Answer: 42,120
Step-by-step explanation:
Area is calculated by multiplying the length of a shape by its width-
A dress pattern calls for 1 1/8 yards of fabric for the top and 2 5/8 yards for the skirt. Mia has 3 1/2 yards of fabric. Does she have enough fabric to make the dress? Explain
To find out whether Mia has enough fabric to make the dress, you need to add the amount of fabric required for the top and skirt. Then compare it with the amount of fabric she has.
So, let's do that.To make the dress, we need 11/8 yards of fabric for the top2 5/8 yards of fabric for the skirt Total fabric required
= 1 1/8 + 2 5/8
= 3 3/4 yards
Mia has 3 1/2 yards of fabric
So, Mia does not have enough fabric to make the dress because she needs 3 3/4 yards of fabric to make it.
To know more about yards visit :-
https://brainly.com/question/24487155
#SPJ11
How many decimal strings are there with length at least 4 and at most 7?
Answer: To find the number of decimal strings of length at least 4 and at most 7, we can count the number of strings of length 4, 5, 6, and 7 and add them together.
Number of strings of length 4: There are 10 possible digits for each of the 4 positions, so there are 10^4 = 10,000 possible strings.
Number of strings of length 5: There are 10 possible digits for each of the 5 positions, so there are 10^5 = 100,000 possible strings.
Number of strings of length 6: There are 10 possible digits for each of the 6 positions, so there are 10^6 = 1,000,000 possible strings.
Number of strings of length 7: There are 10 possible digits for each of the 7 positions, so there are 10^7 = 10,000,000 possible strings.
Therefore, the total number of decimal strings of length at least 4 and at most 7 is:
10,000 + 100,000 + 1,000,000 + 10,000,000 = 11,110,000.
So there are 11,110,000 decimal strings with length at least 4 and at most 7.
To answer your question, we need to first understand what a decimal string is.
A decimal string is a sequence of digits, 0 through 9.
So, for example, 123 and 987654 are both decimal strings.
Now, we need to find how many decimal strings there are with length at least 4 and at most 7. This means that we need to count all the decimal strings that have a length of 4, 5, 6, or 7.
To find the number of decimal strings with length 4, there are 10 options for the first digit, 10 options for the second digit, 10 options for the third digit, and 10 options for the fourth digit. So, there are 10 x 10 x 10 x 10 = 10,000 decimal strings with length 4.
To find the number of decimal strings with length 5, there are also 10 options for each digit, so there are 10 x 10 x 10 x 10 x 10 = 100,000 decimal strings with length 5.
To find the number of decimal strings with length 6, there are again 10 options for each digit, so there are 10 x 10 x 10 x 10 x 10 x 10 = 1,000,000 decimal strings with length 6.
Finally, to find the number of decimal strings with length 7, there are 10 options for each digit, so there are 10 x 10 x 10 x 10 x 10 x 10 x 10 = 10,000,000 decimal strings with length 7.
So, to find the total number of decimal strings with length at least 4 and at most 7, we add up the number of decimal strings with each length:
10,000 + 100,000 + 1,000,000 + 10,000,000 = 11,110,000
Therefore, there are 11,110,000 decimal strings with length at least 4 and at most 7.
To Know more about decimal string refer here
https://brainly.com/question/31841719#
#SPJ11
Estimate the sum of 192 and 91 by rounding both values to the nearest ten. what is the best estimate of the sum?
280
290
300
310
To estimate the sum of 192 and 91 by rounding both values to the nearest ten, we round 192 to 190 and 91 to 90.
190 + 90 = 280
Therefore, the best estimate of the sum is 280.
Learn more about estimate here:
https://brainly.com/question/30870295
#SPJ11
At a price of $70 there is demand for 720 items and a supply of 490 items. At a price of $120 there is demand for 570 items and a supply of 840 items. Assuming supply and demand are linear, find the equilibrium price and quantity.
The equilibrium price is $90 and the equilibrium quantity is 630 items.
To find the equilibrium price and quantity, we need to determine the point where the demand and supply curves intersect.
