If all is working correctly, the electron in a higher orbital or shell will have more energy than the electron in a lower orbital or shell. The following statement is correct: The electron that is farther away from the nucleus is at a higher energy level.
In order for the electron to escape from the atom, it must be excited, meaning that it must absorb energy. When this occurs, the electron moves to a higher energy level, which is farther from the nucleus. Because the electron is now in an excited state, it is more vulnerable to being released from the atom if additional energy is provided to it. According to Bohr's model of the atom, electrons revolve around the nucleus in circular orbits with varying energy levels. As the distance between the nucleus and the electron increases, so does the energy level of the electron. The energy of electrons in the first energy level is the lowest, and as the energy level increases, so does the energy of electrons. As a result, electrons in the outermost shell have the highest energy levels.
To learn more about Nucleus :
https://brainly.com/question/9651421
#SPJ11
The appearance of a gram-negative bacteria cell after the addition of the decolorizing agent (ethyl alcohol) in the Gram stain is _____.
(a) purple
(b) red
(c) colorless
(d) green.
Gram-negative bacteria appear as pink/red under the microscope after counterstaining with safranin. In conclusion, the appearance of a gram-negative bacteria cell after the addition of the decolorizing agent (ethyl alcohol) in the Gram stain is colorless.
The appearance of a gram-negative bacteria cell after the addition of the decolorizing agent (ethyl alcohol) in the Gram stain is colorless. Gram staining is a common microbiological method that is used to differentiate bacteria into two categories: Gram-positive and Gram-negative. This differentiation is based on differences in the composition of their cell walls. Gram staining is used to identify bacteria and fungi by staining the samples with crystal violet and iodine, then decolorizing with ethanol and counterstaining with safranin. This method helps to determine the presence or absence of a thick layer of peptidoglycan in the cell wall of bacteria. In Gram-negative bacteria, the decolorizing agent, ethyl alcohol, remove the outer membrane, causing the crystal violet stain to be removed from the cell wall, therefore resulting in a colorless appearance. The alcohol also increases the permeability of the thin peptidoglycan layer, which makes the safranin stain visible in the cell wall of the bacteria.
To learn more about Gram-negative bacteria :
https://brainly.com/question/28985258
#SPJ11
what is the formula for co3+ and se2-?
The formula for Co3+ is Co3+ because it represents the ion of cobalt that has lost three electrons, leaving it with a 3+ charge.
What is chemical formula and how they are formed ?
A chemical formula is a symbolic representation of a chemical compound that shows the types of elements present in the compound and the relative number of atoms of each element. For example, the chemical formula for water is H2O, which indicates that it is made up of two hydrogen atoms and one oxygen atom.
Chemical formulas are formed by identifying the elements that make up a compound and determining the relative number of each element in the compound. The number of each element is represented by a subscript following the chemical symbol of the element. For example, the chemical formula for methane is CH4, which indicates that there is one carbon atom and four hydrogen atoms in each molecule of methane.
The formula for Se2- is Se2- because it represents the ion of selenium that has gained two electrons, giving it a 2- charge.
To know more about reaction visit :-
https://brainly.com/question/11231920
#SPJ1
Calculate the pH of a solution prepared by mixing equal volumes of 0.20 M methylamine (CH3NH2 Kb 3.7x 10-4) and 0.60 M CH3NH3Cl.
The pH of the methylamine solution is 10.11. It is calculated using the expression for pH of the solution.
Methylamine is classified as an example of weak base with K=3.7×10−4. These base partially ionizes in aqueous medium producing hydroxide ion and its conjugate acid, methylammonium that is a weak acid. some of the examples of weak base includes ammonia and dimethylamine.
pH is defined as the acidity denoting "potential of hydrogen" is a scale used to specify the acidity or basicity of an aqueous solution. According to the pH scale acidic solutions are measured to have lower pH values than basic or alkaline solutions. The pH of the solution containing methylamine and methylammonium chloride is given in the terms of,
pH = pKa + log[CH3NH2] / [CH3NH+3]
=−log1.0×10−14 / 3.7×10−4 + log 0.22M / 0.63M
=10.11
To learn more about pH
https://brainly.com/question/26424076
#SPJ4
Gaseous heptane (C7H17) reacts with oxygen gas to produce gaseous carbon dioxide and liquid water.
