11 yards of fencing left.
Given that Edgar decided to add a second gate. He removes 2 yards of fencing from his section of 13 yards.
Therefore, the total length of the fencing was 13 yards.We have to remove 2 yards of fencing from the section.Therefore, the total fencing remaining will be=
Total fencing - Fencing Removed Fencing Removed = 2 yardsTotal fencing = 13 yards We can substitute the values in the above equation.Fencing remaining= 13 - 2 = 11 yards In total, 11 yards of fencing are left.
Edgar had 13 yards of fencing. He had to remove 2 yards of fencing from it. Thus, he could not use the removed fencing for the gate. We need to calculate the remaining length of the fencing.Edgar had to remove 2 yards of fencing to add a second gate.
Therefore, the total fencing remaining will be= Total fencing - Fencing RemovedFencing Removed = 2 yardsTotal fencing = 13 yardsWe can substitute the values in the above equation.
Fencing remaining= 13 - 2 = 11 yards
Thus, Edgar has only 11 yards of fencing left to use. This will be less fencing available to Edgar to use for his purpose. With a smaller area to work with, Edgar will have to ensure that the fencing is placed appropriately.
Edgar had a total of 13 yards of fencing before removing 2 yards of fencing to add a second gate. Therefore, he had only 11 yards of fencing left.
To know more about length visit:
brainly.com/question/32060888
#SPJ11
what is the solution to the equation below? square root 2-3x/square root 4x=2
Answer:
X=4 easy blah blah blah it’s 4. jdjjdjfnfvbdnnfn
Circle 1 is centered at (-4,
2) and has a radius of 3 centimeters. Circle 2 is centered at (5, 3) and has a radius of 6 centimeters.
What transformations can be applied to Circle 1 to prove that the circles are similar?
Enter your answers in the boxes.
The circles are similar because you can
translate Circle 1 using the transformation rule C, ) and then
dilate it using a scale factor of
The transformation for circle 1 exists (x+9), (y+5) and the scale factor of circle 1 exists 2.
What is a scale factor?Scale exists described as the ratio of the length of any object on a model to the actual length of the exact object in the entire world.
What is the transformation rule?The function transformation rules: f(x)+b changes the function b units upward. f(x)−b shifts the function b units downward. f(x + b) shifts the function b units to the left.
Circle 1
center: (−4, −2)
Radius: 3 centimeters
Circle 2
center: (5, 3)
Radius: 6 centimeters
Transformations can be used to circle 1 to verify that the circles exist similar.
As circle 2 and circle 1 do not contain the exact coordinates
So, circle 1 has to utilize transformation rules.
The difference between the coordinates of circle 2 and circle 1 exists
[tex]$x_2 - x_1 = 5 - (-4 ) = 9[/tex]
[tex]y_2 - y_1 = 3 - (-2) = 5[/tex]
Therefore, transformation for circle 1: (x+9), (y + 5)
The scale factor between circle 2 and circle 1 exists
The radius of Circle 2 = 2 [tex]*[/tex] radius of circle 1
Therefore, the scale factor of circle 1 = 2
Therefore, the transformation for circle 1 exists (x+9), (y+5), and the scale factor of circle 1 exists 2.
To learn more about transformation and scale factors refer to:
brainly.com/question/13100164
#SPJ9
Simplify.
Rewrite the expression in the form y^n.
(y^2)^3 =
Answer:
[tex]y^6[/tex]
Step-by-step explanation:
So there is an exponent identity that states: [tex](x^b)^a = x^{a*b}[/tex] which means this question becomes: [tex](y^2)^3 = y^{2*3} = y^6[/tex].
Just so you completely understand why this works, it might help to express y^2, as what it truly represents: [tex]y^2=y*y[/tex]. So using this definition we can substitute it into the equation so it becomes: [tex](y*y)^3[/tex]. Now let's use the definition of exponents like we just did with the y, to redefine this in terms of multiplication: [tex](y*y)^3 = (y * y) * (y * y) * (y * y)[/tex]. We can just multiply all these out, and we get: [tex]y * y * y * y * y * y =y^6[/tex].
