The total pressure of the gases in the container is 1.000 atm at RTP.
To calculate the total pressure of the gases in the container, we need to use the ideal gas law, which states:
PV = nRT
where P is the pressure of the gas, V is the volume of the container, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature in Kelvin.
At RTP (standard temperature and pressure), the temperature is 273 K and the pressure is 1 atm. The volume of the container is not given, but since it is rigid, we can assume it is constant.
To find the total pressure, we need to first calculate the partial pressures of each gas using the mole fraction of each gas. The mole fraction is the fraction of the total moles of gas that are made up of each gas.
Let's assume that we have 100 moles of gas in the container. Then, we have:
20.0 moles of helium (20.0% of 100 moles)
20.0 moles of neon (20.0% of 100 moles)
60.0 moles of argon (60.0% of 100 moles)
The total moles of gas is then:
n = 20.0 moles + 20.0 moles + 60.0 moles = 100 moles
The mole fraction of helium is:
X(He) = n(He) / n = 20.0 moles / 100 moles = 0.200
The mole fraction of neon is:
X(Ne) = n(Ne) / n = 20.0 moles / 100 moles = 0.200
The mole fraction of argon is:
X(Ar) = n(Ar) / n = 60.0 moles / 100 moles = 0.600
The partial pressure of helium is:
P(He) = X(He) * P(total) = 0.200 * 1 atm = 0.200 atm
The partial pressure of neon is:
P(Ne) = X(Ne) * P(total) = 0.200 * 1 atm = 0.200 atm
The partial pressure of argon is:
P(Ar) = X(Ar) * P(total) = 0.600 * 1 atm = 0.600 atm
The total pressure is the sum of the partial pressures:
P(total) = P(He) + P(Ne) + P(Ar) = 0.200 atm + 0.200 atm + 0.600 atm = 1.000 atm
For more question on pressure click on
https://brainly.com/question/24719118
#SPJ11
Write the chemical formula for this molecule from the picture.
I understand there are 4 Hydrogens
2 Carbons, and 1 Sulfur, but I have no clue how to format it
Answer:
[tex]C_{2}H_{2}S[/tex]
27. Which is true about scientific theories? (2 points)
They are the result of a single experiment.
They are the results of many experiments over a long period of time.
O They are proposed by scientists who wish to investigate a new topic.
They are only based on the most recent evidence.
Answer:
hey are the results of many experiments over a long period of time.
Explanation:
I need help with this please fast
4) The volume of the HCl used is 9.500 mL while the volume of the NaOH used is 3.800 mL.
5) Molarity of sodium hydroxide is obtained from; Molarity of HCl * 1/2
What is titration?By reacting an unknown component with a known quantity of a different chemical known as a titrant, titration is a laboratory procedure used to measure the concentration of an unknown substance, often a solute dissolved in a liquid.
The endpoint of a titration can be detected in a number of ways, depending on the specific titration being performed.
4)
Volume of the Acid used = Initial reading - Final reading = 25.00 - 15.50 = 9.500 mL
Volume of the base used = 8.80 - 5.00 = 3.800 mL
5)
We know that the mole ratio is 1:2 and the implication of this is that the set up to obtain the molarity of the sodium hydroxide solution is Molarity of HCl * 1/2
Learn more about titration:https://brainly.com/question/31271061
#SPJ1
Imagine that the earth's axis of rotation changed so that the same spot (red circle) received the same amount of light in the winter and in the summer. What effect might that change have on the temperature in that spot?
Answer: the temperature would increase
Explanation:
because if one spot on the earth got the same amount of light through the summer and winter it would have a severe amount of drought and nothing to cool it down since all off it evaperated
Which sample uses the substance(s) that Jacob and Natalie
should use to make a cold pack that will do the BEST job of
keeping food cool
The sample that uses the substance that Jacob and Natalie should use to make a cold pack that will do the best job of keeping food cool is sample 2, because it absorbs the most energy (option B).
What is endothermic process?Endothermic refers to a chemical reaction that absorbs heat energy from its surroundings. This ensures that the temperature of the surroundings is cool or has a lower temperature.
According to this question, Jacob and Natalie are asked by their science teacher to design a warming or cooling device. They make use of certain substances, however, sample 2 has the lowest final temperature of -4°C.
