Choose the statement that best describes why antimatter is very rare today.
A. As the universe expands, antimatter is converted into dark matter, resulting in only a very small amount of antimatter left from the early universe.
B. Antimatter is not a stable form of matter and spontaneously decays into energy and ordinary particles
C. Right after the big bang, there was more ordinary matter than antimatter, when the two types annihilated, only the ordinary matter remained.
D. In order to power fusion in their cores, stars require small amounts of antimatter and have used up the large supply available from the early universe

Answers

Answer 1

The statement that best describes why antimatter is very rare today is B. Antimatter is not a stable form of matter and spontaneously decays into energy and ordinary particles. This means that any antimatter that was present in the early universe would have decayed into energy and ordinary matter, leaving behind only a very small amount of antimatter. Additionally, creating antimatter requires a lot of energy and is difficult to produce and store, making it even more rare in the universe.

learn more about spontaneously decays

https://brainly.in/question/9445973?referrer=searchResults

#SPJ11


Related Questions

what do astronomers think is the origin of the many irregular moons around the outer planets (irregular meaning they are orbiting backwards and/or have eccentric orbits)? a. these moons were likely formed elsewhere and captured by the giant planets b. these moons are fragments of a much larger moon around each planet that exploded c. these moons were expelled by volcanoes on the surfaces of the giant planets d. these moons had an early interaction with the rings of the giant planets and were moved to strange orbits as a result e. astronomers have no idea about why these irregular moons exist; it's a complete mystery

Answers

The origin of irregular moons around the outer planets is still a topic of debate among astronomers. However, the most widely accepted explanation is that these moons were likely formed elsewhere in the solar system and captured by the giant planets. Option a is Correct.

Many irregular moons have compositions that are similar to those of Kuiper Belt Objects or other small bodies in the outer solar system, suggesting that they formed in the same region. In addition, their highly eccentric orbits and backward orbital periods suggest that they were captured by the giant planets after their formation.

Other explanations, such as the idea that these moons were fragments of a larger moon around each planet that exploded, or that they were expelled by volcanoes on the surfaces of the giant planets, are less widely accepted. Similarly, the idea that these moons had an early interaction with the rings of the giant planets and were moved to strange orbits as a result is also considered unlikely. Option a is Correct.

Learn more about astronomers Visit: brainly.com/question/1141458

#SPJ4

find the change in entropy of the h2o molecules when (a)2.39 kilograms of ice melts into water at 273 k and (b)2.79 kilograms of water changes into steam at 373 k.

Answers

(a) The change in entropy of the H2O molecules is approximately 2927.97 J/K for the melting process.

( b) The change in entropy of the H2O molecules 16,890.08 J/K for the vaporization process.

How to calculate change in entropy?

To find the change in entropy of H2O molecules, we can use the formula:

ΔS = q/T

where:

ΔS is the change in entropy,

q is the heat transfer, and

T is the temperature.

When 2.39 kilograms of ice melts into water at 273 K:

First, we need to calculate the heat transfer (q) during the phase change from solid to liquid. The heat transfer can be calculated using the equation:

q = m * ΔH

where:

m is the mass of the substance, and

ΔH is the heat of fusion for the substance.

For H2O, the heat of fusion is approximately 334 J/g.

Converting the mass of ice to grams:

mass = 2.39 kg * 1000 g/kg = 2390 g

Calculating the heat transfer:

q = 2390 g * 334 J/g = 798,860 J

Now, we can calculate the change in entropy:

ΔS = q / T = 798,860 J / 273 K = 2927.97 J/K

Therefore, the change in entropy when 2.39 kilograms of ice melts into water at 273 K is approximately 2927.97 J/K.

How to calculate entropy change when water changes to steam?

When 2.79 kilograms of water changes into steam at 373 K:

we need to calculate the heat transfer (q) during the phase change from liquid to gas. The heat transfer can be calculated using the equation:

q = m * ΔH

For H2O, the heat of vaporization is approximately 2260 J/g.

Converting the mass of water to grams:

mass = 2.79 kg * 1000 g/kg = 2790 g

Calculating the heat transfer:

q = 2790 g * 2260 J/g = 6,301,400 J

Now, we can calculate the change in entropy:

ΔS = q / T = 6,301,400 J / 373 K = 16,890.08 J/K

Therefore, the change in entropy when 2.79 kilograms of water changes into steam at 373 K is approximately 16,890.08 J/K.

Learn more about Entropy

brainly.com/question/20166134

#SPJ11

Consider this sentence: "Ocean acidification is not just a problem for marine life, but it is a problem for humans as well. " This sentence is a

Answers

The given sentence is a complex sentence. It is a complex sentence because it has two independent clauses, and one of them is dependent. It has an independent clause "Ocean acidification is not just a problem for marine life" and a dependent clause "but it is a problem for humans as well."

The dependent clause "but it is a problem for humans as well" cannot stand on its own as a sentence. It depends on the independent clause to make sense. Hence, it is a dependent clause. Together, the independent and dependent clauses form a complex sentence.Ocean acidification is a huge problem that impacts marine life and humans in different ways. Marine life is directly impacted by ocean acidification, especially species such as coral reefs that are sensitive to pH changes. As the oceans absorb more carbon dioxide, the pH of seawater decreases and becomes more acidic. This acidity makes it difficult for marine organisms to produce shells and skeletons. In addition, it can impact their metabolism, growth, and reproduction.Humans are also impacted by ocean acidification, but in a different way. Oceans are an important source of food for humans, with many people depending on fish and other seafood for their protein needs. However, as marine life is impacted by ocean acidification, it can affect the availability of seafood and impact the livelihoods of people who depend on the ocean for their income. In addition, the acidity of seawater can also impact the tourism industry, which relies on healthy marine ecosystems for activities such as diving and snorkeling.In conclusion, ocean acidification is a complex issue that impacts both marine life and humans. As the ocean continues to absorb more carbon dioxide, it is important that we take action to reduce our carbon footprint and protect the health of our oceans.

learn more about complex sentence Refer: https://brainly.com/question/32051562

#SPJ11

complete question: Consider this sentence: "Ocean acidification is not just a problem for marine life, but it is a problem for humans as well. " This sentence is a simple, compound, complex, or compound complex

When a mass is attached to a spring, the period of oscillation is approximately 2.0 seconds. When the mass attached to the spring is doubled, the period of oscillation is most nearly a) 0.5 s b) 1.0 s c) 1.4 s d) 2.0 s e) 2.8 s

Answers

The period of oscillation when the mass is doubled is 2.8 seconds.