Answer:
To balance this equation, we need to know the coefficients for each reactant and product. The balanced equation for the reaction is:
C7H17 + 11O2 → 7CO2 + 8H2O
This equation indicates that one molecule of heptane reacts with 11 molecules of oxygen gas to produce seven molecules of carbon dioxide and eight molecules of water.
The stoichiometric coefficients in the balanced equation tell us the relative amounts of each reactant and product in the reaction. For example, one molecule of heptane reacts with 11 molecules of oxygen gas to produce seven molecules of carbon dioxide and eight molecules of water. Therefore, if we have 1 mole of heptane, we need 11 moles of oxygen gas to completely react with it, and we will produce 7 moles of carbon dioxide and 8 moles of water.
To determine the amount of each product that will be produced when a given amount of reactants is used, we need to use stoichiometry. We can convert the mass of heptane and oxygen gas to moles, and then use the stoichiometric coefficients in the balanced equation to calculate the amount of carbon dioxide and water that should be produced.
For example, if we have 10 grams of heptane and 50 grams of oxygen gas, we can calculate the amount of each product that should be produced as follows:
1. Calculate the number of moles of each reactant:
moles of heptane = 10 g / 100.21 g/mol = 0.0999 mol
moles of oxygen gas = 50 g / 31.9988 g/mol = 1.562 mol
2. Determine the limiting reactant:
Using the stoichiometric coefficients in the balanced equation, we can see that 1 mole of heptane reacts with 11 moles of oxygen gas. Therefore, the limiting reactant is heptane, because we only have 0.0999 moles of it, whereas we have 1.562 moles of oxygen gas.
3. Calculate the theoretical yield of each product:
moles of CO2 = moles of heptane × (7 moles of CO2 / 1 mole of C7H17) = 0.6993 mol
moles of H2O = moles of heptane × (8 moles of H2O / 1 mole of C7H17) = 0.7992 mol
mass of CO2 = moles of CO2 × molar mass of CO2 = 0.6993 mol × 44.01 g/mol = 30.77 g
mass of H2O = moles of H2O × molar mass of H2O = 0.7992 mol × 18.015 g/mol = 14.39 g
Therefore, if we have 10 grams of heptane and 50 grams of oxygen gas, the theoretical yield of carbon dioxide is 30.77 grams and the theoretical yield of water is 14.39 grams. Note that the actual yield may be different, depending on the conditions of the reaction and the efficiency of the reaction.
Resuming an efficiency of 30.40%, calculate the actual yield of magnesium nitrate formed from 111.8 g of magnesium and
excess copper(II) nitrate.
Mg + Cu(NO3)2 → Mg(NO3)2+ Cu
actual yield:
Will mark brainly please help
Theoretically, 682.1 g of magnesium nitrate is produced.
How is the magnesium percentage determined?Every sample of a substance will include an identical number of oxygen and magnesium atoms. The mass of an atom is divided by the compound's total mass, multiplied by 100, to determine the percent composition. We aim for an equal number of each sort of atom on both sides when balancing chemical equations. The coefficients are the only thing changed. The numbers in front of the molecule are the coefficients.
What proportion of magnesium is there in mg NO3 2?One mole of the chemical magnesium nitrate weighs 148.33 g. The periodic table lists the other atom masses. Therefore 16.39% Mg, 18.89% N, and 64.72%O make up the mass-percent composition. Mg (s) + O2 (g) MgO (s) is balanced as 2Mg (s) + O2 (g) 2MgO. (s).
To know more about magnesium visit:-
https://brainly.com/question/1533548
#SPJ1
The equilibrium constant expression for a reaction is [CO2]2/[SO2]2[O2]. What is the balanced chemical equation for the overall reaction if one of the reactants is Na2CO3(s).
Answer:
The given equilibrium constant expression is for the reaction:
2 CO2 (g) + 2 SO2 (g) + O2 (g) ⇌ 2 CO2 (g) + 2 SO3 (g)
To incorporate Na2CO3 (s) into this reaction, we need to balance the equation for the reaction involving Na2CO3:
Na2CO3 (s) → Na2O (s) + CO2 (g)
Now, we can combine the two equations by cancelling out CO2 (g) on both sides:
Na2CO3 (s) → Na2O (s) + CO2 (g)
2 CO2 (g) + 2 SO2 (g) + O2 (g) ⇌ 2 CO2 (g) + 2 SO3 (g)
Adding the two equations together, we get the balanced chemical equation for the overall reaction:
Na2CO3 (s) + 2 SO2 (g) + O2 (g) → Na2O (s) + 2 SO3 (g)
The equilibrium constant expression remains the same as [CO2]2/[SO2]2[O2], as CO2 is not involved in the overall reaction.
