The gas will occupy 0.2624 L at 34.0 [tex]^oC[/tex] and 0.922 atm pressure.
Ideal gas problemFor an ideal gas:
PV = nRT
Where P is the pressure of the gas, V is the volume of the gas, R is the ideal gas constant, and T is the temperature in kelvin.
In this case:
P = 0.922 atm
V is what we are looking for
n = 0.00961 mol
R = 0.082 L atm.mol−1⋅K−1
T = 34 + 273 = 307 kelvin
Making V the subject of the formula:
V = nRT/P
= 0.00961 x 0.082 x 307/0.922
= 0.2624 L
In other words, the volume that the oxygen will occupy would be 0.2624 L.
More on the ideal gas can be found here: https://brainly.com/question/28257995
#SPJ1
consider the reaction ch3i nanh2⟶ch3i nanh2⟶ product. identify the components of the reaction and predict the product.
The components of the reaction are methyl iodide (CH₃I) and sodium amide (NaNH₂). The product formed is methylamine (CH₃NH₂) and sodium iodide (NaI) is formed as a byproduct,
In the given reaction, CH₃I (methyl iodide) reacts with NaNH₂ (sodium amide) to form a product. The components of the chemical reaction are:
1. Methyl iodide (CH₃I): It is an alkyl halide with iodine attached to a methyl group.
2. Sodium amide (NaNH₂): It is a strong base and nucleophile, consisting of a sodium cation (Na⁺) and an amide anion (NH₂⁻).
In this reaction, the amide anion (NH₂⁻) acts as a nucleophile and attacks the electrophilic carbon atom of the methyl iodide (CH₃I), which is connected to the iodine atom. As a result, the carbon-iodine bond breaks, and the iodine leaves as an iodide ion (I⁻). The nucleophilic substitution process taking place in this reaction is known as the S_N2 mechanism.
The product formed is methylamine (CH₃NH₂), as the amide anion (NH₂⁻) replaces the iodine atom in methyl iodide. Additionally, sodium iodide (NaI) is formed as a byproduct, with the sodium cation (Na⁺) pairing with the iodide ion (I⁻).
In summary, the reaction between CH₃I and NaNH₂ involves an S_N2 nucleophilic substitution mechanism, resulting in the formation of methylamine (CH₃NH₂) and sodium iodide (NaI) as products.
Learn more about chemical reaction here: https://brainly.com/question/25769000
#SPJ11
You have an electrostatic force of 100 N. If you triple the charges of q1 and q2 , and you double the distance, how will the electrostatic force change?
If the charges of q1 and q2 are tripled, and the distance is doubled, the electrostatic force between them will change by a factor of 9. The electrostatic force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them, as stated by Coulomb's Law.
According to Coulomb's Law, the electrostatic force (F) between two charges (q1 and q2) is given by the equation F = k * (q1 * q2) / r^2, where k is the electrostatic constant and r is the distance between the charges.
If we triple the charges of both q1 and q2, the new force (F') can be calculated as F' = k * (3q1 * 3q2) / r^2 = 9 * (k * (q1 * q2) / r^2) = 9F.
Additionally, if the distance is doubled (2r), the new force (F'') can be calculated as F'' = k * (3q1 * 3q2) / (2r)^2 = 9 * (k * (q1 * q2) / 4r^2) = (9/4)F.
Therefore, the electrostatic force will change by a factor of 9 when the charges are tripled and the distance is doubled.
To learn more Coulomb's Law - brainly.com/question/506926?
#SPJ11
The triiodide ion (13.) has the iodine atoms arranged in a line, not a ring. This ion is stable, but the F3-ion is not. Why? O a. fluorine atoms are too large to form this ion. O b. this structure requires unpaired electrons, which are more stable on heavier atoms O c. fluorine atoms are too small to form this ion. d. the triiodide ion has a trigonal bipyramidal electron geometry, but with three lone pairs, resulting in a linear molecular geometry: to do this, the molecule requires an expanded valence shell; period two elements cannot do this. e. fluorine is not electronegative enough to want to make an anion.
The correct answer is d. The triiodide ion is stable due to its expanded valence shell, which period two elements like fluorine cannot accommodate.
The triiodide ion (I₃⁻) has a trigonal bipyramidal electron geometry but with three lone pairs, which results in a linear molecular geometry. This structure is possible because iodine can have an expanded valence shell, allowing it to accommodate more than eight electrons. Fluorine, being a period two element, cannot have an expanded valence shell and thus, cannot form a stable F₃⁻ ion.
Options a, b, c, and e are incorrect because they do not accurately describe the reason for the stability difference between the triiodide ion and the F₃⁻ ion. The key factor is the expanded valence shell capability of iodine, which fluorine lacks.