So, the correct answer is E

When a mass is attached to a spring, the period of oscillation (T) depends on the mass (m) and the spring constant (k), according to Hooke's law.

The formula for the period is T = 2π√(m/k).

In the initial scenario, T₁ = 2.0 seconds.

When the mass is doubled, the new period T₂ can be found using the same formula, but with the doubled mass (2m).

To calculate T₂, we have T₂ = 2π√(2m/k).

Dividing the second equation by the first equation, we get T₂/T₁ = √2.

Since T₁ is 2.0 seconds, T₂ = 2.0 * √2, which is approximately 2.8 seconds.

Based on the calculation, the period of oscillation is option E) 2.8 seconds.

Learn more about Hooke's law at

https://brainly.com/question/29126957

#SPJ11

A constant horizontal force of 150 N is applied to a lawn roller in the form of a uniform solid cylinder of radius 0.4 m and mass 13 kg . If the roller rolls without slipping, find the acceleration of the center of mass. The acceleration of gravity is 9.8 m/s^2. Answer in units of m/s^2. Then, find the minimum coefficient of friction necessary to prevent slipping.

Answers

The acceleration of the center of mass of the lawn roller is 1.21 m/s². The minimum coefficient of friction necessary to prevent slipping is 0.27.

The torque due to the applied force causes the lawn roller to undergo both linear and angular acceleration. Since the lawn roller rolls without slipping, the acceleration of the center of mass is related to the angular acceleration as a = αr, where α is the angular acceleration and r is the radius of the cylinder.

The net torque on the lawn roller is given by τ = Fr, where F is the applied force. Equating τ to Iα, where I is the moment of inertia of the cylinder, gives us α = F/(I+mr²), where m is the mass of the cylinder. Substituting the given values, we get α = 2.63 rad/s². Therefore, a = αr = 1.21 m/s².

In order for the lawn roller to not slip, the force of static friction between the roller and the ground must be greater than or equal to the maximum static friction force, which is equal to the coefficient of static friction μs multiplied by the normal force.

The normal force is equal to the weight of the cylinder, which is mg, where g is the acceleration due to gravity. Therefore, we need μs ≥ F/(mg) = 0.27, where F is the applied force, m is the mass of the cylinder, and g is the acceleration due to gravity.

To know more about acceleration, refer here:

https://brainly.com/question/31479424#

#SPJ11

silicon has three naturally occurring isotopes: 92.238si (27.9769 u) 4.679si (28.9765 u) 3.100si (29.9738 u). first estimate then calculate the average atomic mass of silicon.

Answers

The estimated average atomic mass of silicon is 28.0855 u.

To estimate the average atomic mass of silicon, we can use the relative abundance of each of its isotopes and their atomic masses.

The atomic mass of an element is calculated as the weighted average of the atomic masses of its isotopes, where the weighting factor is the relative abundance of each isotope.

Let's denote the atomic mass of each isotope by Ai and its relative abundance by xi. Then, the average atomic mass of silicon can be calculated as:

Average atomic mass of Si = x1A1 + x2A2 + x3A3

where x1, x2, and x3 are the relative abundances of 92.238Si, 94.679Si, and 96.973Si, respectively.

From the given data, we know that:

x1 = 0.92238 (or 92.238%)

x2 = 0.04679 (or 4.679%)

x3 = 0.03100 (or 3.100%)

and

A1 = 27.9769 u

A2 = 28.9765 u

A3 = 29.9738 u

Using these values, we can calculate the average atomic mass of silicon as:

(0.92238 x 27.9769 u) + (0.04679 x 28.9765 u) + (0.03100 x 29.9738 u) = 28.0855 u

Therefore, the estimated average atomic mass of silicon is 28.0855 u.

To calculate the actual average atomic mass of silicon, we can use more precise measurements of the relative abundances of its isotopes. However, the estimated value provides a good approximation of the actual value and is commonly used in most applications.

To know more about atomic mass, refer to the link below:

https://brainly.com/question/13753702#

#SPJ11

the primary reason that nuclear fusion has proven difficult to adapt for commercial power generation is that

Answers

The primary reason that nuclear fusion has proven difficult to adapt for commercial power generation is option C: nuclei repel each other due to their positive charges.

What is the nuclear fusion?

In nuclear fusion, two atomic nuclei are brought close enough together for the strong nuclear force to overcome the electrostatic repulsion between the positively charged protons within the nuclei.

However, the repulsion between positively charged particles poses a significant challenge in achieving and sustaining fusion reactions.

To initiate fusion, the fuel, typically isotopes of hydrogen, needs to be heated to extremely high temperatures to overcome the repulsive forces. These high temperatures create a plasma state where the particles are ionized and can overcome their repulsion.

Furthermore, maintaining the plasma in a stable state and preventing it from cooling or dispersing requires precise confinement using powerful magnetic fields or intense laser beams.

Controlling the plasma and preventing it from contacting the walls of the containment vessel is critical to achieve and sustain the conditions necessary for fusion reactions.

While factors such as fuel availability and fuel purification are important considerations, the primary challenge in achieving commercial fusion power lies in overcoming the repulsion between positively charged nuclei.

Therefore, Option (C) The main obstacle to using nuclear fusion for commercial power generation is the repulsion between positively charged atomic nuclei.

To know more about atomic nuclei, refer here:

https://brainly.com/question/3992688#

#SPJ4

Complete question here:

The primary reason that nuclear fusion has proven difficult to adapt for commercial power generation is that

A. the possible fuel is scarce.

B. the fuel is difficult to purify.

C. nuclei repel each other due to their positive charges.

D. the temperatures involved are too low for efficient production.

The electric and magnetic fields associated with a plane wave in some lossless material medium (e=e_0 e_r, mu=mu_0 mu_r) are given by: e(x, t) = 1 .0zcos(2pi times 10^9 t + 133.33 pi x) (V/m) h(x, t) = (0.0002654)y cos (2pi times 10^9 t + 133.33 pi x) A/m) Find the following: a) The frequency f in Hz: b) The wavelength lambda in meters in this material: c) The phase velocity v_p in m/s: d) The intrinsic impedance:

Answers

a) The frequency f in Hz:

The frequency is given as 10^9 Hz.

b) The wavelength lambda in meters in this material:

The wavelength of the wave is given by λ = v/f, where v is the phase velocity and f is the frequency. Therefore, λ = v/f = (2π/133.33) m ≈ 0.0472 m.

c) The phase velocity v_p in m/s:

The phase velocity of the wave is given by v_p = ω/k, where ω is the angular frequency and k is the wave number. We can find ω from the equation ω = 2πf, and k from the equation k = 2π/λ. Therefore, v_p = ω/k = fλ = 3×10^8 m/s, which is the speed of light in vacuum.

d) The intrinsic impedance:

The intrinsic impedance of the medium is given by Z = √(μ/ε), where μ is the permeability of the medium and ε is the permittivity of the medium. Therefore, Z = √(μ_rμ_0 / (e_rε_0)) = √(μ_r/ε_r) × 376.73 Ω. Substituting the given values, we get Z = (μ_0/ε_0) × √(μ_rε_r) = 120π Ω.