1. Choose the atom with the larger electronegativity.
Select one:
a. Rubidium
b. Caesium
2. Choose the atom with the larger electronegativity.
Select one:
a. Boron
b. Indium
3. Choose the atom with the larger first ionization energy.
Select one:
a. Titanium
b. Manganese
4. Choose the atom with the larger first ionization energy.
Select one:
a. Silicon
b. Tin
5. Choose the atom with the smaller atomic size.
Select one:
a. Nitrogen
b. Bismuth
6. Choose the atom with the smaller atomic size.
Select one:
a. Arsenic
b. Bromine
Indium has higher electronegativity as compare to Indium, because boron has smaller atomic size.
What is Electronegativity?
Electronegativity is a measure of an atom's ability to attract electrons towards itself when it is chemically combined with another atom. It is a relative scale that ranges from 0.7 to 4.0, with fluorine having the highest electronegativity value of 4.0. The electronegativity of an atom depends on several factors, including the number of protons in its nucleus, its distance from the nucleus, and the shielding effect of inner electrons. The electronegativity value of an element is useful in predicting the polarity of bonds formed between atoms and the distribution of electrons within a molecule.
Boron and Indium are both metallic elements in the same period of the periodic table. However, boron has a smaller atomic size and higher effective nuclear charge than indium. This makes boron a more electronegative element than indium, as the electrons in boron's valence shell are more strongly attracted towards its nucleus than in indium. Therefore, boron has a greater electronegativity than indium.
Learn more about Electronegativity from given link
https://brainly.com/question/24977425
#SPJ1
value: 4
Which of the following energy types are used in medical imaging process?
Light,heat,chemical, radiation
Answer:
radiation is the answer
Molar Volume of Hydrogen continued volume of hydrogenhydrogen gas at STP by the theoretical number of moles of hydrogen to calculate the molar ume of hydrogen fo 4. Divide the volume of r Trials 1 and 2 Results Table Number of moles of H, gas Vapor pressure of water Partial pressure of H2 gas Calculated volume of H2 gas at STP Molar volume of H2 gas Average molar volume 5. What is the average value of the molar volume of hydrogen? Look up the literature value of the molar volume of a gas and calculate the percent error in your experimental determination of the molar volume of hydrogen. l Experimental value - Literature value I Literature value x 100% Percent error 6. One mole of hydrogen gas has a mass of 2.02 g. Use your value of the molar volume of hydrogen to calculate the mass of one liter of hydrogen gas at STP This is the density of hydrogen in g/L. How does this experimental value of the density compare with the literature value? (Consult a chemistry handbook for the density of hydrogen.) Laboratory Experiments for Geทeral, Organic and Biolo Molar Volume of Hydrogen continued 7. In setti e water bath. What effect would this have on the measured volume of hydrogen gas? Would the c r voltume of hydrogen be too high or too low as a result of this error? Explain. invertenx u) this experiment, a student noticed that a bubble of air leaked into the graduated cylinder when it was d in the te 8. A student noticed that the silver and shiny. Wh magnesium ribbon appeared to be oxidized-the metal surface was black and dull rather at effect would this error have on the measured volume of hydrogen gas? Would the cal than culated molar volume of hydrogen be too high or too low as a result of this error? Explain. 9. (Optional) Your instructor wants to scale up this experiment for demonstration purposes and would like to collect the gas in an inverted 50-mL, buret at room temperature. Use the ideal gas law to calculate the maximum amount or length of magnesium ribbon that may be used. Laboratory Experiments for General, Organic and Biological Cbemistry7
The average value of the molar volume of hydrogen is 24.0 liters per mole (L/mol).
To calculate the percent error in the experimental determination of the molar volume of hydrogen, you must subtract the experimental value from the literature value and divide by the literature value.
Then, multiply this result by 100% to obtain the percent error.One liter of hydrogen gas at STP has a mass of 0.090 grams, which is the experimental value of the density of hydrogen. This value is lower than the literature value, which is 0.089 grams per liter (g/L).
In this experiment, if a bubble of air leaked into the graduated cylinder when it was placed in the water bath, the calculated molar volume of hydrogen would be too high as a result of this error.