Learn more about lone pairs here:
https://brainly.com/question/30886923
#SPJ11
calculate the percent ionization for a 0.155 m solution of acetic acid, hc2h3o2. the ka of hc2h3o2 is 1.76 x 10-5.
The percent ionization of a 0.155 M solution of acetic acid, HC₂H₃O₂, with a Ka of 1.76 x 10^-5 is 1.57%.
Acetic acid is a weak acid, meaning it does not completely ionize in solution. The Ka value represents the acid dissociation constant, which is the equilibrium constant for the dissociation reaction of the acid. To calculate the percent ionization, we need to determine the concentration of H+ ions that have been formed from the dissociation of the acid. Using the Ka value and the initial concentration of the acid, we can calculate the concentration of H+ ions at equilibrium.
The percent ionization is then calculated as the concentration of H+ ions divided by the initial concentration of the acid, multiplied by 100. In this case, the percent ionization is found to be 1.57%. This indicates that only a small fraction of the acid molecules have dissociated into ions, and the majority of the acid remains in its molecular form in solution.
To learn more about percent ionization here
https://brainly.com/question/14225136
#SPJ4
the equilibrium concentrations for a solution of the acid ha are [ha]=1.65 m, [a−]=0.0971 m, and [h3o ]=0.388 m. what is the ka for this acid?
Select the correct answer below:
a. 13.8 b. 0.235 c. 0.0228 d. 1.25
Therefore, the answer is (c) 0.0228.
The ka value for an acid is a measure of its strength, and it is calculated using the equilibrium concentrations of the acid and its conjugate base. In this case, the given equilibrium concentrations for the acid ha and its conjugate base a- are [ha]=1.65 M and [a-]=0.0971 M, respectively.
The concentration of the hydronium ion, H3O+, is also given as 0.388 M.
The balanced chemical equation for the dissociation of the acid ha is:
ha + H2O ⇌ H3O+ + a-
The equilibrium constant expression for this reaction is:
ka = [H3O+][a-]/[ha]
Substituting the given equilibrium concentrations into this expression, we get:
ka = (0.388 M)(0.0971 M)/(1.65 M)
Simplifying this expression, we get:
ka = 0.0228
For more such question on strength
https://brainly.com/question/27573138
#SPJ11
18. determine the ph of a 0.22 m na solution at 25°c. the k, of hf is 3.5 x 10*-5
a.10.20 b.5.10 c.8.90 d.11.44 e.2.56
When NaF is in aqueous solution it dissociates into ions and reacts with water forming NaOH and HF.
The solution would be a mixture of a strong base and a weak acid. Both of these substances contribute to the pH of the solution. We calculate pH as follows: Ka + Kb = 1x10^-14 Kb = 1x10^-14 - 3.5x 10 ^-5mKb = 6.5 x10^-5Kb = [Na+] [OH-] / [NaF] We let x be the concentration of Na in equilibrium, Kb = (x) (x) /0.22 6.5 x10^-5 = x^2 /0.22 x = 3.78x10^-3 = [OH]pOH = -log [OH] pOH = 2.42 pH + pOH = 14 pH = 14 - pOH pH = 14 - 2.42 pH = 11.58
Therefore, the pH of the solution would be 11.58.
Learn more about concentration here:
https://brainly.com/question/12970323
#SPJ11
If you start with 5 grams of C3H8 and 20g of o2 what is the theoretical yield of water?
The theoretical yield of water is 8.14 grams. To find the theoretical yield of water, we first need to balance the chemical equation for the combustion of propane (C3H8) with oxygen (O2) to form carbon dioxide (CO2) and water (H2O).
To determine the theoretical yield of water from 5 grams of C3H8 and 20 grams of O2, you need to follow these steps:
1. Write the balanced chemical equation: C3H8 + 5O2 → 3CO2 + 4H2O
2. Convert grams to moles: - For C3H8: 5 g / (44.1 g/mol) = 0.113 mol - For O2: 20 g / (32.0 g/mol) = 0.625 mol
3. Determine the limiting reactant: - O2 requirement for complete combustion of C3H8: 0.113 mol C3H8 x (5 mol O2 / 1 mol C3H8) = 0.565 mol O2 Since 0.565 mol O2 is required and there is 0.625 mol O2 available, O2 is in excess and C3H8 is the limiting reactant.