To make it a bit more general when we have the exponent: [tex]x^b[/tex] it can be expressed as: [tex](x*x*x...\text{ b amount of times})[/tex] now when we raise it to the power of a. we get: [tex](x * x * x...\text{ b amount of times})^a[/tex] which can further be rewritten using the definition of an exponent to become the equation: [tex](x*x*x\text... \text{ b amount of times}) * (x * x * x...\text{ b amount of times})...\text{ a amount of times}[/tex] which just simplifies to: [tex]x*x*x*x...\text{ a times b amount of times}[/tex]. Hopefully this makes the identity a bit more understandable
Please answer quickly
1a) 256/9
2a) 0.0048
3a) 0.64
4a) 2/5
5a) 4.6875
1b) 125/343
2b) 32/3125
3b) 0.003125
4b) 48.875
5b) 1.39
Whew! Hope this helps :)
Determine the area of the figure.
Answer: (x + 11) cm²
Step-by-step explanation:
The formula for the area of a trapezoid is [tex]\frac{1}{2}(a+b)h[/tex], where
a and b are the lengths of the top and bottom sides, andh is the height of the figure.For this figure, [tex]a = 5[/tex] and [tex]b= x+6[/tex] (the top and bottom sides), while [tex]h=2[/tex] (the height).
If we suppose [tex]A[/tex] is the area, plugging these values in, we get
[tex]A = \frac{1}{2}(5 + x + 6)*2[/tex]
[tex]A = \frac{1}{2} * 2 * (x + 11)[/tex]
[tex]A = x + 11[/tex]
All the lengths are in cm, so the area will be (x + 11) cm².
Factor the greatest common factor: 28a3b4 20a2b2 − 16ab3. 4ab(7a2b 5a − 4b2) 4ab2(7a2b 5a − 4b) 4ab2(7a2b2 5a − 4b) 4ab(7a2b3 5a − 4b)
Answer:
4ab2(7a2b2 5a - 4b)
Step-by-step explanation:
28a3b4 20a2b2 − 16ab3
The GCF of 28, 20 and 16 is 4.
GCF of the variables is ab2
So the answer is
4ab2(7a2b2 5a - 4b)
Answer:
4ab2(7a2b2 5a - 4b)
Step-by-step explanation:
Simplify the expression. 3^–9 • 3^6 • 3^6
Answer:
27
Step-by-step explanation:
(3^−9)(3^6)(3^6)
=1/19683(3^6)(3^6)
=1/19683(3^6)(3^6)
=(1/19683(729))(3^6)
=1/27(3^6)
=1/27(729)
=27
Answer:
27^3
Step-by-step explanation:
Find the missing length of the triangle (Side AC)
Answer: 17.3 cm
Step-by-step explanation:
[tex]\tan 68^{\circ}=\frac{AC}{7}\\\\AC=7\tan 68^{\circ}\\\\AC \approx 17.3[/tex]
The volume of a cone is 37x³ cubic units and its height is x units.
Which expression represents the radius of the cone's base, in units?
O 3x
0 6x
о 3лх2
0 90х2
Answer: 6x
Step-by-step explanation:
The expression represents the radius of the cone's base is √111/π x = r
What is Three dimensional shape?a three dimensional shape can be defined as a solid figure or an object or shape that has three dimensions—length, width, and height.
The formula for the volume of a cone is V = (1/3)πr²h, where V is the volume,
r is the radius of the base,
h is the height, and π is a constant approximately equal to 3.14.
We are given that the volume of the cone is 37x³ cubic units and the height is x units.
Using the formula for the volume of a cone, we can write:
37x³ = (1/3)πr²x
37x² = πr²/3
37×3 x²/π = r²
111x²/π = r²
Take square root on both sides
√111/π x = r
Hence, the expression represents the radius of the cone's base is √111/π x = r
To learn more on Three dimensional figure click:
https://brainly.com/question/2400003
#SPJ5
Women athletes at a certain university have a long-term graduation rate of 67%. Over the past several years, a random sample of 36 women athletes at the school showed that 23 eventually graduated. Does this indicate that the population proportion of women athletes who graduate from the university is now less than 67%
No this does not indicate that the population proportion of women athletes who graduate from the university is now less than 67%.
Given long term graduation rate of 67%, sample size of 36 and the women athletes graduated is 23.
We have to find whether the given information shows that the population proportion is less than 67%.