This is because the presence of the bubble of air would increase the measured volume of hydrogen gas.If the magnesium ribbon appeared to be oxidized, the calculated molar volume of hydrogen would be too low as a result of this error.
This is because the oxidation of the magnesium ribbon would reduce the amount of hydrogen gas produced, resulting in a lower measured volume of hydrogen gas. For demonstration purposes, the ideal gas law may be used to calculate the maximum amount or length of magnesium ribbon that may be used.
The ideal gas law equation is PV = nRT, where P is the pressure, V is the volume, n is the amount of substance, R is the ideal gas constant, and T is the temperature. Knowing the desired volume of the gas, the amount of substance can be calculated.
For more such questions on hydrogen
https://brainly.com/question/24433860
#SPJ11
Science Grade 5. 5 Importance of sound
The movement of airborne particles is caused by every vibrating item. This motion, which lasts until the particle runs out of power, produces sound waves.
Why is sound significant to children?The development of children includes sound from the time they are born. White noise, lullabies, and the voices of their parents are soothing to infants, and as they get older, other sounds aid in their connection and learning.
A good brief note It is what?Plasma molecules of a air surrounding an item vibrate as a result. Nearby molecules that come into contact with these molecules vibrate as a result. They consequently run across additional air molecules in the area.
To know more about particle visit:
https://brainly.com/question/2288334
#SPJ1
The correct question is
Explain the importance of sound in our daily life .
For the partially completed Lewis structures, pick the correct Lewis structure.
How many Valence Electrons total overall?
The correct Lewis structures of the compounds that we have in the question have been shown in the images attached.
What is the Lewis structure?A Lewis structure is a diagram that shows the bonding between atoms in a molecule and the arrangement of electrons around the atoms. It is also known as a Lewis dot structure, Lewis dot diagram, or electron dot structure.
Lewis structures are useful in predicting the geometry of molecules and determining the polarity of molecules. They are also helpful in understanding the reactivity of molecules and how they interact with other molecules.
Learn more about Lewis structure:https://brainly.com/question/20300458
#SPJ1
what happens when zinc chloride reacts with potassium hydroxide and what formed?
Answer:
when the solution of potassium hydroxide and zinc chloride are mixed,the double-displacement reaction occur ,resulting in precipitation and the reaction forms potassium chloride and zinc hydroxide .
metals that have luster are usually called as______
Answer:
lusterous metal
Explanation:
ex gold, iron etc hope it helps
Which value for Kc indicates an equilibrium that strongly favors reactants?
Select the correct answer below:
562
11.7
1.1
0.00496
0.00496 is the correct option for the equilibrium constant that strongly favors the reactants, according to the given problem.
Kc is the equilibrium constant for a reversible reaction. It is used to describe the equilibrium state of a chemical reaction. It is a constant value that indicates how much of a product will be produced at equilibrium for a given set of reactants. If Kc is larger than 1, the equilibrium will favor products. If Kc is less than 1, the equilibrium will favor reactants. So, the value for Kc that indicates an equilibrium that strongly favors reactants is 0.00496. When Kc is less than 1, the reaction equilibrium will be in favor of the reactants. If Kc is very small, it indicates that very little product is formed at equilibrium, implying that most of the reactants remain in equilibrium. A reaction that has a value of Kc less than 1 means that the forward reaction is less favored than the reverse reaction, indicating that the products will be less in quantity compared to the reactants. As a result, the equilibrium strongly favors the reactants.
To learn more about Equilibrium :
https://brainly.com/question/19340344
#SPJ11
identify which of the following atoms would have the lowest first ionization energy. a) ca b) c c) ge d) p e) cl
The atom with the lowest first ionization energy is C (carbon). The order from highest to lowest is: e) Cl (chlorine) > d) P (phosphorus) > c) Ge (germanium) > b) C (carbon) > a) Ca (calcium).
The atom that would have the lowest first ionization energy is Ca (Calcium). The amount of energy that is required to remove the most loosely held electron from an isolated neutral gaseous atom to form a cation is called the first ionization energy. It is a measure of the stability of an atom. The ionization energy of an element is determined by the amount of energy required to remove an electron from its ground state. The ionization energy is a physical property of an element that varies across the periodic table. The element that has the lowest ionization energy is the most reactive and will most likely form cations.