This shows that sample 2 absorbs the most energy, hence, would be the best for keeping the food cool.
The incomplete question is as follows:
Jacob and Natalie are asked by their science teacher to design a warming or cooling device. They decide to design a cold pack that can be used to help keep food cool. Jacob and Natalie read about different substances that can be used inside cold packs and learn that most cold packs use endothermic reactions to cool objects.
Learn more about endothermic at: https://brainly.com/question/28909381
#SPJ1
Which of the following statements regarding the skeletal structure of the organic molecule shown
below is/are true?
K
2
3
H
H
I. A sp² hybrid orbital on C-1 overlaps with a sp hybrid orbital on C-2 to form the sigma
bond between
C-1 and C-2.
II. The bonds between C-2 and C-3 are formed from overlap of sp hybrid orbitals.
III. There are 10 sigma bonds in this molecule.
IV. The bond angle about C-2 is 109.5⁰.
V. The lone pair on the nitrogen atom is in a sp² orbital.
A sp² hybrid orbital on C-1 overlaps with a sp hybrid orbital on C-2 to form the sigma bond between C-1 and C-2. This statement regarding the skeletal structure of the organic molecule true. The correct option is option A.
In general, molecules containing carbon (C) are referred to as organic compounds. Carbon atoms serve as the primary structural framework for the enormous diversity of naturally occurring compounds. Organic substances play a critical role in the existence of all life forms on Earth (and perhaps elsewhere in the universe). A sp² hybrid orbital on C-1 overlaps with a sp hybrid orbital on C-2 to form the sigma bond between C-1 and C-2.
Therefore, the correct option is option A.
To know more about organic molecule, here:
https://brainly.com/question/10504103
#SPJ1
5. An alcoholic drink containing 216.0 g of H2O and 9.2 g of ethanol (C2H5OH) is bottled by adding CO2. If the mole fraction of water is 0.9 what approximate mass of CO2 is dissolved in it?
The approximate mass of CO2 dissolved in the alcoholic drink is 832.5 grams.
To calculate the approximate mass of CO2 dissolved in the alcoholic drink, we need to consider the mole fraction of water and the composition of the solution.First, let's determine the number of moles of water and ethanol in the solution:
Molar mass of H2O = 18.02 g/mol
Number of moles of H2O = mass of H2O / molar mass of H2O = 216.0 g / 18.02 g/mol = 11.994 mol
Molar mass of C2H5OH = 46.07 g/mol
Number of moles of C2H5OH = mass of C2H5OH / molar mass of C2H5OH = 9.2 g / 46.07 g/mol = 0.1998 mol
Next, we can calculate the mole fraction of ethanol:
Mole fraction of ethanol = (moles of C2H5OH) / (moles of H2O + moles of C2H5OH) = 0.1998 mol / (11.994 mol + 0.1998 mol) = 0.0164
Since the mole fraction of water is given as 0.9, we can calculate the mole fraction of CO2:
Mole fraction of CO2 = 1 - (mole fraction of water + mole fraction of ethanol) = 1 - (0.9 + 0.0164) = 0.0836
Now, we need to determine the mass of CO2 dissolved in the solution. Assuming ideal behavior, we can use Raoult's law to calculate the approximate mass of CO2:
Mass of CO2 = (mole fraction of CO2) * (molar mass of CO2) * (total mass of the solution)
= 0.0836 * 44.01 g/mol * (216.0 g + 9.2 g)
= 0.0836 * 44.01 g/mol * 225.2 g
≈ 832.5 g
for such more questions on mass
https://brainly.com/question/24191825
#SPJ8
an isomer of C3H7O undergoes one step oxidation reaction. Answer the following questions due to this reaction.
a) Write a full symbol equation for this reaction b) Name the proper reagent and catalyst for this reaction.
c) Why do you think there is no need to remove the product from the reaction vessel?
The specific equation depends on the isomer and the oxidizing agent used. An example of a general oxidation reaction could be:
C₃H₇OH + [O] → C₃H₆O + H₂O
Common oxidizing agents for organic compounds include potassium permanganate (KMnO₄), potassium dichromate (K₂Cr₂O₇), or hydrogen peroxide (H₂O₂).