First we have to create hypothesis for this :
[tex]H_{0}[/tex]:P=0.67
[tex]H_{1}[/tex]:P<0.67
Under null hypothesis the test statistic is
z=p bar-p/[tex]\sqrt{p(1-p)/n}[/tex]
where p bar=23/36
=0.638
z=(0.638-0.67)/[tex]\sqrt{0.67(1-0.67)/36[/tex]
=-0.032/[tex]\sqrt{0.67*0.33/36}[/tex]
=-0.032/[tex]\sqrt{0.0064}[/tex]
=-0.032/0.078
=-0.41
Now we have to find the left tailed critical at 0.01 significance level using z table.
z=-2.33
Since the z value does not fall in the critical region,therefore we fail to reject the null hypothesis. So we can conclude that there is not sufficient evidence to say that the population proportion of women athletes who graduate from the university is now less than 67%.
Learn more about z test at https://brainly.com/question/14453510
#SPJ4
Question is incomplete as it should specify the signficance level of 0.01 to be used.
The volume of an object that is recorded as 46cubic cm which was 15% from the actual volume
Two possibilities --- see below
Step-by-step explanation:
So it could be GREATER than 46
.85 x = 46 x = 54.11 cm^3
Or it could be smaller than 46
46= (1.15) x x = 40 cm^3
The following table shows the weights of nine subjects before and after following a particular diet for two months. Test the claim that the diet is effective in helping people lose weight Subject A B DEFGHI Before 168 180 157 132 202 124 190 210 171 After 162 178 145 125 171 126 180 195 163
Using the t-distribution, it is found that there is not enough evidence that the diet is helping people lose weight.
What are the hypothesis tested?At the null hypothesis, it is tested if the mean hasn't decreased, that is:
[tex]H_0: \mu_B \leq \mu_A[/tex]
[tex]H_0: \mu_B - \mu_A \leq 0[qtex]
At the alternative hypothesis, it is tested if the mean has decreased, that is:
[tex]H_1: \mu_B - \mu_A > 0[qtex]
What are the mean and the standard error for the distribution of differences?For each sample, they are given as follows:
[tex]\mu_B = 170.44, s_B = \frac{29.275}{\sqrt{9}} = 9.7583[/tex].[tex]\mu_A = 160.56, s_A = \frac{24.203}{\sqrt{9}} = 8.067[/tex].Hence, for the distribution of differences, they are:
[tex]\overline{x} = \mu_B - \mu_A = 170.44 - 160.56 = 9.88[/tex].[tex]s = \sqrt{s_B^2 + s_A^2} = \sqrt{9.7583^2 + 8.067^2} = 11.66[/tex]What is the test statistic and the decision?
The test statistic is:
[tex]t = \frac{\overline{x} - \mu}{s}[/tex]
In which [tex]\mu = 0[/tex] is the value tested at the null hypothesis.
Hence:
[tex]t = \frac{\overline{x} - \mu}{s}[/tex]
[tex]t = \frac{9.88 - 0}{11.66}[/tex]
t = 0.85.
Considering a right-tailed test with 9 + 9 - 2 = 16 df, with a standard significance level of 0.05, the critical value is t = 1.7459. Since t = 0.85 < 0.85, there is not enough evidence that the diet is helping people lose weight.
More can be learned about the t-distribution at https://brainly.com/question/13873630
#SPJ1
Please helpppppppppppp
Answer:
7.7 km
Explanation:
Use cosine rule as here given two sides and one angle.
Cosine rule states:
a² = b² + c² - 2bc cos(A)
While solving, treat a = 7.5 km as to that opposite angle is given of 68°
then b = missing side, c = 5.2 km, A = 68°
Applying rule:
7.5² = b² + 5.2² - 2(b)(5.2) cos(68)
56.25 = b² + 27.04 - 3.8959b
56.25 - 27.04 = b² - 3.8959b
b² - 3.8959b = 29.21
b² - 3.8959b - 29.21 = 0
apply quadratic equation, Here [a = 1, b = - 3.8959, c = -29.21]
[tex]\sf b = \dfrac{ -b \pm \sqrt{b^2 - 4ac}}{2a} \quad\:when \:\ ax^2 + bx + c = 0[/tex]
[tex]\sf b = \dfrac{ -(-3.8959) \pm \sqrt{(-3.8959)^2 - 4(1)(-29.21)}}{2(1)}[/tex]
[tex]\sf b = 7.69 291 \quad or \quad b = -3.797[/tex]
[tex]\sf b = 7.7 \quad (rounded \ to \ nearest \ tenth)[/tex]
As length cannot be negative. Hence the value of b is only 7.7 km
The answer is 7.7 km.
