As a server or bartender, it is a good practice a. to have multiple interactions with patrons to evaluate their moods and needs. b. sample the patrons' drink to determine how strong they are. c. to not take patrons' drink orders too quickly upon arrival. d. to only serve the patrons one alcoholic drink every 90 minutes.

Answers

Answer 1

It is a good practice for a server or bartender to not take patrons' drink orders too quickly

Who is a bartender or server?

A bartender a person who prepares or serves alcoholic and some non-alcoholic beverages from behind a bar.

Below are some of the duties or responsibilities of a bartender:

Greet customers and create a welcoming atmosphere.Use a till to take orders and payments.Handle cash.Serve drinks at the bar or at the table.Keep the bar clean and well stocked.Give advice on drinks to suit customers' tastes.Collect glasses and wash up.

So therefore, it is a good practice for a server or bartender to not take patrons' drink orders too quickly

Learn more about bartenders or servers:

https://brainly.com/question/14722415

#SPJ1


Related Questions

Guess the value of the limitlim x??(x^4)/4x)by evaluating the functionf(x) = x4/4xfor x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, and 100. Use a graph of f to support your guess.

Answers

The graph should show a horizontal asymptote at y = 1/4 as x approaches infinity. Our guess for the value of the limit of f(x) as x approaches infinity is 1/4.

To guess the value of the limit of f(x) = (x⁴)/(4x) as x approaches infinity, we can evaluate the function for increasing values of x and observe the trend.

When x = 0, the function is undefined as we cannot divide by zero.

For x = 1, f(x) = 1/4.
For x = 2, f(x) = 2.
For x = 3, f(x) = 27/4.
For x = 4, f(x) = 4³/16 = 4.
For x = 5, f(x) = 625/20 = 31.25.
For x = 6, f(x) = 6³/24 = 27/2.
For x = 7, f(x) = 2401/28 = 85.75.
For x = 8, f(x) = 8³/32 = 16.
For x = 9, f(x) = 6561/36 = 182.25.
For x = 10, f(x) = 10³/40 = 25.
For x = 20, f(x) = 20³/80 = 100.
For x = 50, f(x) = 50³/200 = 312.5.
For x = 100, f(x) = 100³/400 = 2500.

From these values, we can see that as x increases, f(x) approaches 1/4. This is because the x in the denominator grows faster than the x^4 in the numerator, causing the fraction to approach zero.

We can also confirm this trend by graphing f(x) using a software or calculator. The graph should show a horizontal asymptote at y = 1/4 as x approaches infinity.

Therefore, our guess for the value of the limit of f(x) as x approaches infinity is 1/4.

To know more about limit, refer to the link below:

https://brainly.com/question/28455382#

#SPJ11

(1 point) evaluate the surface integral ∬s(−2yj zk)⋅ds. where s consists of the paraboloid y=x2 z2,0≤y≤1 and the disk x2 z2≤1,y=1, and has outward orientation.

Answers

The surface integral ∬s(−2yj zk)⋅ds is 0

To evaluate the surface integral ∬s(−2yj zk)⋅ds over the given surface s, we need to first parameterize the surface and then calculate the dot product of the vector field with the surface normal vector, and integrate over the surface.

The given surface s consists of a paraboloid and a disk, and can be parameterized as:

r(x,y) = xi + yj + (x^2y^2)k 0≤y≤1 and x^2 + z^2 ≤ 1, y=1

To find the surface normal vector at each point on the surface, we can take the cross product of the partial derivatives of the parameterization with respect to x and y:

r_x = i + 0j + 2xyk

r_y = 0i + j + x^2*2yk

n = r_x x r_y = (-2xy)i + (x^2*2y)j + k

Since the surface has an outward orientation, we need to use the negative of the normal vector. Thus, we have:

-n = (2xy)i - (x^2*2y)j - k

Now, we can calculate the dot product of the vector field F = (-2yj zk) with the surface normal vector:

F · (-n) = (-2yj zk) · (2xy)i - (-2yj zk) · (x^2*2y)j - (-2yj zk) · k

= -4x^2y^2

Therefore, the surface integral becomes:

∬s(−2yj zk)⋅ds = ∫∫s -4x^2y^2 dS

To evaluate this integral, we can use the parameterization of the surface and convert the surface integral into a double integral over the region R in the xy-plane:

∬s(−2yj zk)⋅ds = ∫∫R -4x^2y^2 ||r_x x r_y|| dA

= ∫[0,1]∫[0,2π] -4r^2 cos^2 θ sin^3 θ dr dθ

= 0 (by symmetry)

Therefore, the value of the surface integral is 0.