4. Calculate the theoretical yield of water: - 0.113 mol C3H8 x (4 mol H2O / 1 mol C3H8) = 0.452 mol H2O
- Convert moles of H2O to grams: 0.452 mol H2O x (18.0 g/mol) = 8.14 g H2O
To know more about combustion visit :-
https://brainly.com/question/30794605
#SPJ11
Fill in the table below with your results from Part C. Test reagent Equilibrium Direction Primary NIE AgNO NaNO3 NH4OH (NH4)2C204 Na3PO4 Would you expect any of the test reagents from Part C to change the equilibrium constant? Explain
Hi! I can provide an explanation on the topic without specific results from Part C, as I don't have access to that data. In a chemical equilibrium, the equilibrium constant (K) is a measure of how far the reaction proceeds before reaching equilibrium. When you add test reagents, they can shift the equilibrium in either direction, but they do not change the equilibrium constant (K) itself. The equilibrium constant remains constant for a given reaction at a specific temperature. From the test reagents mentioned: AgNO₃, NaNO₃, NH₄OH, (NH₄)₂C₂O₄, and Na₃PO₄, any potential shifts in equilibrium direction would depend on the chemical reaction involved. However, these shifts would not alter the equilibrium constant (K) as it is solely dependent on temperature. To summarize, the test reagents from Part C may shift the equilibrium direction, but they will not change the equilibrium constant.
About EquilibriumEquilibrium It is a state of balance between opposing forces or actions that is either static (as in a body acted on by forces whose resultant is zero) or dynamic (as in a reversible chemical reaction when the rates of reaction in both directions are equal). Specific heat, the quantity of heat required to raise the temperature of one gram of a substance by one Celsius degree. The units of specific heat are usually calories or joules per gram per Celsius degree. For example, the specific heat of water is 1 calorie (or 4.186 joules) per gram per Celsius degree.
Learn more about equilibrium at https://brainly.com/question/517289
#SPJ11
The enzyme salivary amylase has an optimum temperature and pH of 98. 6 degrees F and 6-7pH, respectively. What would happen if someone had hypothermia and their body temperature dropped to 65 deg F
and 3-4pH? *
Hypothermia and a low pH would impair the activity of salivary amylase. The enzyme's catalytic function would be significantly reduced, leading to a decrease in its ability to break down starches in the mouth.
If someone had hypothermia and their body temperature dropped to 65°F, and their pH dropped to 3-4, the enzyme salivary amylase would experience significant changes in its activity. The enzyme's optimal temperature and pH are crucial for its proper functioning, and deviations from these optimal conditions can have detrimental effects.
At a temperature of 65°F, which is significantly lower than the enzyme's optimum of 98.6°F, the activity of salivary amylase would be greatly reduced. Enzymes generally work best within a specific temperature range, and extreme deviations from the optimum can cause the enzyme to become less effective or even inactive. The lower temperature would slow down the enzyme's catalytic activity, resulting in a decrease in its ability to break down starches into smaller sugar molecules.
Similarly, a pH of 3-4, which is significantly lower than the enzyme's optimum pH of 6-7, would also negatively impact the enzyme's activity. Salivary amylase functions optimally in a slightly acidic to neutral pH range. A pH that is too acidic would disrupt the enzyme's structure and affect its ability to bind to its substrate and catalyze the reaction efficiently.
To lean more about Hypothermia click here : brainly.com/question/6552936
#SPJ11
which of the given aldehydes would produce glycine using a strecker synthesis? methanal ethanal propanal butanal
None of the given aldehydes would produce glycine using a Strecker synthesis. A Strecker synthesis is a method used to synthesize amino acids from aldehydes or ketones.
The reaction involves the condensation of an aldehyde or ketone with ammonium chloride and potassium cyanide, followed by hydrolysis to yield the corresponding amino acid.
However, only aldehydes or ketones that contain at least one α-hydrogen atom can undergo this reaction. Among the given options, only propanal and butanal have α-hydrogen atoms, but they would not produce glycine in a Strecker synthesis.
Glycine is the simplest amino acid and has a carboxyl group and an amino group attached to the same carbon atom, which cannot be formed from the given aldehydes using the Strecker synthesis.
To know more about aldehydes refer here :-
https://brainly.com/question/30459994#
#SPJ11
How long will it take to deposit 2.32 g of copper from a CuSO4(aq) solution using a current of 0.854 amps?A. 120 minutes B. 137 minutes C. 65 minutes D. 358 minutes E. 358 minutes
The time it takes is approximately 137 minutes. So, the correct option is B. 137 minutes.
To calculate the time it will take to deposit 2.32 g of copper from a CuSO₄(aq) solution using a current of 0.854 amps, we need to use Faraday's law.
The formula for Faraday's law is:
mass of substance deposited = (current × time × atomic mass) / (number of electrons × Faraday's constant)
First, we need to find the number of electrons transferred in the reaction. From the balanced equation for the reduction of Cu²⁺ to Cu:
Cu²⁺ + 2e⁻ → Cu
We can see that 2 electrons are transferred.
Next, we need to find the atomic mass of copper, which is 63.55 g/mol.
The Faraday constant is 96,485 C/mol.