Identify which of the following atoms would have the lowest first ionization energy. The given atoms are Ca, C, Ge, P, and Cl. Out of these atoms, Ca would have the lowest first ionization energy. The electronic configuration of Ca is 2, 8, 8, 2. Calcium belongs to group 2 and period 4 of the periodic table. It has 20 protons, 20 electrons, and 2 valence electrons. Because of its 2 valence electrons, it has a low ionization energy. The electronic configuration of Ca is most stable because of the presence of the 8 valence electrons in the outermost shell.
The electronic configurations of the other given atoms are:
C: 2, 4Ge: 2, 8, 18, 4P: 2, 8, 5Cl: 2, 8, 7
All of these elements have electrons that are either in the process of filling the valence shell or have already filled it. They have higher ionization energies because of this. Therefore, Ca would have the lowest first ionization energy.
For more such questions on ionization energy , Visit:
https://brainly.com/question/20658080
#SPJ11
Reaction:
N2 + 3H2 ------> 2NH3
Question 1: Calculate the mass of N2 needed to react with 10 g of H2
Question 2: Calculate the mass of N2 needed to produce 15 g of NH3
Explanation:
The reactant contains 2N and 6H
The product contains 2N and 6H
Therefore, the chemical equation is balanced
From the equation, for every 1 mole of N2 that reacts, 3 moles of H2 are required.
We know 28.6 grams of N2 reacted, but we don’t know the mass ratio but just the mole ratio, so we have to convert 28.6 grams of N2 to the corresponding moles of N2.
From the periodic table, the molar mass of N is about 14 g/mol, so the molar mass of nitrogen gas or N2 is two times of that which is 28 g/mol.
With this, we can calculate moles of N2, but we also need to make sure the equation is setted up the right way.
Looking at the units, if we cancel out the grams, we are left with mol. We also know that in multiplication, numerator of one number cancel with the denominator of another number and vice versa
So the equation looks like this 28.6g * mol/28g = 1.021 mol N2
So the number of moles of H2 required is 1.021 mol N2 * 3 mol H2/1 mol N2 = 3.063 mol H2 (notice that mol N2 canceled out, so the equation is set up correctly)
However, the question ask for number of grams of H2 needed, so we need the molar mass of hydrogen gas or H2, which is 1*2 = 2 g/mol
3.063 mol H2 * 2 g H2/ mol H2 = 6.126 g H2
Ans: 6.126 g H2
The period of a wave is directly proportional to the wavelength of the wave. True or False
The period of a wave is directly proportional to the wavelength of the wave. True
What is the relationship between a wave's wavelength and its period?Period is the time it takes to complete one cycle of a wave, and wavelength is the distance between two identical locations in the neighbouring cycles of a wave. The number of cycles in a second is defined as frequency. In other terms, frequency = 1 / period.
An electromagnetic wave's wavelength is proportional to its frequency. Likewise, an electromagnetic wave's frequency is equal to the reciprocal of its period.
learn more about period of a wave
https://brainly.com/question/22059232
#SPJ1
Which of the following options correctly relate the physical properties of aldehydes and ketones to their structural features? Select all that apply.
Aldehydes and ketones are polar; they therefore exhibit dipole-dipole interactions between their molecules.
The strength of the dispersion forces between the molecules of such compounds generally increases as molecular size increases.
Aldehydes and ketones can form hydrogen bonds to H2O; shorter chain aldehydes and ketones are therefore water soluble.
The physical properties of aldehydes and ketones are related to their structural features in the following ways: they are polar molecules and therefore exhibit dipole-dipole interactions, and their strength of dipole-dipole interactions increases with increasing molecular size.
The physical properties of aldehydes and ketones are related to their structural features in the following ways.
Aldehydes and ketones are polar molecules, meaning they have regions of positive and negative charge that create a dipole-dipole interaction between their molecules. This interaction is what causes them to be attracted to other molecules and increases their reactivity. The strength of the dipole-dipole interactions generally increases as the molecular size increases.
Aldehydes and ketones can also form hydrogen bonds with water molecules. Shorter chain aldehydes and ketones are more likely to form hydrogen bonds due to their smaller size, making them more soluble in water.
Additionally, shorter chain aldehydes and ketones can form hydrogen bonds with water molecules and are more water soluble.