Learn more about surface integral at https://brainly.com/question/2303591

#SPJ11

Use the Laplace Transform to solve the following initial value problem. Simplify the answer and express it as a piecewise defined function. (18 points) y" +9y = 8(t – 37) + cos 3t, = y(0) = 0, y'(0) = =

Answers

To solve the initial value problem y" +9y = 8(t – 37) + cos 3t using the Laplace Transform, we first take the Laplace Transform of both sides:

L{y"} + 9L{y} = 8L{t-37} + L{cos 3t}

Using the properties of Laplace Transform, we can simplify this expression to:

s^2Y(s) - sy(0) - y'(0) + 9Y(s) = 8(1/s^2) - 8(37/s) + (s/(s^2+9))

Substituting y(0) = 0 and y'(0) = k, we get:

s^2Y(s) - k + 9Y(s) = 8/s^2 - 296/s + (s/(s^2+9))

Solving for Y(s), we get:

Y(s) = (8/s^2 - 296/s + (s/(s^2+9)) + k)/(s^2+9)

To express this as a piecewise-defined function, we can use partial fraction decomposition and inverse Laplace Transform. The solution will have two parts: a homogeneous solution and a particular solution. The homogeneous solution is Yh(s) = Asin(3t) + Bcos(3t), while the particular solution is Yp(s) = (8/s^2 - 296/s + (s/(s^2+9))). Adding these two solutions and taking inverse Laplace Transform, we get:

y(t) = (8/9) - (37/3)cos(3t) + (1/9)sin(3t) + ke^(-3t/3)

Where k = y'(0). Thus, the solution to the initial value problem is a piecewise-defined function with two parts: a homogeneous solution and a particular solution, expressed in terms of sine, cosine, and exponential functions.

Learn more about Laplace Transform here:

https://brainly.com/question/31481915

#SPJ11

Write out the first five terms of the sequence with, [(n+6n+8​)n]n=1[infinity]​, determine whether the sequence converges, and if so find its limit. Enter the following information for an​=(n+6n+8​)n. a1​= a2​= a3​= a4​= a5​= limn→[infinity]​(n+6n+8​)n= (Enter DNE if limit Does Not Exist.) Does the sequence converge (Enter "yes" or "no").

Answers

To find the first five terms of the sequence, we can substitute n = 1, 2, 3, 4, and 5 into the formula for an:

a1 = (1 + 6*1 + 8) / 1 = 15

a2 = (2 + 6*2 + 8) / 2^2 = 6

a3 = (3 + 6*3 + 8) / 3^3 ≈ 1.037

a4 = (4 + 6*4 + 8) / 4^4 ≈ 0.25

a5 = (5 + 6*5 + 8) / 5^5 ≈ 0.023

To determine whether the sequence converges, we can take the limit of an as n approaches infinity:

limn→∞ (n + 6n + 8)/n^n

We can simplify this limit by dividing both the numerator and the denominator by n^n:

limn→∞ [(1/n) + 6/n^2 + 8/n^2]^n

As n approaches infinity, (1/n) approaches zero, and both 6/n^2 and 8/n^2 approach zero even faster. Therefore, the limit of the expression inside the square brackets is 1, and the limit of the sequence is:

limn→∞ (n + 6n + 8)/n^n = 1

So, Yes sequence converges to 1.

To know more about limit converge's refer here:

https://brainly.com/question/21961097?#

#SPJ11

The makers of Brand Z paper towel claim that their brand is twice as strong as Brand X and they use this graph to support their claim. Paper Towel Strength A bar graph titled Paper Towel Strength has Brand on the x-axis, and strength (pounds per inches squared) on the y-axis, from 90 to 100 in increments of 5. Brand X, 100; brand Y, 105; brand z, 110. Do you agree with this claim? Why or why not? a. Yes, because the bar for Brand Z is twice as tall as the bar for Brand X. B. Yes, because the strength of Brand Z is twice that of Brand X. C. No, because paper towel brands are all alike. D. No, because the vertical scale exaggerates the differences between brands.

Answers

The correct answer is D. No, because the vertical scale exaggerates the differences between brands.

Step 1: Examine the information presented in the graph. The graph shows the strength of three paper towel brands: Brand X, Brand Y, and Brand Z. The strength values are represented on the y-axis, ranging from 90 to 100 with increments of 5.

Step 2: Compare the strength values of the brands. According to the graph, Brand X has a strength of 100, Brand Y has a strength of 105, and Brand Z has a strength of 110.

Step 3: Evaluate the claim made by the makers of Brand Z. They claim that Brand Z is twice as strong as Brand X.

Step 4: Assess the accuracy of the claim. Based on the actual strength values provided in the graph, Brand Z is not exactly twice as strong as Brand X. The difference in strength between the two brands is only 10 units.

Therefore, the claim made by the makers of Brand Z is not supported by the graph. The graph does not show a clear indication that Brand Z is twice as strong as Brand X. The vertical scale of the graph exaggerates the differences between the brands, leading to a potential misinterpretation of the data. Therefore, it is not valid to agree with the claim based solely on the information provided in the graph.

To know more about graph , visit:

https://brainly.com/question/15685482

#SPJ11

There are 16 grapes for every 3 peaches in a fruit cup. What is the ratio of the number of grapes to the number of peaches?

Answers

The given statement is "There are 16 grapes for every 3 peaches in a fruit cup.

" We have to find out the ratio of the number of grapes to the number of peaches.

Given that there are 16 grapes for every 3 peaches in a fruit cup.

To find the ratio of the number of grapes to the number of peaches, we need to divide the number of grapes by the number of peaches.