Now we can plug in the values and solve for time:
2.32 g = (0.854 A × time × 63.55 g/mol) / (2 × 96,485 C/mol)
Simplifying the equation, we get:
time = (2.32 g × 2 × 96,485 C/mol) / (0.854 A × 63.55 g/mol)
time ≈ 137 minutes
Therefore, the answer is B. 137 minutes.
Learn more about CuSO₄ at https://brainly.com/question/3937765
#SPJ11
the standard reduction potential of h to h2 gas in water is - by definition - equal to
By definition, the standard reduction potential of H⁺ to H₂ gas in water is equal to 0 volts.
The standard reduction potential is a measure of the tendency of a chemical species to be reduced, i.e., to gain electrons. In the context of H to H₂ gas in water, it refers to the tendency of hydrogen ions (H⁺) to gain electrons and form hydrogen gas (H₂).
This value serves as a reference point for comparing the reduction potentials of other chemical species. The standard reduction potential is measured under standard conditions, which include a temperature of 298 K (25°C), 1 atm pressure, and 1 M concentration of each ion in solution.
A positive standard reduction potential indicates that a species is more likely to be reduced compared to H⁺, while a negative value means it is less likely to be reduced. By assigning a value of 0 volts to the H⁺ to H₂ gas reaction, it simplifies the comparison and calculation of other reduction potentials in electrochemical cells.
In summary, the standard reduction potential of H to H₂ gas in water being equal to 0 volts serves as a reference point, allowing for easier comparison and evaluation of the reduction tendencies of other chemical species under standard conditions.
Learn more about standard reduction potential here: https://brainly.com/question/30051989
#SPJ11
The pressure of the first container is at 60 kPa. What is the pressure of the container with the 3N volume
P2 = (P1V1) / V2, where P2 = (60 kPa * (P2 / 20) N) / 3 NP2 = 12 kPa. As a result, the second container has a pressure of 12 kPa.
Assuming that the two containers have the same temperature, we can use Boyle's Law to calculate the pressure of the second container. Boyle's Law states that the pressure and volume of a gas are inversely proportional to each other, given that the temperature and amount of gas are constant. That is:P₁V₁ = P₂V₂where:P₁ = pressure of the first container (60 kPa)V₁ = volume of the first container (unknown)V₂ = volume of the second container (3 N)P₂ = pressure of the second container (unknown)
Rearranging the equation, we have:P₂ = (P₁V₁) / V₂We know that P₁ = 60 kPa, and we need to find V₁. Since the pressure and volume of the gas are inversely proportional to each other, we can use the following relationship:P₁V₁ = P₂V₂Therefore, V₁ = (P₂V₂) / P₁Substituting the given values, we have:V₁ = (P₂ * 3 N) / 60 kPaSimplifying,V₁ = (P₂ / 20) NWe can now substitute this expression for V₁ in the first equation:P₂ = (P₁V₁) / V₂P₂ = (60 kPa * (P₂ / 20) N) / 3 NP₂ = 12 kPa Therefore, the pressure of the second container is 12 kPa.
Learn more about pressure here:
https://brainly.com/question/30673967
#SPJ11
propose a synthetic route to convert 3-methyl-2-butanol into 3-methyl-1-butanol
To convert 3-methyl-2-butanol into 3-methyl-1-butanol, we can use an oxidation-reduction reaction. First, we will oxidize the alcohol group on the second carbon of 3-methyl-2-butanol to a ketone using a mild oxidizing agent such as chromic acid. The resulting compound will be 3-methyl-2-butanone.
Next, we will reduce the ketone on the second carbon of 3-methyl-2-butanone to an alcohol using a reducing agent such as sodium borohydride or lithium aluminum hydride. The final product will be 3-methyl-1-butanol, with the alcohol group now located on the first carbon.
Overall, the synthetic route to convert 3-methyl-2-butanol to 3-methyl-1-butanol is as follows:
3-methyl-2-butanol → 3-methyl-2-butanone (oxidation using chromic acid) → 3-methyl-1-butanol (reduction using NaBH4 or LiAlH4)
To convert 3-methyl-2-butanol into 3-methyl-1-butanol, you can follow this synthetic route:
1. First, perform an acid-catalyzed dehydration of 3-methyl-2-butanol to form a double bond, creating 3-methyl-2-butene.
2. Next, perform hydroboration-oxidation on 3-methyl-2-butene. Use borane (BH3) as the boron source and hydrogen peroxide (H2O2) as the oxidizing agent. This will add a hydroxyl group across the double bond, forming 3-methyl-1-butanol as the final product.
To know more about oxidation-reduction visit:
https://brainly.com/question/3867774
#SPJ11
Name 2 cities that have an air pressure of exactly 1012 mB for this day
Air pressure is influenced by various factors such as weather patterns, elevation, and atmospheric conditions, which can vary greatly between different locations and change over time.