Whether or not the product needs to be removed from the reaction vessel depends on the specific reaction and its desired outcome. In some cases, the product may be of interest for further reactions or analysis, and therefore, it would be retained in the reaction vessel.
Learn more about oxidation, here:
https://brainly.com/question/16976470
#SPJ1
chemical reaction for copper carbonate
Answer:
copper cu++
carbonate co3--
reaction=cuco3
What masses of potassium chloride and water are needed to make 300. g of 8.50% KCl solution?
We need 25.5 g of KCl and 274.5 g of water to make 300. g of 8.50% KCl solution.
To find the masses of potassium chloride (KCl) and water needed, we need to use the concentration of the solution and the total mass of the solution.
We need to find the mass of KCl in the solution. We know that the solution is 8.50% KCl by mass, so:
mass of KCl = 8.50% x 300. g = 25.5 g
We can find the mass of water in the solution by subtracting the mass of KCl from the total mass of the solution:
mass of water = 300. g - 25.5 g = 274.5 g
To create 300 g of 8.50% KCl solution, we need 25.5 g of KCl and 274.5 g of water.
To know more about the Solution, here
https://brainly.com/question/4131881
#SPJ1
What Is the ph of a solution where [h30+]3.5*10-3=
The pH of the solution with a [H₃O⁺] concentration of 3.5 * 10^(-3) mol/L is approximately 2.456.
To determine the pH of a solution based on the concentration of H₃O⁺, you can use the equation:
pH = -log[H₃O⁺]
Given that [H₃O⁺] = 3.5 * 10^(-3) mol/L, we can substitute this value into the equation:
pH = -log(3.5 * 10^(-3))
To evaluate this using a calculator or math software:
pH ≈ -log(3.5 * 10^(-3)) ≈ -(-2.456) ≈ 2.456
For more question on pH click on
https://brainly.com/question/172153
#SPJ11
Draw the orbital Diagram
The orbital diagram of the compound has been shown in the image attached.
What is the orbital diagram of a molecule?
The configuration of the molecular orbitals (MOs) within a molecule is shown in an orbital diagram of the molecule. Atomic orbitals from different molecules' individual atoms overlap to create molecular orbitals. According to the rules of quantum physics, electrons can fill these molecular orbitals.
Each chemical orbital is depicted in an orbital diagram by a line or a box, and the electrons are shown as arrows. The arrow's direction—upward for "spin up" and downward for "spin down"—indicates the spin of the electron.
Learn more about orbital diagram:https://brainly.com/question/14487703
#SPJ1
The following are electronic configurations of five elements. A= 2,8,2 B= 2,8,6 C= 2,8,8 D= 2,8,7 E= 2,8,3 (a) Which element is unlikely to react with the others? (b) Which elements will react to form covalent compounds? (c) Which elements will react to form ionic solids? Give the common valency of the elements when they form ionic solids. Which of these bonds is the weakest: ionic bond; covalent bond; hydrogen bond?
(a) Element C (2,8,8) is unlikely to react with the others.
(b) Elements D (2,8,7) and E (2,8,3) will likely react to form covalent compounds.
(c) Elements A (2,8,2) and B (2,8,6) will likely react to form ionic solids.
(a) It has a complete outer electron shell (valence shell) with eight electrons, fulfilling the octet rule. This stable configuration makes element C less likely to undergo chemical reactions and form compounds.
(b) Covalent compounds involve the sharing of electrons between atoms, typically nonmetals. Both D and E have incomplete outer electron shells and can form covalent bonds by sharing electrons with other elements.
(c) Ionic compounds involve the transfer of electrons from one atom to another, typically between metals and nonmetals. When A and B form ionic solids, they will achieve a stable electron configuration by losing or gaining electrons, respectively.
Element A would lose two electrons to achieve a stable configuration, resulting in a valency of +2. Element B would gain two electrons, resulting in a valency of -2.
The weakest bond among ionic, covalent, and hydrogen bonds is the hydrogen bond. Hydrogen bonds are relatively weaker than ionic and covalent bonds. They occur when a hydrogen atom with a partial positive charge interacts with an electronegative atom, such as oxygen or nitrogen, with a partial negative charge.