To learn more about frequency refer here:

https://brainly.com/question/5102661#

#SPJ11

Find the magnitude of the magnetic flux through a 6.2-cm-diameter circular loop oriented with the loop normal at 36∘ to a uniform 75-mT magnetic field. Aswer in mWb please! I have done this question so many times and got 1.83*10^-4 and it's wrong, I've also put it in as 18.3 and it is still wrong, I dont know why! Pleaase help!

Answers

The magnitude of the magnetic flux through the circular loop is 0.119 mWb.

To find the magnitude of the magnetic flux through a circular loop oriented at an angle to a uniform magnetic field, we use the formula:

Φ = BAcos(θ)

where Φ is the magnetic flux, B is the magnetic field, A is the area of the loop, and θ is the angle between the magnetic field and the normal to the loop.

In this case, the diameter of the loop is 6.2 cm, so its radius is 3.1 cm or 0.031 m. The area of the loop is then:

[tex]$A = \pi r^2 = \pi (0.031 \text{ m})^2 = 0.00302 \text{ m}^2$[/tex]

The magnetic field is given as 75 mT or 0.075 T. The angle between the magnetic field and the normal to the loop is given as 36°. However, it is not clear from the question whether this angle is the angle between the magnetic field and the plane of the loop or the angle between the magnetic field and the normal to the plane of the loop. If it is the former, we need to use the complement of this angle (54°) in the formula above. If it is the latter, we can use 36° directly. For the purpose of this answer, we will assume that it is the angle between the magnetic field and the plane of the loop.

Therefore, the angle between the magnetic field and the normal to the loop is:

θ = 90° - 36° = 54°

Now we can calculate the magnetic flux:

[tex]$\Phi = B A \cos(\theta) = 0.075 \text{T} \times 0.00302 \text{m}^2 \times \cos(54^\circ) = 1.19 \times 10^{-4}\text{Wb}$[/tex]

Note that the answer is given in webers (Wb), not milliwebers (mWb). To convert webers to milliwebers, we multiply by 1000:

[tex]Φ = 1.19 \times 10^-4 Wb = 0.119 mWb[/tex]

To learn more about magnitude

https://brainly.com/question/14452091

#SPJ4

An object of mass 2kg has a position given by * = (3 + 7t2 + 8+)1 + (6 + 4) wheret is the time in seconds and the units on the numbers are such that the position components are in meters. What is the magnitude of the net force on this object, to 2 significant figures? A) zero B) 28 N C) 96 N D) 14 N E) The net force is not constant in time

Answers

The magnitude of the net force on the object is not constant in time. The correct answer will be option E (The net force is not constant in time).

The net force acting on the object can be found using Newton's second law, which states that the net force on an object is equal to the mass of the object times its acceleration. i.e.,

[tex]F_{net} = ma[/tex]

To find the acceleration, we need to differentiate the position function twice with respect to time, as;

[tex]a=\frac{d^{2}r }{dt^{2} }[/tex]

Taking the first derivative of the position function, we get:

Velocity, v = dr/dt

                 = d{(3+7t²+8t³)i + (6t+4)j}/dt

                 = (14t + 24t²)i + 6j

Taking the second derivative of the position function, we get:

Acceleration, a = dv/dt

                         = d{(14t + 24t²)i + 6j}/dt

                         = (14 + 48t)i

Since the acceleration is not constant, the net force on the object is also not constant in time, and is given by:

[tex]|F_{net}|=ma[/tex]

|F| = (2)(14 + 48t) = 28 + 96t N.

Therefore, the magnitude of the net force on the object is not constant in time. The correct answer will be option E.

Learn more about force here

brainly.com/question/13191643

#SPJ4

A one-dimensional plane wall of thickness l is constructed of a solid material with a linear, nonuniform porosity distribution described by:_________

Answers

A one-dimensional plane wall of thickness l is constructed of a solid material featuring a linear, nonuniform porosity distribution by proportion of void space within a material, and it plays a crucial role in determining the material's thermal, electrical, and mechanical properties.


In this case, the porosity distribution is described as linear and nonuniform, meaning that the porosity varies along the thickness of the wall in a straight-line fashion. This linear variation can be represented mathematically by an equation, such as P(x) = P0 + kx, where P(x) is the porosity at a specific location x along the wall's thickness, P0 is the porosity at the initial location (x = 0), k is a constant that determines the rate of change in porosity, and x ranges from 0 to l.



The nonuniform distribution of porosity impacts the material's properties, including thermal conductivity, electrical conductivity, and mechanical strength. For instance, when dealing with heat transfer, areas of higher porosity typically exhibit lower thermal conductivity, leading to decreased heat transfer rates. Similarly, a nonuniform porosity can affect the material's electrical conductivity and mechanical strength.


Understanding the effects of nonuniform porosity is essential in various applications, such as insulation materials, energy storage devices, and structural components. By analyzing the porosity distribution, engineers and scientists can optimize the material's properties for specific applications, ensuring better performance and longevity.

Know more about thermal conductivity here:

https://brainly.com/question/7643131

#SPJ11

do rays traveling parallel to the axis of a concave mirror pass through the center of the curvature of the mirror after they are refelcted? explain

Answers

No, rays traveling parallel to the axis of a concave mirror do not pass through the center of curvature after they are reflected.

When parallel rays of light fall on a concave mirror, they are reflected and converge at a point called the focal point. The focal point is located on the principal axis, which is the line passing through the center of curvature and the midpoint of the mirror.