Ratio = (Number of grapes) / (Number of peaches)Number of grapes = 16Number of peaches = 3Ratio of the number of grapes to the number of peaches = Number of grapes / Number of peaches= 16 / 3

Therefore, the ratio of the number of grapes to the number of peaches is 16:3.

To know more about ratio, visit:

https://brainly.com/question/13419413

#SPJ11

1/3 (9+6u) distributive property

Answers

Using distributive property, the simplified form of expression 1/3 (9 + 6u) is 3 + 2u

We know that for the non-zero real numbers a, b, c, the distributive property states that, a × (b + c) = (a × b) + (a × c)

Consider an expression  1/3 (9+6u)

Compaing this expression with a × (b + c) we get,

a = 1/3

b = 9

and c = 6u

Using  distributive property for this expression we get,

1/3 × (9 + 6u)

= (1/3 × 9) + (1/3 × 6u)

= (9/3) +(1/3 × 6)u

= (3) + (6/3)u

= 3 + 2u

This is the simplified form of expression  1/3 (9+6u)

Therefore, the expression 1/3 (9+6u) = 3 + 2u

Learn more about the expression here:

https://brainly.com/question/1859113

#SPJ1

Solve 1/3 (9+6u) using distributive property

Determine if the square root of
0.686886888688886888886... is rational or irrational and give a reason for your answer.

Answers

Answer:

Rational

Step-by-step explanation:

It would be a decimal

Please help me it’s due soon!

Answers

Answer:

Step-by-step explanation:

The standard equation for a parabola is [tex]y=x^2[/tex]

The given equation is: y = 2(x+2)(x-2)

The given equation is factored out. Since it is factored, we can set each x expression to zero, to solve for the x intercepts.

x+2 = 0

-2      -2

x = -2

x-2 = 0

+2     +2

x = 2

We can therefore graph, (-2, 0) and (2, 0), because we know that it is the x intercepts of the given quadratic function.

to find the vertex, you will take both x intercepts, divide them by two, and that will get you the x cooridnate. Following that you can plug in that value as x into the equation solve for the y coordinate.

[tex]\frac{(-2 + 2)}{2} = 0\\\\x=0\\y = 2(x+2)(x-2)\\\\y = 2(0+2)(0-2)\\y=-8\\\\vertex = (0, -8)[/tex]

finally graph that point and create the parabola shape. If you'd like to make your parabola more accurate, you can always make a t chart of x and y values. and plug in x values into the equation to find the other y values.

I've attached a graph of the given parabola.

a rectangular lot is 120ft.long and 75ft,wide.how many feet of fencing are needed to make a diagonal fence for the lot?round to the nearest foot.

Answers

Using the Pythagorean theorem, we can find the length of the diagonal fence:

diagonal²= length² + width²


diagonal²= 120² + 75²


diagonal² = 14400 + 5625

diagonal²= 20025


diagonal = √20025

diagonal =141.5 feet


Therefore, approximately
141.5 feet of fencing are needed to make a diagonal fence for the lot. Rounded to the nearest foot, the answer is 142 feet.

Sam is flying a kite the length of the kite string is 80 and it makes an angle of 75 with the ground the height of the kite from the ground is

Answers

To find the height of the kite from the ground, we can use trigonometry and the given information.

Let's consider the right triangle formed by the kite string, the height of the kite, and the ground. The length of the kite string is the hypotenuse of the triangle, which is 80 units, and the angle between the kite string and the ground is 75 degrees.

Using the trigonometric function sine (sin), we can relate the angle and the sides of the right triangle:

sin(angle) = opposite / hypotenuse

In this case, the opposite side is the height of the kite, and the hypotenuse is the length of the kite string.

sin(75°) = height / 80

Now we can solve for the height by rearranging the equation:

height = sin(75°) * 80

Using a calculator, we find:

height ≈ 76.21

Therefore, the height of the kite from the ground is approximately 76.21 units.

Learn more about trigonometry Visit : brainly.com/question/25618616

#SPJ11

There are N +1 urns with N balls each. The ith urn contains i – 1 red balls and N +1-i white balls. We randomly select an urn and then keep drawing balls from this selected urn with replacement. (a) Compute the probability that the (N + 1)th ball is red given that the first N balls were red. Compute the limit as N +00. (b) What is the probability that the first ball is red? What is the probability that the second ball is red? (Historical note: Pierre Laplace considered this toy model to study the probability that the sun will rise again tomorrow morning. Can you make the connection?)

Answers

Laplace used this model to study the probability of the sun rising tomorrow by considering each day as a "ball" with "sunrise" or "no sunrise" as colors.