Let's apply the Cosine Law in this situation.
a² = b² + c² - 2bc cos(A)
Now, substitute the values based on the given diagram.
(7.5)² = b² + (5.2)² - 2(b)(5.2)(cos 68°)56.25 = b² + 27.04 - 3.896bb² - 3.896b - 29.21 = 0Here, using the Quadratic Equation, we can solve :
b = 3.896 ± √(3.896)² - 4(1)(-29.21) / 2b = 3.896 ± √15.178816 + 116.84 / 2b = 3.896 ± √132.018816 / 2b = 3.896 + 11.49 / 2b = 7.7 kmWright in point-slope form, slope-intercept form and in standard form an equation that passes through (-1, 2) with slope 4
Point-slope form
[tex]y-2=4(x+1)[/tex]
Slope-intercept form
[tex]y-2=4x+4 \\ \\ y=4x+6[/tex]
Standard form
[tex]4x-y+6=0[/tex]
Answer:
[tex]\textsf{Point-slope form}: \quad \sf y-2=4(x+1)[/tex]
[tex]\textsf{Slope-intercept form}: \quad \sf y=4x+6[/tex]
[tex]\textsf{Standard form}: \quad \sf 4x-y=-6[/tex]
Step-by-step explanation:
Given information:
Slope = 4Point on line = (-1, 2)Point-slope form of linear equation:
[tex]\sf y-y_1=m(x-x_1)[/tex]
(where m is the slope and (x₁, y₁) is a point on the line)
Substitute the given slope and point into the formula:
[tex]\implies \sf y-2=4(x-(-1))[/tex]
[tex]\implies \sf y-2=4(x+1)[/tex]
Slope-intercept form of a linear equation:
[tex]\sf y=mx+b[/tex]
(where m is the slope and b is the y-intercept)
Substitute the given slope and point into the formula and solve for b:
[tex]\implies \sf 2=4(-1)+b[/tex]
[tex]\implies \sf b=6[/tex]
Therefore:
[tex]\sf y=4x+6[/tex]
Standard form of a linear equation:
[tex]\sf Ax+By=C[/tex]
(where A, B and C are constants and A must be positive)
Rearrange the found slope-intercept form of the equation into standard form:
[tex]\implies \sf y=4x+6[/tex]
[tex]\implies \sf 4x-y+6=0[/tex]
[tex]\implies \sf 4x-y=-6[/tex]
Learn more about linear equations here:
https://brainly.com/question/27317293
https://brainly.com/question/28062655
Rewrite each multiplication or division expression using a base and an exponent
4^5 divided by 4^2=
Using the laws of indices , 4⁵ ÷ 4² can rewritten as 4³.
What is the result of the division in exponent form?
Given the expression; 4⁵ ÷ 4²
To perform the division operation, we use one of the laws of indices;
[tex]n^a/n^b = n^{a-b}[/tex]
Given that;
n = 4a = 5b = 2Now, we apply the laws of indices ;
4⁵ ÷ 4² = 4⁵⁻² = 4³
Therefore, using the laws of indices, 4⁵ ÷ 4² can rewritten as 4³.
Learn more about exponents here: brainly.com/question/15993626?
#SPJ1
Explain why Rolle's Theorem does not apply to the function even though there exist a and b such that f(a)
Rolle's Theorem does not apply to the function because there are points on the interval (a,b) where f is not differentiable.
Given the function is [tex]f(x)=\sqrt{(2-x^{\frac{2}{3}})^{3}}[/tex] and the Rolle's Theorem does not apply to the function.
Rolle's theorem is used to determine if a function is continuous and also differentiable.
The condition for Rolle's theorem to be true as:
f(a)=f(b)f(x) must be continuous in [a,b].f(x) must be differentiable in (a,b).To apply the Rolle’s Theorem we need to have function that is differentiable on the given open interval.