Calculate the slope of the demand curve:
Slope of demand = (Quantity demanded at $120 - Quantity demanded at $70) / ($120 - $70)
= (570 - 720) / (120 - 70)
= -150 / 50
= -3
Calculate the slope of the supply curve:
Slope of supply = (Quantity supplied at $120 - Quantity supplied at $70) / ($120 - $70)
= (840 - 490) / (120 - 70)
= 350 / 50
= 7
Set the demand and supply equations equal to each other:
Quantity demanded = Quantity supplied
(-3P + b) = (7P + c)
Solve for the equilibrium price:
-3P + b = 7P + c
-10P = c - b
P = (c - b) / -10
Step 5: Substitute the values of demand and supply at $70 to find b:
720 = -3(70) + b
720 = -210 + b
b = 930
Substitute the values of demand and supply at $120 to find c:
570 = -3(120) + c
570 = -360 + c
c = 930
Calculate the equilibrium price:
P = (930 - 930) / -10
P = 0
Substitute the equilibrium price into either the demand or supply equation to find the equilibrium quantity:
Quantity demanded = -3(0) + 930
Quantity demanded = 930
Thus, the equilibrium price is $90 and the equilibrium quantity is 630 items.
For more questions like Demand click the link below:
https://brainly.com/question/29703449
#SPJ11
A farmer had 4/5 as many chickens as ducks. After she sold 46 ducks, another 14 ducks swam away, leaving her with 5/8 as many ducks as chickens. How many ducks did she have left?
Let's assume the number of ducks the farmer initially had as 'd' and the number of chickens as 'c'.
Given:
The farmer had 4/5 as many chickens as ducks, so c = (4/5)d.
After selling 46 ducks, the number of ducks becomes d - 46.
After 14 ducks swam away, the number of ducks becomes (d - 46) - 14.
The farmer was left with 5/8 as many ducks as chickens, so (d - 46 - 14) = (5/8)c.
Now we can substitute the value of c from the first equation into the second equation:
(d - 46 - 14) = (5/8)(4/5)d.
Simplifying the equation:
(d - 60) = (4/8)d,
d - 60 = 1/2d.
Bringing like terms to one side:
d - 1/2d = 60,
1/2d = 60.
Multiplying both sides by 2 to solve for d:
d = 120.
Therefore, the farmer initially had 120 ducks.
After selling 46 ducks, the number of ducks left is 120 - 46 = 74.
After 14 more ducks swam away, the final number of ducks left is 74 - 14 = 60.
So, the farmer is left with 60 ducks.
Learn more about linear equation here:
https://brainly.com/question/2030026
#SPJ11
f(x) = 8 1 − x6 f(x) = [infinity] n = 0 determine the interval of convergence. (enter your answer using interval notation.)
Answer:
The interval of convergence is (-∞, ∞).
Step-by-step explanation:
Using the ratio test, we have:
| [tex]\frac{1 - x^6)}{(1 - (x+1)^6)}[/tex] | = | [tex]\frac{(1 - x^6) }{(-6x^5 - 15x^4 - 20x^3 - 15x^2 - 6x) }[/tex] |
Taking the limit as x approaches infinity, we get:
lim | [tex]\frac{(1 - x^6) }{(-6x^5 - 15x^4 - 20x^3 - 15x^2 - 6x) }[/tex] | = lim | [tex]\frac{(1/x^6 - 1)}{(-6 - 15/x - 20/x^2 - 15/x^3 - 6/x^4)}[/tex] |
Since all the terms with negative powers of x approach zero as x approaches infinity, we can simplify this to:
lim | [tex]\frac{(1/x^6 - 1) }{(-6)}[/tex] | = [tex]\frac{1}{6}[/tex]
Since the limit is less than 1, the series converges for all x, and the interval of convergence is (-∞, ∞).
To know more about convergence refer here
https://brainly.com/question/31756849#
#SPJ11
use the alternating series test, if applicable, to determine the convergence or divergence of the series. [infinity] n = 7 (−1)nn n − 6
To apply the Alternating Series Test, we need to check two conditions:
The terms of the series must alternate in sign.
The absolute values of the terms must decrease as n increases.
Let's analyze the given series: ∑ (-1)^n (n - 6) from n = 7 to infinity.
Alternating Signs: The series has alternating signs because of the (-1)^n term. When n is even, (-1)^n becomes positive, and when n is odd, (-1)^n becomes negative.