(a) Let R_i denote drawing a red ball on the ith turn. The probability that the (N+1)th ball is red given the first N balls were red is P(R_(N+1)|R_1, R_2, ..., R_N). By Bayes' theorem:
P(R_(N+1)|R_1, ..., R_N) = P(R_1, ..., R_N|R_(N+1)) * P(R_(N+1)) / P(R_1, ..., R_N)
Since drawing balls is with replacement, the probability of drawing a red ball on any turn from the ith urn is (i-1)/(N+1). Thus, P(R_(N+1)|R_1, ..., R_N) = ((i-1)/(N+1))^N * (i-1)/(N+1) / ((i-1)/(N+1))^N = (i-1)/(N+1)
(b) The probability that the first ball is red is the sum of the probabilities of drawing a red ball from each urn, weighted by the probability of selecting each urn: P(R_1) = (1/(N+1)) * Σ[((i-1)/(N+1)) * (1/(N+1))] for i = 1 to N+1
Similarly, the probability that the second ball is red:
P(R_2) = (1/(N+1)) * Σ[((i-1)/(N+1))^2 * (1/(N+1))] for i = 1 to N+1

Learn more about probability here:

https://brainly.com/question/29221515

#SPJ11

use linear approximation to estimate f(2.9) given that f(3)=5 and f'(3)=6

Answers

Using linear approximation, f(2.9) ≈ f(3) + f'(3)(2.9 - 3) = 5 + 6(-0.1) = 4.4.

How we estimate the value of f(2.9) using linear approximation?

To estimate f(2.9) using linear approximation, we can use the formula: f(x) ≈ f(a) + f'(a)(x - a), where a is a point close to 2.9.

Given that f(3) = 5 and f'(3) = 6, we can substitute these values into the formula. Thus, f(2.9) ≈ 5 + 6(2.9 - 3) = 5 - 6(0.1) = 5 - 0.6 = 4.4.

The estimated value of f(2.9) using linear approximation is 4.4.

Linear approximation provides a linear approximation of a function near a given point using the function's value and derivative at that point.

In this case, we approximate f(2.9) by considering the tangent line to the graph of f at x = 3 and evaluating it at x = 2.9.

Learn more about linear approximation

brainly.com/question/30403460

#SPJ11

consider the rational function f ( x ) = 8 x x − 4 . on your own, complete the following table of values.

Answers

To complete the table of values for the rational function f(x) = 8x/(x-4), we need to plug in different values of x and evaluate the function.

x | f(x)
--|----
-3| 24
-2| -16
0 | 0
2 | 16
4 | undefined
6 | -24
Let me explain how I arrived at each value. When x=-3, we get f(-3) = 8(-3)/(-3-4) = 24. Similarly, when x=-2, we get f(-2) = 8(-2)/(-2-4) = -16. When x=0, we get f(0) = 8(0)/(0-4) = 0. When x=2, we get f(2) = 8(2)/(2-4) = 16. However, when x=4, we get f(4) = 8(4)/(4-4) = undefined, since we cannot divide by zero. Finally, when x=6, we get f(6) = 8(6)/(6-4) = -24.I hope this helps you understand how to evaluate a rational function for different values of x. Let me know if you have any other questions!

Learn more about function here

https://brainly.com/question/11624077

#SPJ11

if f'(x) = x^2/1 x^5 and f(1)=3 then f(4)

Answers

Therefore, the value of function f(4) is: f(4) = ln (1025^(1/5) * e^15 / 2) - ln 2^(1/5) ≈ 20.212.

We can solve this problem by integrating the given derivative to obtain the function f(x), and then evaluating f(4).

From the given derivative, we can see that f'(x) can be written as:

f'(x) = x^2 / (1 + x^5)

To find f(x), we integrate both sides of the equation with respect to x:

∫ f'(x) dx = ∫ x^2 / (1 + x^5) dx

Using substitution, let u = 1 + x^5, so that du/dx = 5x^4 and dx = du / (5x^4).

Substituting these into the integral, we get:

f(x) = ∫ f'(x) dx = ∫ x^2 / (1 + x^5) dx

= (1/5) ∫ 1/u du

= (1/5) ln|1 + x^5| + C

where C is the constant of integration.

To determine the value of C, we use the initial condition f(1) = 3. Substituting x = 1 and f(x) = 3 into the above expression for f(x), we get:

3 = (1/5) ln|1 + 1^5| + C

C = 3 - (1/5) ln 2

So the function f(x) is:

f(x) = (1/5) ln|1 + x^5| + 3 - (1/5) ln 2

To find f(4), we substitute x = 4 into the expression for f(x):

f(4) = (1/5) ln|1 + 4^5| + 3 - (1/5) ln 2

= (1/5) ln 1025 + 3 - (1/5) ln 2

= ln (1025^(1/5) * e^15 / 2) - ln 2^(1/5)

To know more about function,

https://brainly.com/question/28278690

#SPJ11

Compute the double integral of f(x, y) = 99xy over the domain D.∫∫ 9xy dA

Answers

To compute the double integral of f(x, y) = 99xy over the domain D, we need to set up the limits of integration for both x and y.

Since the domain D is not specified, we will assume it to be the entire xy-plane.

Thus, the limits of integration for x and y will be from negative infinity to positive infinity.

Using the double integral notation, we can write:

∫∫ 99xy dA = ∫ from -∞ to +∞ ∫ from -∞ to +∞ 99xy dxdy

Evaluating this integral, we get:

∫ from -∞ to +∞ ∫ from -∞ to +∞ 99xy dxdy = 99 * ∫ from -∞ to +∞ ∫ from -∞ to +∞ xy dxdy

We can solve this integral by integrating with respect to x first and then with respect to y.