If we look closely at the given function we can see that the first derivative of the given function is:
[tex]\begin{aligned}f(x)&=\sqrt{(2-x^{\frac{2}{3}})^3}\\ f(x)&=(2-x^{\frac{2}{3}})^{\frac{3}{2}}\\ f'(x)&=\frac{3}{2}(2-x^{\frac{2}{3}})^{\frac{1}{2}}\cdot \frac{2}{3}\cdot (-x)^{\frac{1}{3}}\\ f'(x)&=\frac{-\sqrt{2-x^{\frac{2}{3}}}}{\sqrt[3]{x}}\end[/tex]
From this point of view we can see that the given function is not defined for x=0.
Hence, all the assumptions are not satisfied we can reach a conclusion that we cannot apply the Rolle's Theorem.
Learn more about Rolle's Theorem from here brainly.com/question/12279222
#SPJ4
is P - 1 upon p = 4 find P + 1 upon p whole square
Given that (p - 1/p) = 4, the value of p² + 1/p² is 18. Detail below
Data obtained from the questio(p - 1/p) = 4p² + 1/p² = ?How to determine the value of p² + 1/p²(p - 1/p) = 4
Square both sides
(p - 1/p)² = (4)²
(p - 1/p)² = 16 ....(1)
Recall
(a - b)² = a² + b² - 2ab
Thus,
(p - 1/p)² = p² + 1/p² - (2 × p × 1/p)
(p - 1/p)² = p² + 1/p² - 2
From equation (1) above,
(p - 1/p)² = 16
Therefore,
p² + 1/p² - 2 = 16
Rearrange
p² + 1/p² = 16 + 2
p² + 1/p² = 18
Thus, the value of p² + 1/p² is 18
Learn more about algebra:
https://brainly.com/question/953809
#SPJ1
Which expressions are equivalent to the given expression 5 log 10 x + log10 20 - log10 10
The expression which is equivalent to [tex]5 log_{10}x+log_{10}20-log_{10}10[/tex] is
[tex]$5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(20x^5)-1[/tex].
What is the logarithmic equation?A logarithmic equation exists as an equation that applies the logarithm of an expression having a variable.
Product Rule Law: [tex]log_{a} (MN) = log_{a} M + log_{a} N[/tex]
Quotient Rule Law: [tex]log_{a} (M/N) = log_{a} M - log_{a} N[/tex]
Power Rule Law: [tex]log_{a}M^{n} = n log_{a} M[/tex]
Given: [tex]5 log_{10}x+log_{10}20-log_{10}10[/tex]
[tex]5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(x^5) +log_{10}20 -log_{10}10[/tex]
apply the law of logarithm
[tex]5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(x^5*20/10)[/tex]
[tex]5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(x^5*2)[/tex]
[tex]5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(2x^5)[/tex]
Another possible equivalent expression is:
[tex]$5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(x^5*20)-log_{10}10[/tex]
[tex]$5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(20x^5)-log_{10}10[/tex]
Substitute the value of [tex]log_{10}10 = 1[/tex]
[tex]$5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(20x^5)-1[/tex]
Therefore, the correct answer
[tex]$5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(20x^5)-1[/tex].
To learn more about logarithm refer to:
https://brainly.com/question/23861954
#SPJ9
Which best describes how to Sovle the equation below?
26x = 74
A. Multiply both sides by 74.
B. Multiply both sides by 26.
C. Divide both sides by 26.
D. Divide both sides by 74.
Olympia ate lunch at a restaurant the amount of her check was $6.89 she left eight dollars on the table which included the amount she owed plus a tip for the waiter which equation shows t and the amount of her tip in dollars
The equation will be like this,
6.89 + t = 8.00
t = 8 - 6.89
t = 1.11
tips = $1.11
6.89 + t = 8.00
To sum up the total amount of cash and coins you have, first, sort each invoice and coin by denomination. Create a separate stack for each denomination and count how many denominations or coins you have.
For each denomination of banknotes and coins, multiply the number you have by the denomination. For example, if you have 4 out of $ 10, multiply by 4x10 to get $ 40. If you have three $ 5 bills, multiply by 3x5 to get $ 15.
Sum the totals to calculate the total amount.