Hydrogen bonds are important in various biological and chemical processes, but they are weaker compared to the strong bonds formed in ionic and covalent compounds.
For more such questions on covalent compounds.
https://brainly.com/question/27389028
#SPJ11
An aqueous solution of ________ will produce a basic solution.
NaClO4
Na2SO3
NaNO3
LiBr
NH4I
Answer:
Explanation:
NH4I NH4 is ammonium thus a base. All other bases end with OH except ammonia which is NH3
The relative formula masses (Mr) are: CaCo3 = 100; CaO =56 ; Co2=44
describe how this experiment could be used to provide evidence for the law of conservation of mass.
[6 marks]
include your answer:
-method
-which measurements should eb taken
-how the student could show evidence for the conservation for mass
The law of conservation of mass states that in a chemical reaction, the total mass of the reactants is equal to the total mass of the products. An experiment involving the thermal decomposition of calcium carbonate ([tex]CaCO_3[/tex]) can provide evidence for this law.
Method:
A sample of calcium carbonate is heated strongly in a crucible or test tube, causing it to decompose into calcium oxide (CaO) and carbon dioxide ([tex]CO_2[/tex]) gases. The reaction can be represented by the following chemical equation:
[tex]CaCO_3(s) = CaO(s) + CO_2(g)[/tex]
Measurements:
The mass of the empty crucible or test tube is first measured and recorded. A known mass of calcium carbonate is added to the crucible or test tube, and the combined mass is measured and recorded. The crucible or test tube containing the calcium carbonate is then heated strongly, and the mass of the products (calcium oxide and carbon dioxide) is measured and recorded.
Evidence for conservation of mass:
If the law of conservation of mass is true, the total mass of the products should be equal to the total mass of the reactants. In this experiment, the mass of the calcium oxide and carbon dioxide produced should add up to the mass of the calcium carbonate that was originally used.
To show evidence for the conservation of mass, the student could calculate the mass of the products by subtracting the mass of the empty crucible or test tube and the mass of the remaining calcium oxide (if any) from the combined mass of the crucible or test tube and the calcium carbonate.
If the calculated mass of the products is equal to the mass of the reactants, then the law of conservation of mass has been demonstrated.
For more question on click on
https://brainly.com/question/24783543
#SPJ11
How are alleles and traits related?
A. Traits are segments of DNA that code for alleles, which are the
observable characteristics in an organism.
B. Alleles are the inherited characteristics that are seen through
different gene combinations.
C. Traits are characteristics inherited from parents, while alleles are
caused by the environment.
O D. Alleles are distinct versions of genes, and they code for traits,
which are distinct forms of characteristics.
Alleles and traits related as D. Alleles are distinct versions of genes, and they code for traits, which are distinct forms of characteristics.
Alleles and traits are closely related in terms of genetics and inheritance. Alleles are alternative forms of a gene that occupy the same locus on a chromosome. They represent different variations of a specific gene. Traits, on the other hand, are the observable characteristics or features of an organism that are determined by the combination of alleles.
Each individual inherits two alleles for a particular gene, one from each parent. These alleles can be the same (homozygous) or different (heterozygous). The combination of alleles determines the expression of traits in an organism. For example, in the case of eye color, the gene may have alleles for blue and brown eye color. An individual may inherit two blue alleles (homozygous), resulting in the trait of blue eyes, or they may inherit one blue and one brown allele (heterozygous), resulting in the trait of brown eyes. In summary, alleles are distinct versions of genes, and they code for the different variations of traits or characteristics that are observed in organisms. The correct answer is D. Alleles are distinct versions of genes, and they code for traits, which are distinct forms of characteristics.
for more questions on Alleles
https://brainly.com/question/16684263
#SPJ11
1. Show a correct numerical setup for calculating the molarity of the sodium hydroxide solution.
2. Determine both the total volume of HCl(aq) and the total volume of NaOH(aq) used in the titration.
To calculate the molarity of the sodium hydroxide (NaOH) solution, we need to perform a titration with a standardized solution of hydrochloric acid (HCl). Here is the numerical setup for calculating the molarity of the NaOH solution:
Measure the volume of the HCl solution used in the titration. Let's say you used 25.0 mL of 0.100 M HCl.