∫ from -∞ to +∞ ∫ from -∞ to +∞ xy dxdy = ∫ from -∞ to +∞ [y(x^2/2)] dy

Evaluating the limits of integration, we get:

∫ from -∞ to +∞ [y(x^2/2)] dy = ∫ from -∞ to +∞ [(y/2)(x^2)] dy

Now, integrating with respect to y:

∫ from -∞ to +∞ [(y/2)(x^2)] dy = (x^2/2) * ∫ from -∞ to +∞ y dy

Evaluating the limits of integration, we get:

(x^2/2) * ∫ from -∞ to +∞ y dy = (x^2/2) * [y^2/2] from -∞ to +∞

Since the limits of integration are from negative infinity to positive infinity, both the upper and lower limits of this integral will be infinity.

Thus, we get:

(x^2/2) * [y^2/2] from -∞ to +∞ = (x^2/2) * [∞ - (-∞)]

Simplifying this expression, we get:

(x^2/2) * [∞ + ∞] = (x^2/2) * ∞

Since infinity is not a real number, this integral does not converge and is undefined.

Therefore, the double integral of f(x, y) = 99xy over the domain D (the entire xy-plane) is undefined.

To know more about double integral, visit:

https://brainly.com/question/30217024

#SPJ11

Find the volume of the cylinder. Round your answer to the nearest tenth.



The volume is about
cubic feet.

Answers

The volume of the cylinder is 164.85 ft³.

We have the dimension of cylinder

Radius = 15/2 =7 .5 ft

Height = 7 ft

Now, the formula for Volume of Cylinder is

= 2πrh

Plugging the value of height and radius we get

Volume of Cylinder is

= 2πrh

= 2 x 3.14 x 7.5/2 x 7

=  3.14 x 7.5 x 7

= 164.85 ft³

Thus, the volume of the cylinder is 164.85 ft³.

Learn more about Volume of cylinder here:

https://brainly.com/question/15891031

#SPJ1

consider the function f(x)=5x4−5x3−2x2−5x 8. using descartes' rule of signs, what is the maximum possible number of positive roots?

Answers

According to Descartes' rule of signs, the maximum possible number of positive roots of a polynomial is equal to the number of sign changes in the coefficients of its terms, or less than that by an even number.

In the given polynomial function f(x) = 5x^4 - 5x^3 - 2x^2 - 5x + 8, there are two sign changes in the coefficients, from positive to negative after the second term and from negative to positive after the third term.

Therefore, the maximum possible number of positive roots of this polynomial is either 2 or 0 (less than 2 by an even number).

Learn more about polynomial function: https://brainly.com/question/7693326

#SPJ11

What happens to the surface area of the following rectangular prism if the width is doubled?

The surface area is doubled.

The surface area is increased by 144 sq ft.

The surface area is increased by 160 sq. ft.

The surface area is increased by 112 sq ft.

Answers

The observation of the surface area of the figure and the surface area when the width of the figure is doubled indicates;

The surface area is increased by 144 sq ft

What is the surface area of a regular shape?

The surface area of a regular shape is the two dimensional surface the shape occupies.

The surface area, A, of the prism in the figure can be found as follows;

A = 2 × (8 × 6 + 8 × 4 + 4 × 6) = 208

Therefore, the surface area of the original prism is 208 ft²

The surface area when the width is doubled, A' can be found as follows;

The width of the prism = 6 ft

When the width is doubled, we get;

A' = 2 × (8 × 6 × 2 + 8 × 4 + 4 × 6 × 2) = 352

The new surface area of the prism when the width is doubled, is therefore;

A' = 352 ft²

The comparison of the surface areas indicates that we get;

ΔA = A' - A = 352 ft² - 208 ft² = 144 ft²

When the width is doubled, the surface area increases by 144 square feet

Learn more on the surface area of regular shapes here: https://brainly.com/question/31326377

#SPJ1

prove that x/(y+z)+y/(z+x)+z/(x+y) =4

Answers

We have proved the expression x/(y+z) + y/(z+x) + z/(x+y) = 4

To prove that x/(y+z) + y/(z+x) + z/(x+y) = 4, we can start by multiplying both sides by (x+y)(y+z)(z+x).

This will help us simplify the expression and eliminate any denominators.

Expanding the left side, we get:

x(x+y)(x+z) + y(y+z)(y+x) + z(z+x)(z+y)--------------------------------------------------- (y+z)(z+x)(x+y)

After simplification, we obtain:

2(x³ + y³+ z³) + 6xyz ------------------------------- (x+y)(y+z)(z+x)

Next, we can use the well-known identity, x³ + y³ + z³ - 3xyz = (x+y+z)x²x + y² + z² - xy - xz - yz), to further simplify the expression.

Plugging this identity in, we get:

2(x+y+z)(x²+ y²+ z² - xy - xz - yz) + 12xyz----------------------------------------------------- (x+y)(y+z)(z+x)

Simplifying this expression further yields:

8xyz -------(x+y)(y+z)(z+x)

Since 8xyz is equal to 2(x+y)(y+z)(z+x), we can conclude that:

x/(y+z) + y/(z+x) + z/(x+y) = 4

Hence, we have proved the given expression.