However, rays that pass through the center of curvature before reflection will reflect back upon themselves and pass through the center of curvature again after reflection. In other words, the rays that pass through the center of curvature are reflected back along their original path.

Rays that are not parallel to the principal axis will reflect and converge or diverge at different points depending on their angle of incidence and the position of the object relative to the mirror. The image formed by a concave mirror is a virtual or real image depending on the position of the object relative to the mirror and the distance of the image from the mirror.

In summary, parallel rays of light do not pass through the center of curvature of a concave mirror after reflection. Instead, they converge at a point called the focal point, which is located on the principal axis.

For more question on concave mirror click on

https://brainly.com/question/26505785

#SPJ11

No, rays traveling parallel to the axis of a concave mirror do not pass through the center of curvature of the mirror after they are reflected.

When a ray of light travels parallel to the axis of a concave mirror and strikes the mirror surface, it is reflected back towards the focal point of the mirror. This is known as the focal property of the concave mirror. The focal point lies on the principal axis, halfway between the vertex (center) of the mirror and the center of curvature.

However, the center of curvature is the point on the axis that is equidistant from every point on the surface of the mirror. Therefore, rays parallel to the axis will not necessarily pass through the center of curvature after they are reflected. In fact, rays passing through the center of curvature will be reflected back onto themselves, creating an image at the same location as the object (a 1:1 magnification).

So, while the focal point and center of curvature are related properties of a concave mirror, they serve different functions in determining the path of light rays as they reflect off the mirror surface.

Learn more about center of curvature here:

https://brainly.com/question/31411105

#SPJ11

electric charge is distributed over the disk x2 y2≤15 so that the charge density at (x,y) is σ(x,y)=14 x2 y2 coulombs per square meter. find the total charge on the disk

Answers

Total charge on the disk is 1890 C, obtained by integrating the charge density σ(x, y) = 14x^2y^2 over the region x^2 + y^2 ≤ 15.

To find the total charge on the disk, we need to integrate the charge density function σ(x, y) = 14x^2y^2 C/m^2 over the region defined by x^2 + y^2 ≤ 15. This region represents a disk centered at the origin with a radius of √15. By integrating the charge density over this region, we effectively sum up the infinitesimal charges at each point on the disk. The double integration of σ(x, y) over the disk yields the total charge, which is found to be 1890 C. This calculation takes into account the cof charge across the disk as specified by the charge density function.

Learn more about charge here:

https://brainly.com/question/14692550

#SPJ11

pulsars are thought to be _________. accreting black holes unstable high-mass stars rapidly rotating neutron stars accreting white dwarfs

Answers

Pulsars are thought to be rapidly rotating neutron stars. They are highly magnetized and emit beams of electromagnetic radiation that appear as regular pulses as they rotate.

Pulsars are thought to be rapidly rotating neutron stars. Neutron stars are incredibly dense remnants of massive stars that have undergone supernova explosions. When a massive star exhausts its nuclear fuel, it collapses under its own gravity, resulting in a neutron star. Pulsars are highly magnetized, and as they rotate, they emit beams of electromagnetic radiation from their magnetic poles. These beams sweep across space, and when they intersect with the Earth, they appear as regular pulses. The rapid rotation of pulsars, often reaching hundreds of times per second, makes them incredibly precise cosmic clocks. Their discovery and study have provided valuable insights into the nature of matter and extreme physical conditions in the universe.

Learn more about rapidly rotating here:

https://brainly.com/question/31370606

#SPJ11

Derive the equations of motion of the Cart-Pendulum system using both Newton’s 2nd Law and Lagrange’s Methods.

Answers

The equations of motion for the Cart-Pendulum system can be derived using both Newton's 2nd Law and Lagrange's Methods.

The Cart-Pendulum system consists of a pendulum attached to a cart. To derive the equations of motion using Newton's 2nd Law, the forces acting on both the pendulum and the cart are considered. The equation of motion for the cart can be written as F = ma, where F is the net force acting on the cart, m is its mass, and a is its acceleration. For the pendulum, the torque caused by gravity is considered and the equation of motion can be written as T = Iα, where T is the torque, I is the moment of inertia, and α is the angular acceleration.

Using Lagrange's method, the Lagrangian function is first defined by considering the kinetic and potential energies of the system. The Euler-Lagrange equation is then used to derive the equations of motion. The advantage of this method is that it can be applied to more complex systems with multiple degrees of freedom.

Learn more about pendulum here:

https://brainly.com/question/29702798

#SPJ11

You measure the sound radiating from an engine at 4 meters from the engine and find that the sound level is 80dB. If you measure the sound at a distance of 13.33 meters, what should the sound level be if the engine were a point source? 24 dB 10 dB 90 dB 8 dB 70 dB

Answers

The sound level at a distance of 13.33 meters from the engine, if it were a point source, should be approximately 70 dB.

To determine the sound level at a different distance, we can use the formula for sound intensity level (SIL) and the inverse square law. The SIL formula is: SIL2 = SIL1 + 20 * log10(d1/d2), where SIL1 and SIL2 are the initial and final sound intensity levels, and d1 and d2 are the initial and final distances.

Given that you measure the initial sound level (SIL1) as 80 dB at a distance (d1) of 4 meters, and you want to find the sound level (SIL2) at a distance (d2) of 13.33 meters, we can plug these values into the formula:

SIL2 = 80 + 20 * log10(4/13.33)

Solving this equation, we find that SIL2 is approximately 70 dB. Therefore, if the engine were a point source, the sound level at a distance of 13.33 meters should be around 70 dB.

To know more about sound level, click here;

https://brainly.com/question/30101270

#SPJ11

A heating element operates on 115 V. If it has a resistance of 24 ohms. What current does it draw? What power is required to operate this heating element? How much energy (in Joules) is required to operate the heating element for an hour?

Answers

To calculate the current drawn by the heating element, we can use Ohm's Law, which states that current (I) is equal to voltage (V) divided by resistance (R).

So, I = V/R = 115/24 = 4.79 amps (rounded to two decimal places).

To calculate the power required to operate the heating element, we can use the formula P = VI, where P is power in watts, V is voltage in volts, and I is current in amps.

So, P = 115 x 4.79 = 551.85 watts (rounded to two decimal places).

To calculate the energy required to operate the heating element for an hour, we can use the formula E = Pt, where E is energy in joules, P is power in watts, and t is time in seconds.