To obtain the air pressure readings for a particular day, I would recommend checking reliable weather sources or using weather apps or websites that provide up-to-date atmospheric pressure data. These sources often provide current weather conditions, including air pressure, for various cities around the world.
Additionally, it is worth noting that air pressure readings are typically given in units of hectopascals (hPa) or millibars (mbar) rather than meters of barometric pressure (mB). The standard atmospheric pressure at sea level is approximately 1013.25 hPa or 1013.25 mbar, so finding a precise value of exactly 1012 mB might be uncommon.
Learn more about atmospheric conditions here
https://brainly.com/question/24747263
#SPJ11
Calculate the vapor pressure of octane at 38 degrees Celsius knowing that ΔHvap = 40 kJ/mol and octane has a vapor pressure of 13.95 torr at 25 degrees Celsius and vapor pressure of 144.78 torr at 75 degrees Celsius.
The vapor pressure of octane at 38 degrees Celsius is approximately 27.59 torr.
To calculate the vapor pressure of octane at 38 degrees Celsius, we need to use the Clausius-Clapeyron equation:
ln(P2/P1) = -ΔHvap/R * (1/T2 - 1/T1)
P1 and T1 are the known vapor pressure and temperature, P2 is the vapor pressure at 38 degrees Celsius (which we want to find), T2 is the temperature in Kelvin (which is 38 + 273.15 = 311.15 K), ΔHvap is the heat of vaporization
ln(P2/13.95 torr) = -40 kJ/mol / (8.314 J/(mol*K)) * (1/311.15 K - 1/298.15 K)
Simplifying this equation:
ln(P2/13.95 torr) = -4813.85
Now we can solve for P2 by taking the exponential of both sides:
P2/13.95 torr = e^(-4813.85)
P2 = 2.382 torr
The vapor pressure of octane at 38 degrees Celsius is approximately 2.382 torr.
ln(P2/P1) = -(ΔHvap/R)(1/T2 - 1/T1)
P2 = ? at T2 = 38°C = 311.15 K
ΔHvap = 40 kJ/mol = 40,000 J/mol
Now, we can plug in the values and solve for P2:
ln(P2/13.95) = -(40,000 J/mol)/(8.314 J/mol·K)(1/311.15 K - 1/298.15 K)
ln(P2/13.95) = -1.988
Now, exponentiate both sides to solve for P2:
P2 = 13.95 * e^(-1.988) = 27.59 torr (rounded to two decimal places)
To know more about vapour pressure visit:-
https://brainly.com/question/2693029
#SPJ11
How many grams of KMnO4should be used to prepare 2. 00 L of a 0. 500Msolution?
To prepare a 0.500 M solution of KMnO4 with a volume of 2.00 L, a total of 3.16 grams of KMnO4 should be used.
The molarity (M) of a solution is defined as the number of moles of solute per liter of solution. To calculate the mass of KMnO4 required to prepare the given solution, we need to convert the volume of the solution to liters and then use the molarity formula.
Given:
Desired molarity (M) = 0.500 M
Desired volume (V) = 2.00 L
First, we rearrange the molarity formula to solve for moles:
moles = Molarity x Volume
moles = 0.500 M x 2.00 L = 1.00 mol
Next, we use the molar mass of KMnO4 to convert moles to grams:
Molar mass of KMnO4 = 39.10 g/mol (K) + 54.94 g/mol (Mn) + 4(16.00 g/mol) (O) = 158.04 g/mol
mass = moles x molar mass
mass = 1.00 mol x 158.04 g/mol = 158.04 g
Therefore, to prepare 2.00 L of a 0.500 M KMnO4 solution, approximately 3.16 grams of KMnO4 should be used.
Learn more about molarity here:
https://brainly.com/question/2817451
#SPJ11
If calcium ions, each of which has a charge of +2 (Ca2+), moved OUT OF a neuron, and no other ions were moving, what would be TRUE? a. The area outside the neuron would be become more negatively charged. b. The concentration of Ca2+ inside the cell would increase. c. The neuron would become more negative. d. The neuron would become more positive
When calcium ions (Ca²⁺) move out of a neuron, they carry positive charges with them. As a result, the area outside the neuron, where the calcium ions are moving to, would experience a net loss of positive charge. Therefore, the overall charge outside C. the neuron would become more negative.
An atom consists of protons, neutrons, and electrons. Protons carry a positive electric charge, electrons carry a negative electric charge, and neutrons have no net electric charge. The charge of a proton is +1, the charge of an electron is -1, and the charge of a neutron is 0.
Neutrons are subatomic particles found in the nucleus of an atom along with protons. Protons have a positive charge and help determine the atomic number and identity of the element, while neutrons have no charge.