Learn more about math expression at https://brainly.com/question/10984774

#SPJ11

Find the measure of angle E.

A) 9 degrees
B) 79 degrees
C) 97 degrees
D) 48 degrees

Answers

Answer:

D) 48°

Step-by-step explanation:

Step 1:  First, we need to know the sum of the measures of the interior angles of the polygon.  We can determine the sum using the formula,

(n - 2) * 180, where n is the number of sides of the polygon.

Since this polygon has 4 sides, we plug in 4 for n:

Sum = (4-2) * 180

Sum = 2 * 180

Sum = 360°

Thus, we know that the sum of the measures of the interior angles of the polygon is 360°.

Step 2:  Now we can set the sum of four angles equal to 360 to solve for x:

127 + (5x + 3) + 88 + (10x + 7) = 360

215 + (5x + 3 + 10x + 7) = 360

215 + 15x + 10 = 360

225 + 15x = 360

15x = 135

x = 9

Step 3:  Now we can plug in 9 for x in the equation representing the measure of E to find the measure of E:

E = 5(9) + 3

E = 45 + 3

E = 48

Thus, the measure of E is 48°

Optional Step 4:

We can check that E = 48 by again making the sum of the angles = 360.  We already know the measures of angles J, E, and S so we can just plug in 9 for x in the expression representing angle J.  If we get 360 on both sides, we've correctly found the measure of E:

K + J + E + S = 360

(10(9) + 7) + (127 + 48 + 88) = 360

(90 + 7) + 263 = 360

97 + 263 = 360

360 = 360

Thus, we've correctly found the measure of E

You drop a penny from a height of 16 feet. After how many seconds does the penny land on the ground? Show FULL work. ​

Answers

It takes 1 second for the penny to land on the ground after being dropped from a height of 16 feet.

To find the time it takes for the penny to land on the ground after being dropped from a height of 16 feet, we can use the equation of motion for free fall:

h = (1/2)gt²

Where:

h is the height (16 feet in this case)

g is the acceleration due to gravity (32.2 feet per second squared)

t is the time we want to find

Plugging in the values, we have:

16 = (1/2)(32.2)t²

Simplifying:

32 = 32.2t²

Dividing both sides by 32.2:

t² = 1

Taking the square root of both sides:

t = ±1

Since time cannot be negative, we take the positive value:

t = 1

Therefore, it takes 1 second for the penny to land on the ground after being dropped from a height of 16 feet.

To know more about Time, visit:

https://brainly.com/question/22718678

#SPJ11

calculate the area of the surface of the cap cut from the paraboloidz = 12 - 2x^2 - 2y^2 by the cone z = √x2 + y2

Answers

The area of the surface of the cap cut from the paraboloidz S ≈ 13.4952

We need to find the surface area of the cap cut from the paraboloid by the cone.

The equation of the paraboloid is z = 12 - 2x^2 - 2y^2.

The equation of the cone is z = √x^2 + y^2.

To find the cap, we need to find the intersection of these two surfaces. Substituting the equation of the cone into the equation of the paraboloid, we get:

√x^2 + y^2 = 12 - 2x^2 - 2y^2

Simplifying and rearranging, we get:

2x^2 + 2y^2 + √x^2 + y^2 - 12 = 0

Letting u = x^2 + y^2, we can rewrite this equation as:

2u + √u - 12 = 0

Solving for u using the quadratic formula, we get:

u = (3 ± √21)/2

Since u = x^2 + y^2, we know that the cap is a circle with radius r = √u = √[(3 ± √21)/2].

To find the surface area of the cap, we need to integrate the expression for the surface area element over the cap. The surface area element is given by:

dS = √(1 + fx^2 + fy^2) dA

where fx and fy are the partial derivatives of z with respect to x and y, respectively. In this case, we have:

fx = -4x/(√x^2 + y^2)

fy = -4y/(√x^2 + y^2)

So, the surface area element simplifies to:

dS = √(1 + 16(x^2 + y^2)/(x^2 + y^2)) dA

dS = √17 dA

Since the cap is a circle, we can express dA in polar coordinates as dA = r dr dθ. So, the surface area of the cap is given by:

S = ∫∫dS = ∫∫√17 r dr dθ

Integrating over the circle with radius r = √[(3 ± √21)/2], we get:

S = ∫0^2π ∫0^√[(3 ± √21)/2] √17 r dr dθ

S = 2π √17/3 [(3 ± √21)/2]^(3/2)

Simplifying and approximating to four decimal places, we get:

S ≈ 13.4952

Learn more about surface here

https://brainly.com/question/28776132

#SPJ11

calculate the following limit. limx→[infinity] ln x 3√x

Answers

The limit of ln x × 3√x as x approaches infinity is negative infinity.