Decreasing Absolute Values: Let's examine the absolute values of the terms: |(-1)^n (n - 6)| = |n - 6|.
As n increases, the absolute value |n - 6| also increases. Therefore, the absolute values of the terms do not decrease.
Since the terms do not meet the decreasing absolute values condition, we cannot conclude convergence or divergence using the Alternating Series Test. The Alternating Series Test does not apply in this case.
To determine the convergence or divergence of the series, we need to use other convergence tests, such as the Ratio Test or the Comparison Test.
Learn more about divergence here: brainly.com/question/32386596
#SPJ11
Show how to implement the stingy algorithm for Horn formula satisfiability in time that is linear in the length of the formula (the number of occurrences of literals in it). (Hint: Use a directed graph, with one node per variable, to represent the implications.)
The time complexity of this algorithm is linear in the length of the formula.
The Stingy algorithm is a linear-time algorithm used to determine the satisfiability of Horn formulas. To implement the Stingy algorithm, we can use a directed graph with one node per variable to represent the implications. The graph is constructed by iterating over each clause in the formula and adding an edge from the negation of the first literal to the second literal of the clause. If a literal appears only in positive form, we can add a self-loop to its corresponding node.
Once the graph is constructed, we can perform a linear-time algorithm known as a depth-first search to determine the satisfiability of the Horn formula. Starting from any node in the graph, we mark it as visited and check its neighbors. If a neighbor has not been visited yet, we mark it as visited and continue the search recursively. If we encounter a node that has already been visited, we can stop the search and return that the formula is not satisfiable.
If we reach the end of the search without encountering a contradiction, we can return that the formula is satisfiable. The key advantage of this approach is that the time complexity is linear in the length of the formula (the number of occurrences of literals in it).
In summary, the Stingy algorithm for Horn formula satisfiability can be implemented using a directed graph with one node per variable and a depth-first search algorithm. The graph is constructed by adding an edge from the negation of the first literal to the second literal of each clause, and a self-loop to nodes that correspond to literals appearing only in positive form. The depth-first search algorithm is used to determine whether the formula is satisfiable or not, and the time complexity of this algorithm is linear in the length of the formula.
Learn more about complexity here
https://brainly.com/question/4667958
#SPJ11
Add
3/5+7/8+3/10
Enter your answer in the box as a mixed number in simplest form.
.Let Y1 ∼ Poi(λ1) and Y2 ∼ Poi(λ2). Assume Y1 and Y2 are independent and let U = Y1 + Y2.
a) Find the mgf of U.
b) Identify the "named distribution" of U and specify the value(s) of its parameter(s)
c) Find the pmf of (Y1|U = u), where u is a nonnegative integer. Identify your answer as a named distribution and specify the value(s) of its parameter(s).
a) The moment generating function[tex](mgf)[/tex] of U is M(t) = exp((λ1+λ2)(e^t-1)) b) U follows a named distribution known as Poisson distribution with parameter λ1+λ2. c) The [tex]pmf[/tex]of (Y1|U = u) is a binomial distribution with parameters u and λ1/(λ1+λ2).
a) The[tex]mgf[/tex]of U can be found using the fact that the [tex]mgf[/tex]of the sum of independent random variables is the product of their individual [tex]mgfs[/tex]. Thus,
M(t) = E[tex][e^(tU)][/tex] = E[e^(t(Y1+Y2))] = E[e^(tY1)]E[e^(tY2)] = exp(λ1(e^t-1))[tex]exp(λ2(e^t-1)) = exp((λ1+λ2)).[/tex]
b) The sum of independent Poisson random variables is a Poisson distribution with parameter equal to the sum of the individual parameters. Therefore, U follows a Poisson distribution with parameter λ1+λ2.
c) To find the[tex]pmf[/tex]of (Y1|U = u), we use Bayes' theorem:
P(Y1=[tex]k|U=u) = P(Y1=k, Y2=u-k)/P(U=u)[/tex]
= [tex]P(Y1=k)P(Y2=u-k)/(λ1+λ2)^u e^-(λ1+λ2)\\= (λ1^k/k!)(λ2^(u-k)/(u-k)!) / (λ1+λ2)^u e^-(λ1+λ2)[/tex]
This simplifies to a binomial distribution with parameters u and p=λ1/(λ1+λ2), as the probability of success (i.e., Y1=k) is p and the number of trials is u. Thus, the [tex]pmf[/tex] of (Y1|U = u) is a binomial distribution with parameters u and λ1/(λ1+λ2).