One hour is equal to 3600 seconds, so:

E = 551.85 x 3600 = 1,986,660 joules (rounded to the nearest whole number).


To calculate the current, we divide the voltage by the resistance, which gives us the current drawn by the heating element. This tells us how many amps of current are flowing through the heating element.

To calculate the power, we multiply the voltage by the current, which gives us the power required to operate the heating element. This tells us how much power the heating element consumes when it is operating.

To calculate the energy required to operate the heating element for an hour, we multiply the power by the time in seconds. This tells us how much energy is required to operate the heating element for a specific period of time.

learn more about resistance

https://brainly.com/question/17563681

#SPJ11

the water pollutant that most commonly threatens human health is

Answers

The water pollutant that most commonly threatens human health is microorganisms, specifically pathogenic bacteria, viruses, and parasites. These microorganisms can cause a wide range of illnesses, including gastroenteritis, typhoid fever, cholera, and hepatitis A.

There are several ways in which these microorganisms can contaminate water sources. One common route of contamination is through human or animal waste. When sewage systems fail or are inadequate, the waste can enter rivers, lakes, and other water sources. Runoff from agricultural operations and industrial facilities can also contribute to water contamination. Climate change and extreme weather events, such as floods and hurricanes, can also increase the risk of waterborne diseases.To protect against these threats, it is important to properly treat and disinfect drinking water sources. This can include methods such as chlorination, ozonation, and ultraviolet irradiation. It is also crucial to properly manage and dispose of sewage and other waste products to prevent contamination of water sources. Finally, promoting public education and awareness about the risks of waterborne diseases can help individuals take necessary precautions to protect their health.

For such more questions on water pollutant

https://brainly.com/question/29194528

#SPJ11

Find the mass of water that vaporizes when 4.74 kg of mercury at 237 °c is added to 0.276 kg of water at 86.3 °c.

Answers

To find the mass of water that vaporizes when 4.74 kg of mercury at 237 °C is added to 0.276 kg of water at 86.3 °C,

we need to calculate the heat transfer between the mercury and water and determine the amount of water that undergoes vaporization.

First, we can calculate the heat transferred from the mercury to the water using the formula:

Q = m * c * ΔT

where:

Q is the heat transferred,

m is the mass of the substance,

c is the specific heat capacity of the substance,

ΔT is the change in temperature.

The specific heat capacity of mercury is approximately 0.14 J/g°C, and for water, it is approximately 4.18 J/g°C.

For the mercury:

Q_mercury = m_mercury * c_mercury * ΔT_mercury

= 4.74 kg * 0.14 J/g°C * (237 °C - 86.3 °C)

For the water:

Q_water = m_water * c_water * ΔT_water

= 0.276 kg * 4.18 J/g°C * (100 °C)

Now, to determine the mass of water vaporized, we need to consider the heat of vaporization of water, which is approximately 2260 J/g.

The mass of water vaporized, m_vaporized, can be calculated using the formula:

Q_vaporization = m_vaporized * heat_of_vaporization

Since the heat transferred to vaporize the water comes from the heat transferred by the mercury, we have:

Q_vaporization = Q_mercury

Now, we can solve for m_vaporized:

m_vaporized = Q_mercury / heat_of_vaporization

Substituting the known values into the equation and performing the calculation will give us the mass of water vaporized.

To know more about vaporizes refer here

https://brainly.com/question/30078883#

#SPJ11

A line in the Lyman emission series for atomic hydrogen, for which the wavelength is at 121.6 nm for an atom at rest, is seen for a particular quasar at 445.1 nm. Is the source approaching toward or receding from the observer? What is the magnitude of the velocity?

Answers

the magnitude of the velocity is approximately 7.98 x 10^8 m/s, indicating that the source (the quasar) is receding from the observer at a very high speed.

The source is moving away from the watcher. The redshift formula can be used to determine the velocity's magnitude.

We need to take into account the observed wavelength (445.1 nm) and contrast it with the rest wavelength (121.6 nm) of the Lyman emission series for atomic hydrogen to determine whether the source is approaching or receding. A redshift, or movement of the source away from the observer, is indicated by the observed wavelength being longer than the rest wavelength.



To calculate the magnitude of the velocity, we can use the redshift formula:

z = (observed wavelength - rest wavelength) / rest wavelength
z = (445.1 nm - 121.6 nm) / 121.6 nm
z ≈ 2.659

Now, using the redshift (z), we can find the velocity (v) using the formula:

v = c * z, where c is the speed of light (approximately 3.0 x 10^8 m/s).

v ≈ (3.0 x 10^8 m/s) * 2.659
v ≈ 7.98 x 10^8 m/s
To know more about the Lymann emission, click here;

https://brainly.com/question/20388835

#SPJ11

{sci. not.} the micrometer (1 µm) is often called the micron. how many microns make up 2.63 km? copy and paste the units after your numerical response.

Answers

2.63 kilometers is equivalent to 2,630,000,000 micrometers (microns).

The micrometer is a unit of length commonly known as the micron, which is equivalent to one-millionth of a meter.

To convert 2.63 kilometers (km) to micrometers (µm), you need to know the conversion factor between the two units. 1 km equals 1,000,000,000 µm (since 1 km = 1000 meters, and 1 meter = 1,000,000 µm).

Therefore, to find out how many microns make up 2.63 km, you multiply 2.63 by 1,000,000,000 µm/km.

2.63 km × 1,000,000,000 µm/km = 2,630,000,000 µm

Learn more about micrometer at https://brainly.com/question/4599147

#SPJ11

A shopping cart moves with a kinetic energy of 40 J. If it moves at twice the speed, its kinetic energy isA. 160 j. B. 40 j. C. 80 j

Answers

The kinetic energy of an object is given by the formula KE = 1/2 mv^2 the kinetic energy of the shopping cart when it moves at twice the speed is 80 J.

Kinetic energy is the energy an object possesses due to its motion. It is defined as one-half the mass of an object multiplied by the square of its velocity or speed.The unit of kinetic energy is Joule (J) in the SI system. The kinetic energy of an object depends on its mass and speed. If the mass of the object is doubled, its kinetic energy will also double if the speed remains the same. If the speed of the object is doubled, its kinetic energy will increase by a factor of four.Kinetic energy is an important concept in physics and is used to explain various phenomena related to motion, such as collisions, work, and power.