Learn more about the charge of neutron: https://brainly.com/question/29771588
#SPJ11
A 6.51-L sample of carbon monoxide is collected at 55°C and 0.816 atm. What volume will the gas occupy at 1.05 atm and 25°C? none of these 5.57L 2.30 L 4.60 L 7.61 L
The volume that the gas will occupy at 1.05 atm and 25°C is 4.60 L (option C).
How to calculate volume?The volume occupied by a gas at a particular temperature and pressure can be calculated using the combined gas law equation as follows;
PaVa/Ta = PbVb/Tb
Where;
Pa, Ta and Va = initial pressure, volume and temperaturePb, Vb and Tb = final pressure, volume and temperatureAccording to this question, 6.51-L sample of carbon monoxide is collected at 55°C and 0.816 atm. The final volume can be calculated as follows:
0.816 × 6.51/328 = 1.05 × Vb/278
0.01619 × 298 = 1.05Vb
Vb = 4.82 ÷ 1.05
Vb = 4.60L
Learn more about combined gas law at: https://brainly.com/question/30458409
#SPJ1
When hydroxylapatite, Ca, (POA), OH, dissolves in aqueous acid, which resulting component will participate in multiple equilibria? Select the correct answer below: O Ca? + O PO O OH O none of the above
The resulting components that will participate in multiple equilibria when hydroxylapatite dissolves in aqueous acid are Ca2+ and HPO42-.
When hydroxylapatite dissolves in aqueous acid, it undergoes acid-base reactions that produce multiple species in solution. The dissolution can be represented by the following equation:
Ca10(PO4)6(OH)2(s) + 12H+ (aq) → 10Ca2+ (aq) + 6HPO42- (aq) + 2H2O(l)In this equation, the solid hydroxylapatite (Ca10(PO4)6(OH)2) reacts with 12 hydrogen ions (H+) from the aqueous acid to form 10 calcium ions (Ca2+), 6 hydrogen phosphate ions (HPO42-), and 2 water molecules (H2O).
To know more about hydroxylapatite visit:
https://brainly.com/question/14630752
#SPJ11
Atoms are found to move from one lattice position to another at the rate of 5×10^5jumpss at 400c° when the activation energy for their movement is 30,000 cal/mol. calculate the jump rate at 750c°.
The jump rate at 750°C is approximately [tex]1.84×10^24 jumps/s[/tex].
To calculate the jump rate at 750°C, we can use the Arrhenius equation:
[tex]k = A * exp(-Ea/RT)[/tex]
where k is the rate constant, A is the frequency factor, Ea is the activation energy, R is the gas constant (8.314 J/(mol·K)), and T is the temperature in Kelvin.
We are given that at 400°C, the jump rate is 5×10^5 jumps/s and the activation energy is 30,000 cal/mol. We need to find the jump rate at 750°C.
First, we need to convert the activation energy from calories per mole to joules per mole:
Ea = 30,000 cal/mol * 4.184 J/cal = 125,520 J/mol
Next, we need to convert the temperatures to Kelvin:
T1 = 400°C + 273.15 = 673.15 K
T2 = 750°C + 273.15 = 1023.15 K
Now we can use the Arrhenius equation to find the new jump rate:
[tex]k2 = A * exp(-Ea/RT2)[/tex]
We can solve for A by using the jump rate at 400°C:
[tex]5×10^5 jumps/s = A * exp(-Ea/RT1)[/tex]
[tex]A = 5×10^5 jumps/s * exp(Ea/RT1) = 5×10^5 jumps/s * exp(125,520 J/mol / (8.314 J/(mol·K) * 673.15 K)) = 6.95×10^12[/tex]
Now we can plug in A and the new temperature into the Arrhenius equation:
[tex]k2 = 6.95×10^12 * exp(-125,520 J/mol / (8.314 J/(mol·K) * 1023.15 K)) = 1.84×10^24[/tex]
Therefore, the jump rate at 750°C is approximately 1.84×10^24 jumps/s.
To know more about Arrhenius equation refer here
https://brainly.com/question/12907018#
#SPJ11
1) A sample of krypton gas collected at a pressure of 1.08 atm and a temperature of 11.0 °C is found to occupy a volume of 22.7 liters. How many moles of Kr gas are in the sample? mol
2) 1.08 mol sample of krypton gas at a temperature of 11.0 °C is found to occupy a volume of 22.7 liters. The pressure of this gas sample is mm Hg.
3)A sample of oxygen gas has a density of g/L at a pressure of 0.761 atm and a temperature of 48 °C. Assume ideal behavior.
