J

Trial 3:

Q = (m)(c)(Δ T)

Q = (0.3 kg)(4186 J/(kg x C°))(26°C)

Q = 3048.6 J

Calculation of Heat Lost by Hot Water:

Trial 1:

Q = (m)(c)(Δ T)

Q = (0.25 kg)(4186 J/(kg * C°))(-52°C)

Q = -6858 J

Trial 2:

Q = (m)(c)(Δ T)

Q = (0.4 kg)(4186 J/(kg x C°))(-26°C)

Q = -4307.84 J

Trial 3:

Q = (m)(c)(Δ T)

Q = (0.15 kg)(4186 J/(kg x C°))(-75°C)

Q = -3593.9 J

Comparison of Heat Gain and Heat Loss:

In all three trials, the heat lost by the hot water is not equal to the heat gained by the cold water. This discrepancy is likely due to errors in the measurement of the temperature and volume of the water, or due to heat loss to the environment.

Conclusion:

This activity allowed the student to investigate heat transfer and thermal energy conservation. Through the measurement of the temperature of hot and cold water and the calculation of heat gained and lost by each, the student was able to gain a better understanding of these concepts. However, it is important to note that the results may have been affected by errors in measurement, so further experimentation and refinement of techniques may be necessary to obtain more accurate results.

Learn more on heat loss and gain here: https://brainly.com/question/14702484

#SPJ1

what is the velocity of a rock if it falls at a 3m/s

Answers

3m/s downward is the  velocity of a rock if it falls at a 3m/s. The idea of velocity is crucial in kinematics, the part of physical laws.

What is velocity?

The direction speed of an item in motion as an indicator of it's own rate of shift in position as perceived from a certain frame of reference and measured by a specific standard of time (e.g., 60 km/h northbound) is known as velocity.

The idea of velocity is crucial in kinematics, the part of physical laws that explains the motion of things. 3m/s downward is the  velocity of a rock if it falls at a 3m/s.

Therefore, 3m/s downward is the  velocity of a rock if it falls at a 3m/s.

To learn more about velocity, here:

https://brainly.com/question/80295

#SPJ9

A parallel plate capacitor with plates of area A and plate separation d is charged so that the potential difference between its plates is V. If the capacitor is then isolated and its plate separation is decreased to d/2, what happens to the potential difference between the plates? A) The final potential difference is 4V B) The final potential difference is 2V. C) The final potential difference is 0.51 D) The final potential difference is 0.25V E) The final potential difference is V.

Answers

The new potential difference when the distance between the plates vary is calculated to be 0.5 V. Correct option is C.

The parallel plate capacitor's area is denoted by the letter A.

Distance between the plates is d.

Potential difference is V.

If the distance is reduced to d/2, the potential difference is to be found out.

We know that, Q = C V

To find out potential difference, make it as subject,

V = Q/C

From the above equation, it is seen that, capacitance is inversely proportional to potential difference.

So,  V C = k

where,

k is contant

The parallel plate capacitor's capacitance is stated as,

C = εA/d

When the distance apart is d. Then, C₁ = εA/d

When the distance is half d/2

C₂ = εA/(d/2)

C₂ = 2εA/d

Then, applying V C = k

V₁ is voltage of the full capacitor V1 = V

V₂ is the required voltage let say V'

Then,

V₁ C₁ = V₂ C₂

V × εA/d=V' × 2εA/d

VεA/d = 2V'εA/d

Then the εA/d cancels on both sides and remains

V = 2V'

Then, V' = V/2

Thus, the potential difference is half when the distance between the parallel plate capacitor was reduce to d/2.

To know more about potential difference:

https://brainly.com/question/13404382

#SPJ4

Other Questions
Which of the following size-up is usually completed before an incident occurs?ongoing size-upspre-fire plansinitial size-upsituation status what is/are composed of minerals and salts and can affect any part of the urinary tract? By conversion of the markup formula, solve the following.Note: Round your answer to the nearest whole percent.Percent markup on cost: ?Percent markup on selling price: 25% Other things remaining constant, when demand for a good or service decreases, which of the following occur(s)?-Equilibrium price decreases- Equilibrium quantity decreases Is recycling really a sham? Given an int variable count that has already been declared, write a for loop that prints the integers 50 through 1, separated by spaces. Use no variables other than count.Given an int variable count that has already been declared, write a for loop that prints the integers 50 through 1, separated by spaces. Use no variables other than count. what are breakpoints? how do you set a breakpoint at a certain line of your program? try to set a breakpoint in punishment.c where the for loop begins. How many people did the US military evacuate from Afghanistan? An increase in blood viscosity will cause an increase in total peripheral resistance? True or False Which body of water do rivers not flow to in the east?A) Atlantic OceanB) Gulf of MexicoC) Hudson BayD) Pacific Ocean The capsule is the thin, outermost layer of the cell that provides protection is called ____ How to fix Microsoft Outlook is requesting data from the server? You are assigned to Mr. Johnson, a 75-year-old client who is deaf and has an unsteady gait dueto a knee replacement he had 2 years ago. You have entered his room to begin your morningcare, and he is facing the television with his back to you.1. How will you approach Mr. Johnson and communicate that it is time for you as the nurse toassist him with his care? (list 3 effective ways and explain your answers)2. What are the nursing considerations and effective strategies when assisting the client inmoving around as the client has unsteady gait? (list at least two nursing considerations and twoeffective strategies) Phyllis invested $11,000, a portion earning a simple interest rate of 2 1/2% per year and the rest earning a rate of 2% per year. After one year the total interest earned on these investments was $255.00. How much money did she invest at each rate? look at the diagram, which structure acts as a clamp to hold the mRNA in place?Answers1234please help to display your name and your schools name side by side and zone wise The _____ model was developed to allow designers to use a graphical tool to examine structures rather than describing them with text. a. hierarchical b. network who is vladislav kraevsky russian athletics How do benefits improve employee morale? a gallon of milk would be considered which type of consumer product?