To calculate this limit, we can use L'Hôpital's rule:

limx→∞ ln x × 3√x

= limx→∞ (ln x) / (1 / (3√x))

We can now apply L'Hôpital's rule by differentiating the numerator and denominator with respect to x:

= limx→∞ (1/x) / (-1 / [tex](9x^{(5/2)[/tex]))

= limx→∞[tex]-9x^{(3/2)[/tex]

As x approaches infinity, [tex]-9x^{(3/2)[/tex]approaches negative infinity, so the limit is:

limx→∞ ln x × 3√x = -∞

Therefore, the limit of ln x × 3√x as x approaches infinity is negative infinity.

for such more question on  L'Hôpital's rule

https://brainly.com/question/25829061

#SPJ11

If ∫0-4f(x)dx=−2 and ∫2-3g(x)dx=−3 , what is the value of ∫∫Df(x)g(y)dA where D is the square: 0≤x≤4, 2≤y≤3

Answers

The value of the double integral is 6.

To find the value of the double integral, we need to use Fubini's theorem to switch the order of integration. This means we can integrate with respect to x first and then y, or vice versa.

Using the given integrals, we know that the integral of f(x) from 0 to 4 is equal to -2. We also know that the integral of g(x) from 2 to 3 is equal to -3.

So, we can start by integrating g(y) with respect to y from 2 to 3, and then integrate f(x) with respect to x from 0 to 4.

∫∫Df(x)g(y)dA = ∫2-3∫0-4f(x)g(y)dxdy

We can use the given values to simplify this expression:

∫2-3∫0-4f(x)g(y)dxdy = (-2) * (-3) = 6

Therefore, the value of the double integral is 6.

To know more about double integral refer here:

https://brainly.com/question/30217024

#SPJ11

use the direct comparison test to determine the convergence or divergence of the series. [infinity]Σn=1 sin^2(n)/n^8sin^2(n)/n^8 >= converges diverges

Answers

The series Σn=1 sin^2(n)/n^8 diverges.

To use the direct comparison test, we need to find a series with positive terms that is smaller than the given series and either converges or diverges. We can use the fact that sin^2(n) <= 1 to get:

0 <= sin^2(n)/n^8 <= 1/n^8

Now, we know that the series Σn=1 1/n^8 converges by the p-series test (since p=8 > 1). Therefore, by the direct comparison test, the series Σn=1 sin^2(n)/n^8 also converges.

However, the inequality we used above is not strict, so we can't use the direct comparison test to show that the series diverges. In fact, we can show that the series does diverge by using the following argument:

Consider the partial sums S_k = Σn=1^k sin^2(n)/n^8. Note that sin^2(n) is periodic with period 2π, and that sin^2(n) >= 1/2 for n in the interval [kπ, (k+1/2)π). Therefore, we can lower bound the sum of sin^2(n)/n^8 over this interval as follows:

Σn=kπ^( (k+1/2)π) sin^2(n)/n^8 >= (1/2)Σn=kπ^( (k+1/2)π) 1/n^8

Using the integral test (or comparison with a Riemann sum), we can show that the sum on the right-hand side is infinite. Therefore, the sum on the left-hand side is also infinite, and the series Σn=1 sin^2(n)/n^8 diverges.

For more questions like Series click the link below:

https://brainly.com/question/28167344

#SPJ11

Please help me I need help urgently please. Ben is climbing a mountain. When he starts at the base of the mountain, he is 3 kilometers from the center of the mountains base. To reach the top, he climbed 5 kilometers. How tall is the mountain?

Answers

Note that the mountain would be as tall (height) as 4 kilometers. This si solved using Pythagorean principles.

How is this correct?

Here we used the Pythagorean principle to solve this.

Note that he mountain takes the shape of a triangle.

Since we have the base to be 3 kilometers and the hypotenuse ot be 5 kilometers,

Lets call the height y

3² + y² = 5²

9+y² = 25

y^2 = 25 = 9

y² = 16

y = 4

thus, it is correct to state that the height of the mountain is 4  kilometers.


Learn more about Pythagorean theorem:
https://brainly.com/question/28977458
#SPJ1

Given that tan(θ)=7/24 and θ is in Quadrant I, find cos(θ) and csc(θ).

Answers

The Pythagorean identity is a trigonometric identity that relates the three basic trigonometric functions - sine, cosine, and tangent - in a right triangle.

Given that tan(θ) = 7/24 and θ is in Quadrant I, we can use the Pythagorean identity to find the value of cos(θ):

cos²(θ) = 1 - sin²(θ)

Since sin(θ) = tan(θ)/√(1 + tan²(θ)), we have:

sin(θ) = 7/25

cos²(θ) = 1 - (7/25)² = 576/625

cos(θ) = ±24/25

Since θ is in Quadrant I, we have cos(θ) > 0, so:

cos(θ) = 24/25

To find csc(θ), we can use the reciprocal identity:

csc(θ) = 1/sin(θ) = 25/7

To learn more about Quadrant visit:

brainly.com/question/7196312

#SPJ11

help please i dont understand this lol

Answers

The slope of each of the table is:

A. m = 7/8;  B. m = -9;  C. m = 15;  D. m = 1/2;  E. m = -4/5;   F. m = 0

What is the Slope or Rate of Change of a Table?

The slope is also the rate of change of a table which is: change in y / change in x. To find the slope, you can make use of any two pairs of values given in the table to find the rate of change of y over the rate of change of x.

A. slope (m) = change in y/change in x = 7 - 0 / 8 - 0

m = 7/8.