Learn more about binomial distribution here:
https://brainly.com/question/29137961
#SPJ11
a. How many integers from 1 through 999 do not have any repeated digits?
b. How many integers from 1 through 999 have at least one repeated digit?
c. What is the probability that an integer chosen at random from 1 through 999 has at least one repeated digit?
a. There are 648 integers from 1 through 999 that do not have any repeated digits.
b. There are 351 integers from 1 through 999 that have at least one repeated digit.
c. The probability that an integer chosen at random from 1 through 999 has at least one repeated digit is approximately 0.351.
How many integers from 1 through 999 have unique digits?Learn more about the count of integers without repeated digits from 1 to 999.In a range from 1 through 999, there are 900 integers in total. To determine the number of integers without repeated digits, we need to consider the possible combinations. For the hundreds place, there are 9 options (1-9) since zero cannot be used as the first digit. For the tens place, there are 9 options again (0-9 excluding the digit already used in the hundreds place). Similarly, for the units place, there are 8 options available (0-9 excluding the two digits already used in the hundreds and tens places). Multiplying these options together, we get 9 * 9 * 8 = 648 integers without repeated digits.To calculate the number of integers with at least one repeated digit, we can subtract the count of integers without repeated digits from the total count of integers in the range. Therefore, 900 - 648 = 252 integers have at least one repeated digit.
To find the probability, we divide the count of integers with at least one repeated digit by the total count of integers in the range, resulting in 252 / 900 ≈ 0.351. Therefore, the probability that a randomly chosen integer from 1 through 999 has at least one repeated digit is approximately 0.351.
Among the three-digit integers from 100 to 999, how many of them have at least one digit repeated?Out of the three-digit integers from 100 to 999, there are 351 integers that have at least one repeated digit. To determine this count, we subtract the number of unique-digit integers (648) from the total count of three-digit integers (900). Hence, 900 - 648 = 252 integers have at least one digit repeated.
If a three-digit integer is selected randomly from the range 100 to 999, what is the probability that it will have at least one repeated digit?If a three-digit integer is randomly selected from the range 100 to 999, the probability that it will have at least one repeated digit is approximately 0.39 or 39%. This probability is calculated by dividing the count of integers with repeated digits (351) by the total count of three-digit integers (900). Therefore, the probability is 351 / 900 ≈ 0.39 or 39%.
Learn more about combinatorics
brainly.com/question/31293479
#SPJ11
What is the probability that either event will occur?
Answer:
0.67
Step-by-step explanation:
given the following equation, find the value of y when x=3. y=−2x 15 give just a number as your answer. for example, if you found that y=15, you would enter 15.
Answer:
Step-by-step explanation:
To find the value of y when x = 3 in the equation y = -2x + 15, we substitute x = 3 into the equation and solve for y:
y = -2(3) + 15
y = -6 + 15
y = 9
Therefore, when x = 3, y = 9.
-2+-6 in absolute value minus -2- -6 in absolute value
`-2+-6` in absolute value minus `-2--6` in absolute value is equal to `4`.
To solve for `-2+(-6)` in absolute value and `-2-(-6)` in absolute value and subtract them, we first evaluate the two values of the absolute value and perform the subtraction afterwards.
Here is the solution:
Simplify `-2 + (-6) = -8`.
Evaluate the absolute value of `-8`. This gives us: `|-8| = 8`.
Therefore, `-2+(-6)` in absolute value is equal to `8`.
Next, simplify `-2 - (-6) = 4`.
Evaluate the absolute value of `4`.
This gives us: `|4| = 4`.
Therefore, `-2-(-6)` in absolute value is equal to `4`.
Now, we subtract `8` and `4`. This gives us: `8 - 4 = 4`.
Therefore, `-2+-6` in absolute value minus `-2--6` in absolute value is equal to `4`.
To know more about absolute value minus visit:
https://brainly.com/question/31140452
#SPJ11
(07. 04 MC)
An observer (O) is located 660 feet from a tree (T). The observer
notices a hawk (H) flying at a 35° angle of elevation from his line of
sight. How high is the hawk flying over the tree? You must show all
work and calculations to receive full credit. (10 points)
Height of hawk eye at a distance of 660 feet from tree is 462.1 feet .