Calculate the number of moles of HCl used in the titration: moles of HCl = M x V = 0.100 mol/L x 0.0250 L = 0.00250 mol.
Use the balanced chemical equation for the reaction between HCl and NaOH to determine the number of moles of NaOH that reacted with the HCl. The balanced chemical equation is:
HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)
Since the stoichiometry of the reaction is 1:1 between HCl and NaOH, the number of moles of NaOH that reacted is also 0.00250 mol.
4. Determine the volume of NaOH used in the titration. Let's say you used 30.0 mL of NaOH solution.
Calculate the molarity of the NaOH solution: Molarity of NaOH = moles of NaOH / volume of NaOH solution (in L) = 0.00250 mol / 0.0300 L = 0.0833 mol/L.
To determine the total volume of HCl(aq) and NaOH(aq) used in the titration, simply add together the volumes of HCl and NaOH that were used. In this example, the total volume would be 25.0 mL + 30.0 mL = 55.0 mL.
Learn more about titration, here;
https://brainly.com/question/31271061
#SPJ1
Name a liquid substance that could be used in the laboratory for dissolving dry mortar on floor tiles
One liquid substance that could be used in the laboratory for dissolving dry mortar on floor tiles is hydrochloric acid (HCl). Hydrochloric acid is a strong acid commonly used in laboratories for various purposes, including cleaning and dissolving mineral deposits.
When dry mortar, which is primarily composed of cement, hardens on floor tiles, it can be challenging to remove using traditional cleaning methods. However, hydrochloric acid can effectively dissolve and break down the cementitious components of the mortar.
It is important to note that when using hydrochloric acid, proper safety precautions should be followed, such as wearing protective gloves, goggles, and working in a well-ventilated area.
Additionally, it is crucial to dilute the hydrochloric acid to an appropriate concentration for the specific task, as using it undiluted can cause damage to the tiles or other surfaces.
For more such questions on laboratory
https://brainly.com/question/29455421
#SPJ11
LHow many grams of lead (II) sulfate will precipitate out of solution when 90.0 mL of a 0.10M lead (II)
nitrate solution reacts with an excess of sulfuric acid? Nitric acid is another product of this reaction.
___Pb(NO3)2+____H2SO4–>____PbSO4+____HNO3
Answer: 2.73 g PbSO4
Explanation:
1) solvefor moles Pb(no3)2
0.10 M X 0.09 L =0.009 moles Pb(NO3)2
2) stoichiometry from balanced chemical equation
___Pb(NO3)2 + ___H2SO4---> PbSO4 + ___2 HNO3
0.009 moles Pb(NO3)2 X (1 mole PbSO4 / 1 mole Pb(NO3)2) X (303.2516 g PBSO4/ 1mole PbSO4) = 2.73 g PbSO4
2 NaN3 → 2 Na + 3 N
Given 9.98 grams of N2, how many moles of NaN3 are produced?
0.238 moles of NaN₃ are produced from 9.98 grams of N₂.
What is the moles of NaN₃ produced?The moles of he mass of NaN₃ produced
The balanced equation for the reaction is:
2 NaN₃ → 2 Na + 3 N₂
The molar ratio between NaN₃ and N₂ is 2:3, which means that for every 2 moles of NaN₃, 3 moles of N₂ are produced.
The mole ratio is used to determine how many moles of NaN₃ are produced from 9.98 grams of N₂.
First, we need to convert the mass of N₂ to moles:
moles of N₂ = mass of N2 / molar mass of N₂
moles of N₂ = 9.98 g / 28.02 g/mol
moles of N₂ = 0.356 mol
moles of NaN₃ = (2/3) * moles of N₂
moles of NaN₃ = (2/3) * 0.356 mol
moles of NaN₃ = 0.238 mol
Learn more about mass at: https://brainly.com/question/16934894
#SPJ1
An atom of sodium-23 (Na-23) has a net charge of . Identify the number of protons, neutrons, and electrons in the atom. Then, explain how you determined the number of each type of particle. use the periodic table to help you.
Answer:
Protons - 11
Neutrons - 12
Electrons - 11
Step-by-step:
An atom of sodium-23 (Na-23) has a net charge of 0 because it is a neutral atom.