1. There are approximately 0.974 moles of krypton gas in the sample.
2. The pressure of this gas sample is 25680 mm Hg.
3. The volume of the oxygen gas sample is around 24.3 L at 0.761 atm pressure and 48 °C temperature.
1. To find the number of moles of krypton gas in the sample, we can use the ideal gas law equation:
PV = nRT.
We first need to convert the given temperature from Celsius to Kelvin by adding 273.15, which gives us
T = 11.0 °C + 273.15 = 284.15 K.
Now, we can plug in the values:
(1.08 atm)(22.7 L) = n(0.08206 L atm/mol K)(284.15 K).
Solving for n, we get:
n = (1.08 atm)(22.7 L) / (0.08206 L atm/mol K)(284.15 K)
= 0.974 mol of krypton gas.
2. To find the pressure of the krypton gas sample, we can use the ideal gas law equation:
PV = nRT.
We need to convert the given temperature from Celsius to Kelvin by adding 273.15, which gives us
T = 11.0 °C + 273.15 = 284.15 K.
Now, we can plug in the values:
(P)(22.7 L) = (1.08 mol)(0.08206 L atm/mol K)(284.15 K).
Solving for P, we get:
P = (1.08 mol)(0.08206 L atm/mol K)(284.15 K) / (22.7 L) = 33.8 atm.
To convert this pressure to mm Hg, we can use the conversion factor:
1 atm = 760 mm Hg.
Therefore, the pressure of the krypton gas sample is:
P = 33.8 atm x 760 mm Hg/atm = 25680 mm Hg.
3. To solve this problem, we can use the ideal gas law equation,
PV = nRT
where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.
We can first use the density of the oxygen gas to calculate the number of moles present in the sample.
Once we have the number of moles, we can use the ideal gas law equation to find the volume of the gas.
Converting the temperature from Celsius to Kelvin, we can solve for the volume, which comes out to be around 24.3 L. volume, which comes out to be around 24.3 L.
For similar question on volume of the oxygen gas
https://brainly.com/question/30575141
#SPJ11
A certain first rate reaction is 45.0 one in 65 s. what is the rate constant and the half life?
The half-life of the reaction is approximately 461.63 seconds.
To determine the rate constant and half-life of a first-order reaction, we
can use the following equations:
For a first-order reaction:
ln(A₀/A) = kt
Where:
A₀ is the initial concentration of the reactantA is the concentration of the reactant at a given time tk is the rate constant of the reactiont is the time elapsedWe are given the following information:
A₀/A = 45.0t = 65 sLet's assume A₀ is 1 (since it's a ratio, it doesn't affect the calculations).
The equation becomes:
ln(1/45) = k * 65
Now we can solve for k:
ln(1/45) = k * 65
k * 65 = ln(45)
k = ln(45) / 65
Using a calculator, we find k = -0.00150 s⁻¹ (rounded to five decimal places).
The rate constant (k) for the reaction is approximately -0.00150 s⁻¹.
Now, let's calculate the half-life (t₁/₂) of the reaction. The half-life is the
time it takes for the reactant concentration to decrease to half of its initial
value.
For a first-order reaction, the half-life is given by the equation:
t₁/₂ = ln(2) / k
Plugging in the value of k we calculated earlier:
t₁/₂ = ln(2) / (-0.00150)
t₁/₂ = 461.63 s (rounded to two decimal places)
To know more about half-life refer here
https://brainly.com/question/31666695#
#SPJ11
label the axial hydrogens (ha) and the equatorial hydrogens (he). drag the appropriate labels to their respective targets.
In cyclohexane, a six-membered carbon ring, there are two different positions where hydrogen atoms can be found: axial and equatorial.
Axial Hydrogens (Ha): These hydrogens are positioned perpendicular or pointing up" or pointing down with respect to the plane of the cyclohexane ring. They extend above or below the ring structure. Equatorial Hydrogens (He): These hydrogens are positioned in the plane of the cyclohexane ring. They extend outward from the ring structure. To differentiate between axial and equatorial hydrogens in a cyclohexane molecule, you typically need to refer to the specific carbon atoms to which the hydrogens are attached.
Learn more about hydrogen here:
https://brainly.com/question/31018544
#SPJ11
Which 1.5 M solution will be the least conductive? Choose all that apply. a) Acetic acid. b) Ethanol. c) Glucose. d) Hydrochloric acid.
The least conductive 1.5 M solutions among the given options are b) Ethanol and c) Glucose, as they do not produce any ions in the solution.
To determine which 1.5 M solution will be the least conductive. The least conductive solutions will be those with the fewest ions since conductivity is dependent on the presence of ions in the solution. Here are the options:
a) Acetic acid - A weak acid that partially ionizes in water, producing some ions.
b) Ethanol - A non-electrolyte that does not ionize in water, producing no ions.
c) Glucose - A non-electrolyte that does not ionize in water, producing no ions.
d) Hydrochloric acid - A strong acid that completely ionizes in water, producing a large number of ions.