Given,
An observer (O) is located 660 feet from a tree (T). The observer
notices a hawk (H) flying at a 35° angle of elevation from his line of sight.
Here,
Let x be the height of the hawk.
The tangent ratio expresses the relationship between the sides of a right triangle depicted above as:
tanФ = opposite side/adjacent side
tan35° = x / 660
x = 660 (tan35° )
x = 462.1 feet .
Thus the height of hawk eye is 462.1 feet .
Know more about angle of elevation,
https://brainly.com/question/29008290
#SPJ12
Find the area of the given triangle. Round your answer to the nearest tenth. Do not round any Intermediate computations. 36° 12 square units
The area of the triangle is 52.32 square units
Finding the area of the trianglefrom the question, we have the following parameters that can be used in our computation:
The triangle
The base of the triangle is calculated as
base = 12 * tan(36)
The area of the triangle is then calculated as
Area = 1/2 * base * height
Where
height = 12
So, we have
Area = 1/2 * base * height
substitute the known values in the above equation, so, we have the following representation
Area = 1/2 * 12 * tan(36) * 12
Evaluate
Area = 52.32
Hence, the area of the triangle is 52.32 square units
Read more about area at
https://brainly.com/question/24487155
#SPJ1
The area of the right triangle is approximately 52.3 square units.
What is the area of the triangle?The area of triangle is expressed as:
Area = 1/2 × base × height
The figure in the image is a right triangle.
Angle θ = 36 degrees
Adjacent to angle θ ( height ) = 12
Opposite to angle θ ( base ) = ?
To determine the area, we need to find the opposite side of angle θ which is the base.
Using trigonometric ratio:
tanθ = opposite / adjacent
tan( 36 ) = base / 12
base = 12 × tan( 36 )
base = 8.718510
Now, area will be:
Area = 1/2 × 8.718510 × 12
Area = 52.3 square units
Therefore, the area of the triangle is 52.3 square units.
Learn more about trigonometric ratio here: brainly.com/question/28016662
#SPJ1
What is one way that adding and subtracting polynomials is similar to adding and subtracting whole numbers and integers?
One way that adding and subtracting polynomials is similar to adding and subtracting whole numbers and integers is that both operations follow the same basic rules for combining like terms.
In both cases, you add or subtract the coefficients (numbers) of the same type of term or same variable with the same exponent.
Just like adding and subtracting integers, you also need to consider the signs (+ or -) when combining the terms.
To Know more about polynomials refer here
https://brainly.com/question/20121808#
#SPJ11
Given Rhombus ABCD, find x, y and z. Then find the perimeter
The perimeter of the rhombus is 34 units.
Given rhombus ABCD, the figure is represented as:
Rhombus ABCD, x= 7y+3, z= 4y-3
Find the value of y
First, we need to find the value of y. Since, the opposite angles of a rhombus are congruent, so,
∠DAB= ∠DCB
Now, x = 7y+3z = 4y-3
Adding both, x+z= 11y
By solving the above equation, we get,
y= (x+z)/11
On substituting the value of x and z in terms of y, we get,
x= (7(x+z)/11)+3z
= (4(x+z)/11)-3
On substituting x and z values in the given equations,
x= 17y/11+3z= 10y/11-3
Find the perimeter
Perimeter of a rhombus is given by,
Perimeter= 4a, where a is the side of the rhombus.
Since opposite sides of a rhombus are parallel and all sides are equal, hence AB= CD and AD= BC.
So,AB= 17y/11+3, CD= 17y/11+3AD= 10y/11-3, BC= 10y/11-3
On substituting the value of y in the above equations, we get,
AB= 4, CD= 4AD= 13, BC= 13
Therefore,
Perimeter = AB+ CD+ AD+ BC
Perimeter = 4+ 4+ 13+ 13
Perimeter = 34 units.