Learn more about Ammount Calculation here: https://brainly.com/question/2005046
#SPJ4
HELPPPP PLSSSSSSSS
-----
Answer:
Translation of 3 units to the left.
Vertical stretch by a factor of 2.
Translation of 5 units down.
Step-by-step explanation:
Transformations
For a > 0
[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]
[tex]y=a\:f(x) \implies f(x) \: \textsf{stretched parallel to the y-axis (vertically) by a factor of}\:a[/tex]
[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]
Parent function:
[tex]y=x^2[/tex]
Translate 3 units left
Add 3 to the variable of the function
[tex]\implies y=(x+3)^2[/tex]
Stretch vertically by a factor of 2
Multiply the whole function by 2:
[tex]\implies y=2(x+3)^2[/tex]
Translate 5 units down
Subtract 5 from the whole function:
[tex]\implies y=2(x+3)^2-5[/tex]
Please see the attached graphs for the final transformed function (as well as the graphed steps).
Answer:
a) vertical expansion by a factor of 2; translation 3 units left and 5 units down
b) see attached
Step-by-step explanation:
a.Describing transformations is all about matching patterns. The elements of the transformed function are matched with the elements of a transformation.
Vertical scalingA function is scaled vertically by multiplying each function value by some scale factor. In generic terms, the function f(x) is scaled vertically by the factor 'c' in this way:
original function: f(x)scaled by a factor of 'c': c·f(x)If we want the function f(x) = x² scaled vertically by a factor of 2, then we have
f(x) = x² . . . . . . . original function
2·f(x) = 2x² . . . . scaled vertically by a factor of 2
On a graph, each point is vertically twice as far vertically from some reference point (the vertex, for example) as it is in the original function graph.
Horizontal translationA function is translated to the right by 'h' units when x is replaced by (x -h).
original function: f(x)translated h units right: f(x -h)If we want the function f(x) = x² translated right by 3 units, we will have ...
f(x) = x² . . . . . . . . . . . original function
f(x -3) = (x -3)² . . . . . .translated right 3 units
Note that translation left by 3 units would give ...
f(x -(-3)) = f(x +3) = (x +3)² . . . . translated left 3 units
On a graph, each point of the left-translated function is 3 units left of where it was on the original function graph.
Vertical translationA function is translated upward by 'k' units when k is added to the function value.
original function: f(x)translated k units up: f(x) +kThe value of k will be negative for a translation downward.
If we want the function f(x) = x² translated down by 5 units, we will have ...
f(x) = x² . . . . . . . . . . . original function
f(x) = x² -5 . . . . . . . . .translated down 5 units
Combined transformationsUsing all of these transformations at once, we have ...
f(x) = x² . . . . . . . . . . . . . . . . . original function
c·f(x -h) +k = c·(x -h)² +k . . . scaled by 'c', translated h right and k up
Compare this to the given function:
y = 2(x +3)² -5
and we can see that ...
c = 2 . . . . . . vertical scaling by a factor of 2h = -3 . . . . . translation 3 units leftk = -5 . . . . . translation 5 units downThis is the pattern matching that is described at the beginning.
__
b.When graphing a transformed function, it is often useful to start with a distinctive feature and work from there. The vertex of a parabola is one such distinctive feature.
TranslationThe transformations move the vertex 3 units left and 5 units down from its original position at (0, 0). The location of the vertex on the transformed function graph will be at (x, y) = (-3, -5).
Vertical scalingThe graph of the parent function parabola (y= x²) goes up from the vertex by the square of the number of units right or left. That is, 1 unit right or left of the vertex, the graph is 1 unit above the vertex. 2 units right or left, the graph is 2² = 4 units above the vertex.
The scaled graph will have these vertical distances multiplied by 2:
±1 unit horizontally ⇒ 2·1² = 2 units vertically; points (-4, -3), (-2, -3)±2 units horizontally ⇒ 2·2² = 8 units vertically; points (-5, 3), (-1, 3)The graph of the transformed function is shown in blue in the attachment.
__
Additional comment
The vertical scale factor 'c' may have any non-zero value, positive or negative, greater than 1 or less than 1. When the magnitude is less than 1, the scaling is a compression, rather than an expansion. When the sign is negative, the graph is also reflected across the x-axis, before everything else.