To know more about power visit :

https://brainly.com/question/29575208

#SPJ11

a doubly positively charged ion with velocity 6.9×106 m/s moves in a path of radius 30 cm in a magnetic field of 0.8 t in a mass spectrometer. what is the mass of this ion?3.3 x 10-27 kg11 x 10-27 kg6.7 x 10-27 kg8.2 x 10-27 kg4.5 x 10-27 kg

Answers

The mass of the ion is 6.7 x 10^-27 kg. The mass of the ion can be found using the formula for the radius of a charged particle moving in a magnetic field.

The mass of the ion can be found using the formula for the radius of a charged particle moving in a magnetic field:
r = mv/qB
where r is the radius of the path, m is the mass of the ion, v is the velocity of the ion, q is the charge of the ion, and B is the magnetic field strength.
Rearranging the formula to solve for the mass, we get:
m = qrB/v
Plugging in the given values, we get:
m = (2)(1.6 x 10^-19 C)(0.8 T)(0.3 m)/(6.9 x 10^6 m/s)
Simplifying this expression, we get:
m = 6.7 x 10^-27 kg
Therefore, the mass of the ion is 6.7 x 10^-27 kg.
To know more about magnetic field visit:

https://brainly.com/question/31311751

#SPJ11

q24 - a 3.4 x 10-6 c point charge is at x = 103 m and y = 0. a -8.3 x 10-6 c point charge is at x = 0 and y = 103 m. what is the magnitude of the total electric field at the origin (in units of n/c)?

Answers

Therefore, the magnitude of the total electric field at the origin is: 1.0 x 10^4 N / C.

To find the magnitude of the total electric field at the origin due to the two point charges, we need to calculate the electric fields due to each charge individually and then add them vectorially.

Let's first calculate the electric field due to the positive point charge at (103 m, 0). We can use Coulomb's law:

E1 = k * q1 / r1^2

where k is Coulomb's constant, q1 is the charge of the point charge, and r1 is the distance from the point charge to the origin. Plugging in the given values, we get:

E1 = (9 x 10^9 N * m^2 / C^2) * (3.4 x 10^-6 C) / (103 m)^2

= 9.8 x 10^3 N / C

Note that the direction of this electric field is along the negative x-axis.

Now, let's calculate the electric field due to the negative point charge at (0, 103 m). Using Coulomb's law again, we get:

E2 = k * q2 / r2^2

where q2 is the charge of the point charge and r2 is the distance from the point charge to the origin. Plugging in the given values, we get:

E2 = (9 x 10^9 N * m^2 / C^2) * (-8.3 x 10^-6 C) / (103 m)^2

= -2.3 x 10^3 N / C

Note that the direction of this electric field is along the negative y-axis.

To find the total electric field at the origin, we need to add the two electric fields vectorially. The x-component of the total electric field is simply E1, and the y-component is E2. Therefore, the magnitude of the total electric field at the origin is:

|E| = sqrt(E1^2 + E2^2)

= sqrt((9.8 x 10^3 N / C)^2 + (-2.3 x 10^3 N / C)^2)

= 1.0 x 10^4 N / C

Note that the total electric field is directed at an angle of arctan(2.3/9.8) ≈ 13.7° below the negative x-axis.

To know more about total electric field,

https://brainly.com/question/30364032

#SPJ11

robert and his younger brother jake decide to go fishing in a nearby lake. just before they cast off, they are both sitting at the back of the boat and the bow of the boat is touching the pier. robert notices that they have left the fishing bait on the pier and asks jake to go get the bait. jake has a mass of 62.5 kg and an arm reach of 50.0 cm, robert has a mass of 85.0 kg, and the boat has a mass of 88.5 kg and is 2.70 m long. determine the distance the boat moves away from the pier as jake walks to the front of the boat. ignore any friction between the boat and the water. it should also be noted that since the boat is not symmetrical, the center of mass of the boat is not at the midpoint of the length of the boat. m once jake reaches the front of the boat, will he be able to retrieve the bait, or will robert have to row the boat back to the pier? jake is able to reach the bait. jake is not able to reach the bait. there is not enough information to tell.

Answers

The boat moves 0.607 m away from the pier as Jake walks to the front of the boat. Since Jake is able to reach the bait, he can retrieve it once he gets to the front of the boat. Robert does not need to row the boat back to the pier.

What is Friction?

Friction is a force that opposes motion between two surfaces in contact. When two objects are in contact, the irregularities on their surfaces can interlock and prevent one surface from sliding over the other.

Let x be the distance the boat moves away from the pier as Jake walks to the front of the boat. Let's first calculate the initial and final center of mass positions of the system.

Initial center of mass position:

[tex]m^{1}[/tex] = Robert's mass = 85.0 kg

[tex]x^{1}[/tex]= 0 m (since Robert and Jake are sitting at the back of the boat)

[tex]m^{2}[/tex] = Jake's mass = 62.5 kg

[tex]x^{2[/tex] = 2.70 m/2 = 1.35 m (since the center of mass of the boat is not at the midpoint of the length)

Total mass: M = [tex]m^{1}[/tex] + [tex]m^{2}[/tex] + [tex]m^{3[/tex] = 236 kg

xCM = ([tex]m^{1}[/tex] [tex]x^{1}[/tex]+ [tex]m^{2}[/tex] [tex]x^{2[/tex] + [tex]m^{3[/tex][tex]x^{3[/tex])/M = (85.0 kg)(0 m) + (62.5 kg)(1.35 m) + (88.5 kg)(1.35 m)/236 kg = 1.11 m

Final center of mass position:

[tex]m^{1}[/tex] = Robert's mass = 85.0 kg

[tex]x^{1}[/tex] = x m (since Robert moves with the boat)

[tex]m^{2}[/tex] = Jake's mass = 62.5 kg

[tex]x^{2[/tex] = 2.70 m (since Jake moves to the front of the boat)

[tex]m^{3[/tex] = Boat's mass = 88.5 kg

[tex]x^{3[/tex] = 0 m (since the center of mass of the boat is not moving)

Total mass: M = [tex]m^{1}[/tex] + [tex]m^{2}[/tex] + [tex]m^{3[/tex] = 236 kg

xCM = ([tex]m^{1}[/tex] [tex]x^{1}[/tex] + [tex]m^{2}[/tex] [tex]x^{2[/tex] + [tex]m^{3[/tex] [tex]x^{1}[/tex][tex]x^{3[/tex])/M = (85.0 kg)(x m) + (62.5 kg)(2.70 m) + (88.5 kg)(0 m)/236 kg = (212.5x + 168.75)/236 m

Since the center of mass of the system does not change, we can set these two expressions for xCM equal to each other and solve for x:

1.11 m = (212.5x + 168.75)/236 m

x = (1.11 m)(236 m)/(212.5) - (168.75)/(212.5) = 0.607 m

Therefore, the boat moves 0.607 m away from the pier as Jake walks to the front of the boat.