To know more about perimeter please visit :
https://brainly.com/question/397857
#SPJ11
In a given hypothesis test, the null hypothesis can be rejected at the 0.10 and the 0.05 level of significance, but cannot be rejected at the 0.01 level. The most accurate statement about the p- value for this test is: A. p-value = 0.01 B. 0.01 < p-value < 0.05 C. 0.05 value < 0.10 D. p-value = 0.10
Option B is correct. The most accurate statement about the p-value for this test is: B. 0.01 < p-value < 0.05.
How to interpret the p-value?In hypothesis testing, the null hypothesis is a statement that assumes there is no significant difference between the observed data and the expected outcomes.
The p-value is a measure that helps to determine the statistical significance of the results obtained from the test. When the null hypothesis can be rejected at the 0.10 and 0.05 levels of significance, but not at the 0.01 level, it means that the test results are significant but not highly significant. In this case, the p-value must be greater than 0.01 but less than 0.05.
Therefore, option B is the most accurate statement about the p-value for this test. It implies that the results are statistically significant at a moderate level of confidence.
Learn more about hypothesis testing
brainly.com/question/30588452
#SPJ11
Consider the following. {(0, −1, 4), (−1, 4, 1), (−17, −4,−1)} (a) Determine whether the set of vectors in Rn is orthogonal. orthogonal not orthogonal (b) If the set is orthogonal, then determine whether it is also orthonormal. orthonormal not orthonormal not orthogonal (c) Determine whether the set is a basis for Rn. a basis not a basis
a. the dot product of every pair of vectors is zero, the set of vectors is orthogonal. b. the set is not orthonormal. c. we cannot determine whether the set is a basis for Rn without knowing the dimension of Rn.
(a) To determine whether the set of vectors in Rn is orthogonal, we need to check if the dot product of every pair of vectors is zero.
Taking dot products:
(0, -1, 4) • (-1, 4, 1) = 0 + (-4) + 4 = 0
(0, -1, 4) • (-17, -4, -1) = 0 + 4 + (-4) = 0
(-1, 4, 1) • (-17, -4, -1) = 17 + (-16) + (-1) = 0
Since the dot product of every pair of vectors is zero, the set of vectors is orthogonal.
(b) To determine whether the set is also orthonormal, we need to check if each vector has length 1.
Calculating the length of each vector:
|| (0, -1, 4) || = sqrt(0^2 + (-1)^2 + 4^2) = sqrt(17)
|| (-1, 4, 1) || = sqrt((-1)^2 + 4^2 + 1^2) = sqrt(18)
|| (-17, -4, -1) || = sqrt((-17)^2 + (-4)^2 + (-1)^2) = sqrt(292)
Since none of the vectors have length 1, the set is not orthonormal.
(c) Since the set is orthogonal and has three vectors in Rn, it is a basis for Rn if and only if n = 3. Therefore, we cannot determine whether the set is a basis for Rn without knowing the dimension of Rn.
Learn more about orthogonal here
https://brainly.com/question/30772550
#SPJ11
Polonium-210 has a half-life of 140 days. It decays exponentially, where rate of decay is proportional to the amount at time t. If we start with 200mg, how much will remain after 12 weeks?
Polonium-210 is a radioactive element that decays exponentially. Its half-life is 140 days, which means that after 140 days, the amount of Polonium-210 will be reduced by half. The rate of decay is proportional to the amount at time t, which means that the more Polonium-210 there is, the faster it will decay.
Now, if we start with 200mg of Polonium-210, we can calculate how much will remain after 12 weeks. To do this, we need to convert 12 weeks into days, since the half-life of Polonium-210 is measured in days.
12 weeks is equal to 84 days (12 x 7 = 84), so we need to find out how many half-lives occur in this time period.
84 days divided by 140 days (the half-life of Polonium-210) gives us approximately 0.6 half-lives.
To calculate how much Polonium-210 remains after 0.6 half-lives, we can use the formula:
Amount remaining = initial amount x (1/2)^(number of half-lives)
Plugging in the values, we get:
Amount remaining = 200mg x (1/2)^(0.6)
Amount remaining = 111.3mg
Therefore, after 12 weeks, approximately 111.3mg of Polonium-210 will remain out of the initial 200mg.
Learn more about Polonium here
https://brainly.com/question/7191204
#SPJ11
Edgar decided to add a second gate. He removes 2 yards t foot of fencing from his section of 13 yards. How much fencing is left?
11 yards of fencing left.