To determine the number of protons, neutrons, and electrons in Na-23, we can use its atomic number and mass number. The atomic number of sodium is 11, which means that a neutral sodium atom has 11 protons in its nucleus. The mass number of Na-23 is 23, which means that its nucleus contains 23 particles (protons and neutrons) in total.
To find the number of neutrons in Na-23, we can subtract the number of protons (which is 11) from the mass number (which is 23). Therefore, Na-23 has 23 - 11 = 12 neutrons.
Since Na-23 is a neutral atom, the number of electrons must also be 11. This is because in a neutral atom, the number of electrons is equal to the number of protons.
So to summarize, the number of protons, neutrons, and electrons in Na-23 are 11, 12, and 11, respectively. We determined the number of protons and electrons from the atomic number of sodium (which is 11), and the number of neutrons from the difference between the mass number (which is 23) and the atomic number (which is also 11).
Hope this helps!
To prepare zinc sulphate eye drops APF (Australian Pharmaceutical Formulary), the following ingredients are provided:
1) chlorobutol aqueous solution (0.67% w/v),
2) zinc sulphate monohydrate,
3) boric acid powder,
4) glycol aqueous solution (50% w/v)
Calculate the amount of each ingredients needed to prepare 70 mL of zinc sulphate eye drops APF. Show your working.
To prepare 70 mL of zinc sulfate eyedrops APF, you would need the following ingredients:
Zinc sulfate monohydrate: 0.07 g
Chlorobutol aqueous solution: 10.45 mL
Boric acid powder: 0.7 g
Glycol aqueous solution: 0.14 mL
To calculate the amount of each ingredient needed to prepare 70 mL of zinc sulfate eye drops APF, we'll follow these steps:
Step 1: Determine the concentration of zinc sulfate needed. Since the recipe doesn't specify the concentration, we'll assume a standard concentration of 0.1% w/v.
Step 2: Calculate the amount of zinc sulfate required. The desired concentration is 0.1% w/v, and we need to prepare 70 mL of the eye drops. Therefore, the amount of zinc sulfate needed can be calculated as follows:
Amount of zinc sulfate (g) = (Desired concentration (g/100 mL) * Volume (mL))/100
= (0.1 * 70)/100
= 0.07 g
Step 3: Determine the amounts of other ingredients based on the provided ratios. The chlorobutol solution is at a concentration of 0.67% w/v, so we need to calculate the volume required using the ratio:
Volume of chlorobutol solution (mL) = (Amount of zinc sulfate (g) * 100)/Concentration of chlorobutol (%)
= (0.07 * 100)/0.67
= 10.45 mL
The boric acid powder doesn't specify the concentration, so we'll assume it to be 1% w/v. Using the same logic, we can calculate the amount of boric acid powder required:
Amount of boric acid powder (g) = (Desired concentration (g/100 mL) * Volume (mL))/100
= (1 * 70)/100
= 0.7 g
Finally, the glycol solution is at a concentration of 50% w/v, so the volume required can be calculated as:
Volume of glycol solution (mL) = (Amount of zinc sulfate (g) * 100)/Concentration of glycol (%)
= (0.07 * 100)/50
= 0.14 mL
for such more questions on eyedrops
https://brainly.com/question/22086668
#SPJ8
How many grams of NaOH are needed to make 100. mL of solution with a concentration of 1.5 M?
To create 100 mL of solution with a concentration of 1.5 M, 6.00 grams of NaOH are required.
The amount of NaOH needed to make 100. mL of solution with a concentration of 1.5 M can be calculated using the formula:
mass = molarity x volume x molar mass
where:
molarity = 1.5 M (given)
volume = 100. mL = 0.1 L (given)
molar mass of NaOH = 40.00 g/mol (from periodic table)
Substituting the values, we get:
mass = 1.5 mol/L x 0.1 L x 40.00 g/mol
mass = 6.00 g
Therefore, 6.00 grams of NaOH are needed to make 100. mL of solution with a concentration of 1.5 M.
To know more about the Solution, here
https://brainly.com/question/14296204
#SPJ1
Describe the steps needed to take in order to successfully calculate the concentration of a solution from a titration lab.
Plsss help
The steps are;
Determine the titration reaction equation
Perform the titration
Record the data
Calculate the concentration
Titration labFind the chemical equation for the reaction that takes place during the titration.