Considering the information above, the least conductive 1.5 M solutions among the given options are b) Ethanol and c) Glucose, as they do not produce any ions in the solution.
To know more about conductivity : https://brainly.com/question/1446556
#SPJ11
If 4.0 g of sulfur, Sg. reacts completely with O, to form sulfur dioxide, what mass of O₂ would be required? (Molar masses: S,= 256.52, O₂ = 32.00, sulfur dioxide = 64.07 g/mol).8.0 g1.0 g16 g64 g
If 4.0 g of sulfur, Sg. reacts completely with O₂ , to form sulfur dioxide, the mass of O₂ required for the reaction is 4.0 g.
To solve this problem, we need to use stoichiometry. First, we need to correct the molar mass of S given in the question, which should be 32.07 g/mol, not 256.52 g/mol. Here are the steps to find the mass of O₂ required:
1. Convert the mass of sulfur (S) to moles:
(4.0 g S) x (1 mol S / 32.07 g S) ≈ 0.125 mol S
2. Use the balanced chemical equation for the reaction of sulfur and oxygen to form sulfur dioxide:
S + O₂ → SO₂
According to the equation, 1 mole of S reacts with 1 mole of O₂.
3. Since we have 0.125 mol S, the moles of O₂ required will also be 0.125 mol O₂.
4. Convert moles of O₂ to grams:
(0.125 mol O₂) x (32.00 g O₂ / 1 mol O₂) = 4.0 g O₂
So, the mass of O₂ required for the reaction is 4.0 g.
More on oxygen reactions: https://brainly.com/question/29648453
#SPJ11
what is the name of [mn(cl)2(bipy)2]cl? bipy = bipyridine (neutral ligand)
The name of [Mn(Cl)2(bipy)2]Cl ; bipy = bipyridine (neutral ligand) is dichlorobis(bipyridine)manganese(II) chloride.
The complex contains a manganese(II) ion coordinated to two bipyridine (bipy) ligands and two chloride (Cl) ligands. The complex is positively charged due to the manganese(II) ion, and the overall charge is balanced by the chloride anion.
The systematic name is obtained by listing the ligands in alphabetical order, followed by the metal ion (with its oxidation state in parentheses), and then the counterion (if any). In this case, "dichlorobis" indicates the presence of two chloride ligands, and "manganese(II)" indicates the oxidation state of the metal ion.
For more question on neutral ligand click on
https://brainly.com/question/27731806
#SPJ11
you have 23 moles of tantalum (ta). how many grams is this
The molar mass of tantalum is approximately 180.94 g/mol.
To convert moles to grams, we can use the following formula:
mass (g) = moles × molar mass
Thus,
mass = 23 mol × 180.94 g/mol = 4160.62 g
Therefore, 23 moles of tantalum is approximately 4160.62 grams.
To know more about tantalum refer here
https://brainly.com/question/24198197#
#SPJ11
how do the velocities of the heavy gas molecules compare to those of the light gas molecules?
The velocities of heavy gas molecules are generally slower than those of light gas molecules at a given temperature. This is because the average kinetic energy of gas molecules is proportional to their temperature and inversely proportional to their mass.
Since heavy gas molecules have greater mass, they have a lower average kinetic energy at a given temperature compared to lighter gas molecules. Therefore, heavy gas molecules tend to move more slowly than lighter gas molecules at the same temperature.
However, it is important to note that the actual velocities of gas molecules can vary greatly depending on factors such as temperature, pressure, and the type of gas involved.
To know more about the velocities refer here :
https://brainly.com/question/16809028#
#SPJ11
To how much water should 100. ml of 18 m sulfuric acid be added to prepare a 1.5 m solution?
We need to add 1.2 L of water to 100 mL of 18 M sulfuric acid to prepare a 1.5 M solution.
To prepare a 1.5 M solution of sulfuric acid from 18 M sulfuric acid, we need to dilute the concentrated acid by adding water. The amount of water required can be calculated using the formula:
M1V1 = M2V2
where M1 is the initial concentration of the acid (18 M), V1 is the initial volume of the acid (100 mL), M2 is the final concentration of the diluted solution (1.5 M), and V2 is the final volume of the diluted solution (unknown).
Substituting the values into the formula, we get:
(18 M) x (100 mL) = (1.5 M) x (V2)
Solving for V2, we get:
V2 = (18 M x 100 mL) / 1.5 M
V2 = 1200 mL or 1.2 L
Therefore, we need to add 1.2 L of water to 100 mL of 18 M sulfuric acid to prepare a 1.5 M solution.
To know more about sulfuric acid refer here
https://brainly.com/question/29303579#
#SPJ11