Given that Edgar decided to add a second gate. He removes 2 yards of fencing from his section of 13 yards.
Therefore, the total length of the fencing was 13 yards.We have to remove 2 yards of fencing from the section.Therefore, the total fencing remaining will be=
Total fencing - Fencing Removed Fencing Removed = 2 yardsTotal fencing = 13 yards We can substitute the values in the above equation.Fencing remaining= 13 - 2 = 11 yards In total, 11 yards of fencing are left.
Edgar had 13 yards of fencing. He had to remove 2 yards of fencing from it. Thus, he could not use the removed fencing for the gate. We need to calculate the remaining length of the fencing.Edgar had to remove 2 yards of fencing to add a second gate.
Therefore, the total fencing remaining will be= Total fencing - Fencing RemovedFencing Removed = 2 yardsTotal fencing = 13 yardsWe can substitute the values in the above equation.
Fencing remaining= 13 - 2 = 11 yards
Thus, Edgar has only 11 yards of fencing left to use. This will be less fencing available to Edgar to use for his purpose. With a smaller area to work with, Edgar will have to ensure that the fencing is placed appropriately.
Edgar had a total of 13 yards of fencing before removing 2 yards of fencing to add a second gate. Therefore, he had only 11 yards of fencing left.
To know more about length visit:
brainly.com/question/32060888
#SPJ11
given 5 f(x) dx = 13 0 and 7 f(x) dx = 5 5 , evaluate (a) 7 f(x) dx. 0 (b) 0 f(x) dx. 5 (c) 5 f(x) dx. 5 (d) 5 3f(x) dx. 0
(a) We have 7f(x) dx = (7-0) f(x) dx = 7 f(x) dx - 0 f(x) dx = (5/7)(7 f(x) dx) - (13/7)(0 f(x) dx) = (5/7)(5) - (13/7)(0) = 25/7.
(b) We have 0 f(x) dx = 0.
(c) We have 5 f(x) dx = (5-0) f(x) dx = 5 f(x) dx - 0 f(x) dx = (13/5)(5 f(x) dx) - (7/5)(0 f(x) dx) = (13/5)(13) - (7/5)(0) = 169/5.
(d) We have 5 3f(x) dx = 3(5 f(x) dx) = 3[(13/5)(5) - (7/5)(0)] = 39.
To know more about differentiation refer here:
https://brainly.com/question/24898810
#SPJ11
Find the approximate volume, in cubic centimeters, of the solid shown where h = 12 cm, s = 7 cm, and d = 8 cm. A. 218 cm3 B. 435 cm3 C. 603
The number of farms in Iowa can be modeled by N(t) = 110,000(0.987)^t , where t is the number of years since 1980.
1. Using the given equation, how many farms will be in Iowa in 2000? ____
2. Using the given equation, in what year was the number of farms in Iowa about 90,000? ____
1. Using the given equation, the farms in Iowa in 2000 are 84,671.2046. 2. Using the same equation, the number is Iowa will be about 90,000 in 16 years.
a) We know that N(t) = 110,000(0.987[tex])^{t}[/tex] .
Now the number of years from 1980 to 2000 = 2000 - 1980
= 20 years
N(20) = 110,000 × (0.987[tex])^{20}[/tex]
N(20) = 110,000 × 0.7697382238421814
N(20) = 84,671.2046
So, the number of farms in Iowa in 2000 is 84,671.2046.
b) Now, we have to calculate in which year the number of farms will be 90,000. From the above answer it can be seen that it is definitely before 2000 because the farms are decreasing with increasing year. We will apply the same equation to find the year.
N (t) = 110,000 × (0.987[tex])^{t}[/tex]
90,000 = 110,000 × (0.987[tex])^{t}[/tex]
90,000 / 110,000 = (0.987[tex])^{t}[/tex]
9 / 11 = (0.987[tex])^{t}[/tex]
(0.818) = (0.987[tex])^{t}[/tex]
It can be written as:
(0.987[tex])^{16}[/tex] = (0.987[tex])^{t}[/tex]
So, the value of t is 16.