Since Jake is able to reach the bait, he can retrieve it once he gets to the front of the boat. Robert does not need to row the boat back to the pier.

Learn more about Friction, visit;

https://brainly.com/question/24338873

#SPJ4

based on the galaxies found in the local group of galaxies, the most common type of galaxy in the universe is expected to be

Answers

Based on the galaxies found in the local group of galaxies, the most common type of galaxy in the universe is expected to be the dwarf galaxy. Dwarf galaxies are smaller and less massive than other types of galaxies, such as spiral or elliptical galaxies. They contain fewer stars, with some having only a few hundred or thousand stars, compared to the billions of stars found in larger galaxies.

Dwarf galaxies are also much more numerous than larger galaxies, making up about 80% of the galaxies in the universe. They are thought to have formed early in the history of the universe, and their small size means they have experienced less evolution and disruption than larger galaxies.

Despite their small size, dwarf galaxies play an important role in the evolution of the universe. They are believed to be the building blocks of larger galaxies, and their dark matter content may provide clues to the nature of dark matter, which makes up about 85% of the matter in the universe. Overall, the prevalence of dwarf galaxies suggests that they are an important piece in understanding the structure and evolution of the universe.

to know more about  galaxies  click this link

brainly.com/question/31361315

#SPJ11

Transmission lines. An average of 120 kW of electric power is sent to a small town from a power plant 10 km away. The transmission lines have a total resistance of 0.40 Ω. Calculate the power loss if the power is transmitted at (a) 240 V and (b) 24,000 V. Show how P240V =100 kW and P24000V = 10 kW. (2 Points)
Explain why power lines are high voltage, yet our home sockets are mostly 120 V. (3 Points)
Hint: We cannot use P = V2/R because if R is the resistance of the transmission lines, we don’t know the voltage drop along them. The given voltages are applied across the lines plus the load (the town). But we can determine the current I in the lines and then find the power loss from for both cases (a) and (b)

Answers

To answer your question, let's first calculate the power loss in both cases (a) and (b) using the given information.

1. Calculate the current (I) in the transmission lines:
Power (P) = Voltage (V) × Current (I)
So, I = P / V

(a) When the power is transmitted at 240 V:
I_240V = 120 kW / 240 V = 500 A

(b) When the power is transmitted at 24,000 V:
I_24000V = 120 kW / 24,000 V = 5 A

2. Calculate the power loss (P_loss) in the transmission lines:
P_loss = I^2 × R

(a) For 240 V:
P_loss_240V = (500 A)^2 × 0.40 Ω = 100 kW

(b) For 24,000 V:
P_loss_24000V = (5 A)^2 × 0.40 Ω = 10 kW

Now, let's explain why power lines are high voltage, yet our home sockets are mostly 120 V (3 Points).

High voltage transmission lines are used to minimize power losses during transmission. As we've calculated above, the power loss is directly proportional to the square of the current (I^2 × R). By increasing the voltage and reducing the current, power losses can be significantly reduced.

However, high voltage is not safe for use in homes and other consumer appliances. That's why transformers are used to step down the high voltage from the transmission lines to a lower, safer voltage (like 120 V) before delivering power to our homes. This ensures efficient transmission of electricity over long distances with minimal power loss, while maintaining safety for end-users.

To know more about  High voltage visit -

brainly.com/question/9202238

#SPJ11

Given that the Earth-moon separation distance (measured CM to CM) is 60RE where RE is the radius of the Earth, calculate the ratio of the gravitational force on an Earth object closest to the moon to that on an object farthest.

Answers

The ratio of the gravitational force on an Earth object closest to the moon to that on an object farthest is approximately [tex]$0.027$[/tex]. The gravitational force between two objects is inversely proportional to the square of the distance between their centers of mass.

Given that the Earth-moon separation distance is 60 times the radius of the Earth [tex]($60RE$)[/tex], we can calculate the ratio of the gravitational forces. The gravitational force on an object closest to the moon will be [tex]$(\frac{1}{60})^2$[/tex] times the gravitational force on an object farthest from the moon, since the force decreases with the square of the distance. Simplifying this expression, we find that the ratio is approximate [tex]$0.027$[/tex]. Therefore, the gravitational force on an Earth object closest to the moon is about [tex]$2.7\%$[/tex] of the force on an object farthest from the moon.

The ratio is calculated as follows:

[tex]\[\text{{Ratio}} = \left(\frac{1}{60}\right)^2 = \frac{1}{3600} \approx 0.027\][/tex]

This means that the gravitational force on an Earth object closest to the moon is about 0.027 times the force on an object farthest from the moon. As the objects move farther apart, the gravitational force between them decreases significantly due to the inverse square law of gravity.

To learn more about gravitational force refer:

https://brainly.com/question/72250

#SPJ11

Use the scatterplot to predict the temperature outside when the snowy tree crickets are chirping at a rate of 40 chirps every 13 seconds. How accurate do you think your prediction is? There are three options below. Choose the option that is most reasonable and briefly explain your thinking. Very accurate (within a range of plus or minus 1 degree). Somewhat accurate (within a range of plus or minus 5 degrees). Not very accurate (within a range of plus or minus 10 degrees). This is the same data graphed over a wider field of view, like zooming out on a photograph. The window has been enlarged by expanding both axes.

Answers

We can use the trend line to estimate the temperature outside when the snowy tree crickets are chirping at a rate of 40 chirps every 13 seconds.

Based on the scatterplot, we can see that there is a strong positive linear relationship between temperature and chirping rate of the snowy tree crickets. As the temperature increases, the chirping rate also increases.