For more such questions on ketones
https://brainly.com/question/23849260
#SPJ11
Reread the Matthew Holding case study.
a) Given the evidence presented in the case study, briefly support each of the following claims:
i. The bodies were buried in the mountains or foothills of the mountains.
ii. Soil was taken from a mining area.
iii. Soil was moved from an area below the surface.
iv. The shovel had been used both to dig up and to tamp down the soil.
v. The soil at the gravesite and on the shovel were consistent with each other.
vi. Animals helped solve the crime.
b) List the different types of analysis used to compare the soil found on the shovel and the soil found at the crime scene.
i. The remains were interred on the foothills or mountainsides, ii. A mining region provided the soil, iii. Dirt was transferred from a subsurface location, iv. The soil had been dug up and compacted using a shovel.
The soil samples collected from the burial contained rocks and minerals that are typically found in mountainous areas, which lends credence to the assertion that the victims were interred in the highlands or foothills of the mountains.
ii. Soil was collected from a mining area: The discovery of iron, copper, and other minerals typical of mining sites lends credence to this argument.
iii. Subsurface dirt was moved: This assertion is confirmed by the presence of a layer of subsoil in the soil samples that was distinct from the top soil.
iv. The soil had been dug up and compacted using a shovel: The presence of both loose and compacted soil in the soil samples lends credence to this assertion.
v. The earth on the shovel and at the gravesite matched each other: The fact that the shovel and burial dirt samples both contained identical minerals and had comparable chemical compositions lends credence to this assertion.
vi. Animals played a role in the crime's resolution: This assertion is reinforced by the fact that the grave's surroundings had been disturbed by animals, which led detectives to the location of the grave.
b) The various methods of examination employed to contrast the soil discovered on the shovel and the soil discovered at
Learn more about the soil here:
https://brainly.com/question/29378913
#SPJ4
Polar air is often described as dry even though the relative humidity is high. This is because in polar regions a the dew point and air temperature are normally close together Ob. there is a large separation between dew point and air temperature c. the air has a high absolute humidity Od there is a high dew point temperature
Polar air is often described as dry because there is a large separation between the dew point and air temperature. This occurs because the air is usually very cold and has a low absolute humidity.
Polar air is often described as dry even though the relative humidity is high. This is because in polar regions there is a large separation between dew point and air temperature.In polar regions, the air is very cold, and therefore has very little moisture. This means that the relative humidity of the air is very high, but the actual amount of moisture in the air is very low. This is because cold air cannot hold as much moisture as warm air. When the temperature of the air drops, the amount of moisture that it can hold also decreases.
As a result, the relative humidity of the air increases, even though the actual amount of moisture in the air is very low.
The relative humidity is high because the dew point and air temperature are close together. This means that the amount of water vapor in the air is low, making it feel dry.
For more such questions on Polar air , Visit:
https://brainly.com/question/28716318
#SPJ11
50.0 g of sample B has 31.65g Xe and 18.35 g F. What is the percent by mass Xe in sample B?
According to the question the percent by mass Xe in sample B is 63.3%.
What is mass?Mass is a measure of the amount of matter in an object. It is usually measured in kilograms or grams, but it can also be expressed in other units such as pound or ton. Mass is different than weight, which is a measure of the force of gravity acting on an object. Mass is constant regardless of the gravity a certain object is exposed to, while weight will change depending on the gravity.
The percent by mass Xe in sample B is equal to the mass of Xe in sample B divided by the total mass of sample B multiplied by 100. This equation can be written as:(mass of Xe in sample B / total mass of sample B) × 100
Plugging in the values for the mass of Xe in sample B (31.65g) and the total mass of sample B (50.0g), we get:
(31.65 g / 50.0 g) × 100 = 63.3%
Therefore, the percent by mass Xe in sample B is 63.3%.
To learn more about mass
https://brainly.com/question/24191825
#SPJ1
A chemist prepares a solution of potassium permanganate (KMnO4) by measuring out 36. mol of potassium permanganate into a 500. mL volumetric flask
and filling the flask to the mark with water.
Calculate the concentration in mol/L of the chemist's potassium permanganate solution. Be sure your answer has the correct number of significant digits.
The concentration of the potassium permanganate solution is 72 mol/L. The answer has three significant figures because the volume of the flask has only one significant figure.
How The answer was obtainedThe concentration of the potassium permanganate solution can be calculated using the formula:
concentration = moles of solute / volume of solution
where the volume of solution is in liters.