Swirl or stir the analyte solution continually as you gradually add the titrant from the burette. An indication may be used to pinpoint the reaction's endpoint once the titrant and analyte react.
To calculate the amount of titrant utilized in the reaction, take note of the initial and final burette readings. To calculate the ratio between the titrant and the analyte, use the stoichiometry of the balanced chemical equation.
Learn more about titration lab:https://brainly.com/question/29276192
#SPJ1
Next the students place waxed paper in front of the light instead of the plastic.
Material Waxed Paper
Photograph of Screen Very blurry white image on gray background.
Does the waxed paper affect how the light hits the screen? Explain your response.
Yes, the waxed paper does affect how the light hits the screen. Waxed paper is a translucent material that diffuses light as it passes through.
When light passes through the waxed paper, it scatters in various directions due to the irregularities and texture of the paper's surface. This scattering of light results in a blurry white image on a gray background when the photograph is taken.
Compared to plastic, which is typically more transparent and smooth, waxed paper has a rougher surface and contains wax coatings that further contribute to light scattering. This diffusion of light reduces the sharpness and clarity of the image projected onto the screen.
The scattered light rays create a more diffused and less defined image, leading to a blurry appearance in the photograph.Therefore, the use of waxed paper instead of plastic alters the behavior of light, causing the light to scatter and resulting in a blurry white image on a gray background when projected onto the screen.
For more such questions on light
https://brainly.com/question/10728818
#SPJ11
What is an activated complex?
Answer:
What is meant by activated complex?
The state of the particles that is in between the reactants and products is called the activated complex. An activated complex is an unstable arrangement of atoms that exists momentarily at the peak of the activation energy barrier.
source:Gogle
8. Which statement is best supported by the data shown?
A) An iron nail contains fluorite.
B) A streak plate is composed of quartz.
C) Topaz is harder than a steel file.
D) Apatite is softer than a copper penny.
The statement that is best supported by the data shown is this: C) Topaz is harder than a steel file.
What is the best supporting statement?The best supporting statement is the one that shows that Topaz has a higher hardness rating when compared to a steel file.
In the depiction, Topaz is shown as having a hardness rating of 8 while the steel file has an approximate hardness of 6.5. So, the right conclusion to reach is that Topaz is harder than a steel file.
Learn more about hardness here:
https://brainly.com/question/30322659
#SPJ1
The unique properties of water are due to the water's
Question 32 options:
A. density
B. ionic bonds
C. polar nature
D. high heat capacity
Answer:
C. polar nature
Explanation:
The polarity of water and its ability to hydrogen bonding contributes to it's unique properties
Which number is the same as 2.5
10-3?
The number that is the same as the exponentiation given as follows: 2.5 × 10-³ is 0.0025.
What is exponentiation?Exponentiation is the process of calculating a power by multiplying together a number of equal factors, where the exponent specifies the number of factors to multiply.
For example, if 10 is multiplied three times, then it can be written as "10 raised to 3" which means 10³. In this case, 10 is the base, and 3 is the exponent.
Therefore, a number 0.0025 can be written in exponentiation as 2.5 × 10-³ by counting the number of zeros forward.
Learn more about exponentiation at: https://brainly.com/question/28596571
#SPJ1
Please answer part C (the answers for other parts are in the screenshots).
Part C: What is the activation energy of the reaction? Express your answer numerically in kilojoules per mole
The formula for the activation energy was used to obtain;
a. The result is -2.11 * 10^-4 K
b. The result is -3.29
What is the activation energy?The bare minimum of energy required to start a chemical reaction is referred to as activation energy. For a reaction to move from the reactants to the products, the energy barrier must be broken.
To break existing bonds and generate new ones, reactant molecules must collide with enough force and in the proper direction during a chemical reaction. The energy needed to dissolve these bonds and start the atoms moving around to generate the products is known as the activation energy.
We know that we can use the formula;
1/T2 - 1/T1
= 1/318 - 1/298
= -2.11 * 10^-4 K
Again;
ln(k1/k2) = ln(0.1/2.70)
= -3.29
Learn more about activation energy:https://brainly.com/question/28384644
#SPJ1