We can learn a lot about a population if we select a ______ of it. Group of answer choices population subset data set case
We can learn a lot about a population if we select a subset of it.
What is a subset?One kind of set is a sample space. It is a clear listing of every event that could occur in a statistical experiment. A statistical experiment's events are a subset of the sample space.
A subset is a smaller group of results that are part of the bigger group.
Subsets are events, and events are subsets. A subset is an event of a sample space, and an event is a potential result of an experiment. A random experiment's sample space is a set (S) that contains all of the experiment's potential outcomes.
Learn more about subsets here:
https://brainly.com/question/20509970
#SPJ4
Assume a student received the following grades for the semester: History, B; Statistics, A; Spanish, C; and English, C. History and English are 6 credit-hour courses, Statistics is a 8 credit-hour course, and Spanish is a 6 credit-hour course. If 4 grade points are assigned for an A, 3 for a B, and 2 for a C, what is the weighted mean grade for the semester
The weighted mean grade for the semester is 8.22
What is mean?It is calculated by dividing the total number of values in a set of data, such as measurements or numbers, by the total number of values.
No. of credits for Spanish, History and English = 6
No. of credits for Statistics = 8
Grade points for A = 4
Grade points for B = 3
Grade points for C = 2
Weighted mean = (6 * 2 + 6 * 3 + 8 * 4 + 6 * 2) / 9
Weighted mean = (12 + 18 + 32 + 12) / 9
Weighted mean = 74 / 9 = 8.22
Hence, the weighted mean grade for the semester is 8.22.
Learn more about mean on:
https://brainly.com/question/1136789
#SPJ4
When you roll two number cubes, what are the odds, in simplest form, in favor of getting two numbers less than 4?
A. 1:3
B. 3:1
C. 1:4
D. 4:1
Answer:
c 1:4
Step-by-step explanation:
I cant figure this out
The length and width of the rectangle with an area of 120 units² are 12 units and 10 units respectively.
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
Let x represent the width, hence:
length = x + 2
The area of a rectangle is the product of its length and its width.
Area = length * width
Area = x(x + 2)
120 = x² + 2x
x² + 2x - 120 = 0
x = 10, length = 10 + 2 = 12
The length and width of the rectangle with an area of 120 units² are 12 units and 10 units respectively.
Find out more on equation at: https://brainly.com/question/2972832
#SPJ1
Help please
please
Please
Gradient = rise/ run
rise is d
run is the difference in our x coordinates of c & e
(or c - e)
So, it's d/C - e
(3rd option)
Hope this helps!
Answer:
3rd option
Step-by-step explanation:
calculate the slope m using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = E (e, 0 ) and (x₂, y₂ ) = (c, d )
m = [tex]\frac{d-0}{c-e}[/tex] = [tex]\frac{d}{c-e}[/tex]
Prove the following trigonometric identities
Answer:
Greetings !
check the attachment above☝️ but i haven't done the second question wait a moment. thx
in order to solve the following system of equations by subtraction, which of the following could you do before subtracting the equations so that one variable will be eliminated when you subtract them?
4x-2y=7
3x-3y=15
The following system of equation can be solved by first substituting the dependent variable in the other equation . The solution yields x = -1.5 and y = 6.5 .
What is the solution of the given system of equation ?The two equations are given as -
4x-2y=7
3x-3y=15
First substituting the value of x from the first equation and then putting that value in the second equation for the following system of equation.
From first equation,
⇒ 4x = 7 + 2y
∴ x = (7 + 2y)/4
Putting this value of x in second equation,
⇒ 3*(7 + 2y)/4 - 3y = 15
⇒ 3*(7 + 2y) - 12y = 60
⇒ 21 + 6y - 12y = 60
⇒ -6y = 39
∴ y = -6.5
∴ x = (7 + 2y)/4 = -1.5
Thus x = -1.5 and y = -6.5
Therefore, the following system of equation can be solved by first substituting the dependent variable in the other equation . The solution yields x = -1.5 and y = 6.5 .
To learn more about system of equation, refer -
https://brainly.com/question/12526075
#SPJ9
For 8-10, Find the area of the polygon.
math related!!!!! Pls help look at pic >>>>>