First, we need to convert the volume of the flask from milliliters to liters:
500 mL = 0.500 L
Next, we can calculate the concentration of the solution:
concentration = 36. mol / 0.500 L
concentration = 72 mol/L
The concentration of the potassium permanganate solution is 72 mol/L. The answer has three significant figures because the volume of the flask has only one significant figure.
Learn more on calculating chemical concentrations here https://brainly.com/question/28564792
#SPJ1
A gas is at 35.0°C and 4.50 L. What is the temperature of the gas if the volume is increased to 9.00 L?
A gas is at 35.0°C and 4.50 L. What is the temperature of the gas if the volume is increased to 9.00 L?
65.0°C
343°C
17.5°C
1.16°C
614°C
Answer: 343 Celsius
Explanation:
Gay lussac law
T2=T1V2/V1 Temp must be in Kelvin
T2= 308.15 X 9.00 / 4.50 =616.30 K - 273.15 to get back in celsius
=343.15 C
which the following optically active alcohol is treated with hbr, a racemic mixture of alkyl bromides is obtained
(S)-2-butanol will undergo an SN2 reaction with HBr to produce a racemic mixture of alkyl bromides. Here option B is the correct answer.
When optically active alcohol is treated with HBr, the reaction follows an SN1 or SN2 mechanism. In the case of SN1, a carbocation intermediate is formed, and in SN2, a backside attack by the nucleophile occurs. The stereochemistry of the product depends on the configuration of the intermediate and the direction of attack.
In the case of (S)-2-butanol, the hydroxyl group is attached to the second carbon atom, which makes it a primary alcohol. When treated with HBr, it undergoes an SN2 reaction, where the hydroxyl group is replaced by the bromine atom. The nucleophile attacks from the backside of the molecule, leading to an inversion of configuration.
This results in the formation of a racemic mixture of alkyl bromides, as both enantiomers have an equal chance of being attacked from either side. On the other hand, (R)-2-butanol, being the enantiomer of (S)-2-butanol, will also undergo the same reaction and produce the same racemic mixture of alkyl bromides.
In the case of (R)-1-phenyl ethanol and (S)-1-phenyl ethanol, they are secondary alcohols and can undergo either SN1 or SN2 reactions depending on the reaction conditions. However, the reaction mechanism will lead to the formation of a mixture of diastereomers, rather than a racemic mixture of enantiomers.
To learn more about alkyl bromides
https://brainly.com/question/29031148
#SPJ4
Complete question:
Which of the following optically active alcohols, when treated with HBr, results in a racemic mixture of alkyl bromides?
a) (R)-2-butanol
b) (S)-2-butanol
c) (R)-1-phenyl ethanol
d) (S)-1-phenyl ethanol
Co(NH3)6³ has a maximum absorbance in the UV-Vis of 475 nm and appears yellow-
orange. If we assume this is due to the crystal field splitting, what is A in J/molecule?
What is A in kJ/mole?
The molar absorptivity A for Co(NH3)6³ at 475 nm is 251.5 kJ/mol.
What is Molar Absorptivity?
Molar absorptivity, also known as molar extinction coefficient, is a measure of how strongly a substance absorbs light at a particular wavelength. It is defined as the absorption coefficient divided by the concentration of the absorbing species and the path length of the sample:
To calculate A in J/molecule, we can use the formula:
A = hc / λmax
where A is the molar absorptivity in J/molecule, h is Planck's constant (6.626 x 10^-34 J s), c is the speed of light (2.998 x 10^8 m/s), and λmax is the wavelength of maximum absorbance in meters.
Converting the wavelength of maximum absorbance from nm to meters, we have:
λmax = 475 nm * (1 m / 10^9 nm) = 4.75 x 10^-7 m
A = (6.626 x 10^-34 J s) * (2.998 x 10^8 m/s) / (4.75 x 10^-7 m)
= 4.18 x 10^-17 J/molecule
Therefore, the molar absorptivity A for Co(NH3)6³ at 475 nm is 4.18 x 10^-17 J/molecule.
To convert this value to kJ/mol, we can use the formula:
A (kJ/mol) = A (J/molecule) * N (Avogadro's number) / 1000
where N = 6.022 x 10^23 mol^-1 is Avogadro's number.
Substituting the values, we get:
A (kJ/mol) = (4.18 x 10^-17 J/molecule) * (6.022 x 10^23 mol^-1) / 1000
= 251.5 kJ/mol
Therefore, the molar absorptivity A for Co(NH3)6³ at 475 nm is 251.5 kJ/mol.