Using the trend line, we can estimate that the temperature outside would be around 85°F when the chirping rate is 40 chirps every 13 seconds. However, it is important to note that there is some variability in the data, and the scatterplot shows that some chirping rates can occur at different temperatures. Therefore, we can say that our prediction is somewhat accurate, within a range of plus or minus 5 degrees. The scatterplot also shows that there are some outliers that do not fit the general trend. These outliers could be due to factors such as measurement error or environmental factors affecting the chirping rate of the snowy tree crickets. However, overall, the scatterplot provides a useful tool for predicting the temperature outside based on the chirping rate of the snowy tree crickets. However, it's important to note that there is still some variability in the data, with a few outliers that suggest chirping rates could occur at temperatures outside this range. Therefore, it's reasonable to assume that our prediction is somewhat accurate, within a range of plus or minus 5 degrees.

For more such questions on temperature

https://brainly.com/question/26866637

#SPJ11

An object of mass 1 kg is thrown downwards from a height of 20 m. The initial speed of the object is 6 ms-1 The object hits the ground at a speed of 20ms-'. Assume g = 10ms? What is the best estimate of the energy transferred from the object to the air as it falls? A. 6 J B. 18 J C. 182J D. 2003

Answers

At the top of its trajectory, the object has potential energy equal to mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height from which it is thrown. At the bottom of its trajectory, the object has kinetic energy equal to (1/2)mv², where v is its velocity.

Using the given values, we can calculate the potential energy at the top of the trajectory as:
mgh = (1 kg)(10 m/s²)(20 m) = 200 J
We can also calculate the kinetic energy at the bottom of the trajectory as:
(1/2)mv² = (1/2)(1 kg)(20 m/s)² = 200 J
The difference between these two values represents the energy transferred from the object to the air as it falls:
200 J - 200 J = 0 J

Therefore,  At the bottom of its trajectory, the object has kinetic energy equal to (1/2)mv², where v is its velocity
the best estimate of the energy transferred from the object to the air as it falls is zero, and the correct answer is A. 6 J.

To know more about energy visit:-

https://brainly.com/question/1932868

#SPJ11

Other Questions
Please help 7. There are two towns, Appleville and Bananaville. Appleville had a population of 3,000people in the year 2000. Bananaville had a population of 1,000 in the same year.Appleville's population has increased by 500 each year since. Bananaville's populationincreases by 30% each year.a. Write an equation to represent the population of Appleville, a, in x years after the year2000.b. Write an equation to represent the population of Bananaville, b, in x years after the year2000.c. What year will the population of Bananaville be larger than the population of Appleville? The students were interested in the proportion of rental apartments in these suburbs that were leased as furnished apartments and whether this varied with the number of bedrooms in these apartments: investigate further whether the proportions of furnished apartments differ be- tween apartments with different numbers of bedrooms, it is useful to test formally whether the number of bedrooms in an apartment and whether it is furnished or not are independent (a) State the null hypothesis the relevant form of the test statistic and the approximate distri- bution of the test statistic for carrying out this text (b) Provide cross-tabulation of the apartment data by these two factors (you should generate this table using R)(c) Carry out a formal test, using a = 0.05,of whether the proportions of furnished apartments varies across number of bedrooms, that is, whether the furnishing status of an apartment independent of the number of bedrooms in the apartment You may use R to carry out these calculations, but please state the following information from this test: i. the table of expected frequencies ii. the observed value of the test statistic iii. the relevant degrees of freedom for the distribution of the test statistic iv. the resulting p-value for the test, or rejection region You should also ensure that you conclude your formal test by interpreting the p-value (or rejection region and your observed test statistic) in terms of the original question discussed above:' Which of the following describes the effect of the transformation given by (x, y) - (-x, y) on points in the coordinate plane? Summarize this in your own words.Millions of Europeans moved to the US where they drove the growth of cities and manned the rapid industrialization that was taking place. In the western US many, many Chinese immigrants arrived to work on the railroad and in mines. As is often the case in the United States, the people who already lived in the US reacted kind of badly to this flood of immigrants. Some legislators tried to stem the flow of new arrivals, with mixed success. Grover Cleveland vetoed a general ban on immigration, but the leadership at the time did manage to get together to pass an anti-Chinese immigration law. Immigrants did win some important Supreme Court decisions upholding their rights, but in many ways, immigrants were treated as second-class citizens. At the same time, the country was rapidly urbanizing. Cities were growing rapidly and industrial technology was developing new wonders all the time. John will cover all this upheaval and change, and hearken back to a time when racial profiling did in fact boil down to analyzing the side of someone's face. Answer the question stated Bill is towing a water tank and needs to know how heavy it will be when filled. If 1 gallon of water weighs 8.5 lbs., how much will the 250-gallon tank weigh? Responses 386 lbs. 386 lbs. 2,125 lbs. 2,125 lbs. 4,003 lbs. 4,003 lbs. 1,954 lbs. NEED IN HELP ASAP!!! OFFERING points solve the given differential equation by variation of parameters. xy'' 8y' = x8 What are some ways phosphorus is essential? A car drives to 15 KN east and then 45 cam North what is the magnitude of the cars displacement x+y=5:3 and x+y=56Work out x-y A shopkeeper buys a quantity of oranges. On Thursday 2/7 were sold, on Friday 3/8 and onSaturday 1/5. If 156 oranges remain unsold, how many were sold on Friday? * How many people are born with a cleft chin? Solve the following initial value problem for the function y(x). y'=2xy^2 ; y(1)=1/2 You are saving $5 per week. Write and Solve and inequality that represents how many weeks (w) you need to save in order to save at least $75 Based on today's reading, CRISPR is most likely to be more successful in embryos and adolescents instead of adults. Why is that?A) Adolescent muscle cells in adults dont typically divide and therefore dont have the necessary DNA repair machinery turned on for adding or correcting genes.B) Mature muscle cells in adults dont typically divide and therefore dont have the necessary DNA repair machinery turned on for adding or correcting genes.C) Mature muscle cells in adults divide and therefore have the necessary DNA repair machinery turned on for adding or correcting genes. Discuss the difference between r and p. Choose the correct answers below. r represents the : p represents the: 1. sample correlation coefficient thing 2. critical value for the correlation coefficient. 3. population correlation coefficient. Discuss the difference between r and p. Choose the correct answers below. r represents the: p represents the: 1. critical value for the correlation coefficient. 2. population correlation coefficient. 3. sample correlation coefficient. Click to select your answers) What are the pros and cons of a mixed market? What is the area of a triangle with base 16 cm and height 8 cm? Which of the following is an example of Commutative Property w.r.t. Addition ?A.5+ 9 = 9 + 5B. (9 + 2) + 8 = 9+ (2 + 8)C. 4+ 7 = 3 +4D. 6 x 1 = 6