B. slope (m) = change in y/change in x = 4 - 49 / 0 - (-5)

m = -9

C. slope (m) = change in y/change in x = 7.5 - 0 / 0.5 - 0

m = 15

D. slope (m) = change in y/change in x = 7 - 6 / 2 - 0

m = 1/2

E. slope (m) = change in y/change in x = -6 - (-2) / 5 - 0

m = -4/5

F. slope (m) = change in y/change in x = 3 - 3 / 2 - 1

m = 0

Learn more about slope on:

https://brainly.com/question/3493733

#SPJ1

using the proper calculator, find the approximate number of degrees in angle b if tan b = 1.732.

Answers

The approximate number of degrees in angle b, given that tan b = 1.732, is approximately 60 degrees.

To find the angle b, we can use the inverse tangent function, also known as arctan or tan^(-1), on the given value of 1.732 (the tangent of angle b).

Using a scientific calculator, we can input the value 1.732 and apply the arctan function. The result will be the angle in radians. To convert the angle to degrees, we can multiply the result by (180/π) since there are π radians in 180 degrees.

By performing these calculations, we find that arctan(1.732) is approximately 1.047 radians.

Multiplying this by (180/π) yields approximately 59.999 degrees, which can be rounded to approximately 60 degrees. Therefore, the approximate number of degrees in angle b is 60 degrees.

To know more about angle click here

brainly.com/question/14569348

#SPJ11

Other Questions
Find the general solution of the given higher-order differential equation.y(4) + y''' + y'' = 0y(x) = for the probability density function, over the given interval, find e(x), e(), the mean, the variance, and the standard deviation. f(x) , over [a,b] 1/b-q .[/1 points]details0/100 submissions usedmy notesask your teacherfind u for the given vector.u = [1, 6, 3, 0] give a unit vector in the direction of u. need help? A specific unit or dollar limit set by a country to foreign products entering is called a ____ Saturated steam at 1 atm condenses on a verticalplate that is maintained at 90C by circulating cooling waterthrough the other side. If the rate of heat transfer by condensationto the plate is 180 kJ/s, determine the rate at which thecondensate drips off the plate at the bottom. For each of the following vector fields, find its curl and determine if it is a gradient field.(a) F=(3xy+yz) i+(5x2+z2) j+3xz k: curl F= F(b) G=3yz i+(z23xz) j+(3xy+2yz) k:curl G= G(c) H=(6xy+5x3) i+(3x2+z2) j+(2yz3 Giving Brainiest For Best Response What is Two key scene in Code OrangeCode orange by Caroline B. Cooney.Also How is your choice propel the action? at the end of the accounting period, meyer company has a balance of $27,000 in the service expense account. what entry should be made to close the adervertis expense account? Why do you need to use a statistical test (e.g., the chi-square test) to compare the observed genotype frequencies in a population to those expected under Hardy-Weinberg equilibrium? to distinguish between natural selection and other factors that could cause a population to deviate from Hardy-Weinberg equilibrium because it is impossible to know what the observed genotype frequencies are in a population to assess whether the deviation of observed from expected frequencies is likely due to chance because the frequencies expected under Hardy-Weinberg equilibrium are not accurate An atom with an atomic number of 14 will have electrons in its valence shell. O 8 O 10 O 2 O 14 DANO suppose that for every positive integer i, all the entries in the ith row and ith column of the adjacency matrix of a graph are 0. what can you conclude about the graph? For the overbooking strategy, why is the optimal number of units (i.e. airline seats, hotel rooms) overbooked is not equal to the expected number of no-shows?a. Variability in the number of no-shows makes the number difficult to calculate.b. The costs associated with overbooking and under-booking are not equal.c. It is illegal to excessively overbook.d. Hotels and airlines reserve some spots for important or emergency situations. For the output levels in Table 21.4, the minimum of the average total cost curve occurs at a production rate of Select one: A. 3 units per day. B. Zero units per day. C. 4 units per day. D. 2 units per day. which term is used to describe the notion that the nerves that branch out from the spinal cord and brain become less efficient Which one of the following is true about the Cisco core layer in the three-tier design?A. Never do anything to slow down traffic. This includes making sure you don't use access lists, perform routing between virtual local area networks, or implement packet filtering.B. It's best to support workgroup access here.C. Expanding the core, eg adding routers as the internet work grows. Is highly recommended as a first step.D. All cables from the core must connect to the TOR Assume the following process is used in production of a product. There are 3 workers in this process; each task is done by 1 worker. Assuming the process works at full capacity, utilization of the worker performing TASK A is: TASKA TASK B TASK C Flag question 3 min./Unit 6 min./Unit 1 min./Unit Select one: O a. 16.66% O b. None of the provided answers O c. 55.55% O d. 33.33% O e. 100% O f. 50% when evaluating an investment in a mortgage pass-through security, which of the following is not one of the characteristics of the underlying mortgage pool that should be considered? a. set a data validation rule for the range b5:f5 that allows only whole number values greater than 0. why have bank runs in the united states been relatively scarce since the 1930s? Calculate the multiplier Question Find the money multiplier associated with a reserve requirement of 0.12 if banks hold no excess reserves and consumers hold no cash. Round your answer to two decimal places. Provide your answer below: MM-