Learn more about Molecule from given link
https://brainly.com/question/14981425
#SPJ1
what is the independent variable and the dependent variable in which cleans teeth better baking soda or toothpaste project.
Answer:
The dependent variable would be the whitening of the teeth of the participants.
Explanation:
How many silicon atoms are in a piece of glass weighing 6.240
Assuming that the glass is made entirely of silicon dioxide (SiO2), which is a common component of glass, we can calculate the number of silicon atoms based on the molecular weight of SiO2 and the weight of the glass.
How many silicon atoms are in a piece of glass weighing 6.240?The molecular weight of SiO2 is approximately 60 g/mol. Therefore, 6.240 g of SiO2 corresponds to:
6.240 g SiO2 × (1 mol SiO2/60 g SiO2) = 0.104 mol SiO2
Since each molecule of SiO2 contains one silicon atom, the number of silicon atoms in the piece of glass can be calculated by multiplying the number of moles of SiO2 by Avogadro's number (6.022 × 10^23 atoms/mol):
0.104 mol SiO2 × (6.022 × 10^23 atoms/mol) = 6.26 × 10^22 silicon atoms
Therefore, there are approximately 6.26 × 10^22 silicon atoms in a piece of glass weighing 6.240 g, assuming the glass is made entirely of SiO2.
Learn more about density from
https://brainly.com/question/15891311
#SPJ1
Part 1. A lightly inflated balloon is placed in a freezer. Explain the change to the size of the balloon based on the kinetic molecular theory.
Part 2. What would most likely happen to the balloon if it was instead kept outside in the sun for some time? Explain your answer based on the kinetic molecular theory.
In both cases, assume the balloon is tied tight enough so that air does not escape.
Part 1: When a lightly inflated balloon is placed in a freezer, the temperature of the air molecules inside the balloon decreases. According to the kinetic molecular theory, the volume of a gas is directly proportional to its temperature. As the temperature of the air molecules inside the balloon decreases, the average kinetic energy of the air molecules also decreases, causing the gas to contract. This contraction leads to a decrease in the volume of the gas inside the balloon, which causes the balloon to shrink in size.
Part 2: If the balloon is instead kept outside in the sun for some time, the temperature of the air molecules inside the balloon will increase. According to the kinetic molecular theory, an increase in temperature leads to an increase in the average kinetic energy of the gas molecules, causing them to move faster and collide more frequently. This increased collision frequency leads to an increase in pressure, which causes the balloon to expand in size. Therefore, the balloon will most likely get bigger when it is exposed to the heat of the sun.
Answer:
simple answer
Explanation:
part 1: if the balloon's temperature decreases so does the air molecules within it. The gas contracts because it's in a seal place, causing the balloon to shrink.
part 2: the balloon is exposed to heat, so the temperature is obviously going to increase as well as the air molecules. Gas molecules are moving rapidly causing the balloon to expand.
i need help with the question below
how much molecules of sugar (sucrose) are in 4g of sugar?
Taking into account the definition of Avogadro's Number, 7.2276×10²¹ moles of sugar are in 4 g of sugar.
Definition of Avogadro's NumberAvogadro's number is the number of elementary entities (ie atoms, electrons, ions, molecules) that exist in one mole of any substance.
Its value is 6.023×10²³ particles per mole. Avogadro's number applies to any substance.
Definition of molar massThe molar mass of substance is a property defined as its mass per unit quantity of substance, in other words, it is the amount of mass that a substance contains in one mole.
Number of molecules of sugarFirst, the molar mass of sugar is 342 g/mole and the following rule of three can be applied: If by definition of molar mass 342 g of sugar are contained in 1 mole, 4 g of sugar are contained in how many moles of the compound?
moles of sugar= (4 g of sugar× 1 mole)÷342 g of sugar
moles of sugar= 0.012 moles
Now you can apply the following rule of three: 1 mole of the compound contains 6.023×10²³ molecules, 0.012 mole of the compound contains how many molecules?
amount of molecules= (6.023×10²³ molecules × 0.012 mole)÷ 1 mole
amount of molecules= 7.2276×10²¹ moles
Finally, 7.2276×10²¹ moles of sugar are present.
Learn more about Avogadro's Number:
brainly.com/question/11907018
#SPJ1