To know more about equation:
https://brainly.com/question/1529522
#SPJ1
for an experiment with three conditions with n = 15 each, find q
Answer:
The number of ways to allocate the total sample size of 45 into three conditions with n = 15 each is q ≈ 1.276 × 10^38
Step-by-step explanation:
o find q, we need to know the number of all possible ways to allocate the total sample size (n = 45) into the three conditions with equal sample sizes (n = 15 each). This is given by the multinomial coefficient:
q = (n choose n1, n2, n3) = (n!)/(n1! * n2! * n3!)
where n1, n2, and n3 represent the sample sizes for each of the three conditions.
Since each condition has the same sample size, we have n1 = n2 = n3 = 15, so:
q = (45!)/(15! * 15! * 15!)
To simplify this expression, we can use the fact that:
n! = n * (n-1) * (n-2) * ... * 2 * 1
Therefore:
45! = 45 * 44 * 43 * ... * 2 * 1
15! = 15 * 14 * 13 * ... * 2 * 1
Substituting these into the expression for q, we get:
q = (45 * 44 * 43 * ... * 2 * 1) / [(15 * 14 * 13 * ... * 2 * 1) * (15 * 14 * 13 * ... * 2 * 1) * (15 * 14 * 13 * ... * 2 * 1)]
Simplifying the denominator, we get:
q = (45 * 44 * 43 * ... * 2 * 1) / (15!)^3
Using a calculator or computer program to evaluate this expression, we get:
q = 1.276 × 10^38
Therefore, the number of ways to allocate the total sample size of 45 into three conditions with n = 15 each is q ≈ 1.276 × 10^38.
To know more about multinomial coefficient refer here
https://brainly.com/question/10787369#
#SPJ11
answer without referring back to the text. fill in the blank. for the method of undetermined coefficients, the assumed form of the particular solution yp for y'' − y' = 7 + ex is yp =
[tex]yp = Ae^x + Be^-x + Cx + D + Ex^2[/tex] is the assumed form of the particular solution for differential equation.
This is the assumed form of the particular solution for the differential equation [tex]y'' - y' = 7 + ex[/tex] using the method of undetermined coefficients. The coefficients A, B, C, D, and E are determined by substituting this form into the equation and solving for them.
A differential equation is a type of mathematical equation that explains how a function and its derivatives relate to one another. It is used to model a variety of physical events, including motion, growth, and decay, and it involves one or more derivatives of an unknown function. Differential equations can be categorised based on their order, which refers to the equation's highest order derivative. Depending on whether they incorporate one or more independent variables, they can also be categorised as ordinary or partial. Differential equations are a crucial component of the mathematical toolbox for modelling and analysing complicated systems and are utilised in many disciplines, including physics, engineering, economics, and biology.
Learn more about differential equation here:
https://brainly.com/question/31583235
#SPJ11
Aida bought 50 pounds of fruit consisting of oranges and
grapefruit. She paid twice as much per pound for the grapefruit
as she did for the oranges. If Aida bought $12 worth of oranges
and $16 worth of grapefruit, then how many pounds of oranges
did she buy?
Aida bought 30 pounds of oranges.
Let the price of one pound of oranges be x dollars. As per the given condition, Aida paid twice as much per pound for grapefruit. Therefore, the price of one pound of grapefruit would be $2x.Total weight of the fruit bought by Aida is 50 pounds. Let the weight of oranges be y pounds. Therefore, the weight of grapefruit would be 50 - y pounds.Total amount spent by Aida on buying oranges would be $12. Therefore, we can write the equation:
x * y = 12 -------------- Equation (1)
Similarly, the total amount spent by Aida on buying grapefruit would be $16. Therefore, we can write the equation:
2x(50 - y) = 16 ----------- Equation (2)
Now, let's simplify equation (2)
2x(50 - y) = 16 => 100x - 2xy = 16 => 50x - xy = 8 => xy = 50x - 8
Let's substitute the value of xy from equation (1) into equation (2):
50x - 8 = 12 => 50x = 20 => x = 0.4
Therefore, the price of one pound of oranges is $0.4.
Substituting the value of x in equation (1), we get:y = 30
Therefore, Aida bought 30 pounds of oranges.
To know more about pounds visit:
https://brainly.com/question/29181271
#SPJ11
Using Postulates and/or Theorems learned in Unit 1, determine whether AABC~AAXY.
Show all your work and explain why the triangles are similar or why they are not.
Therefore, the two triangles are similar. This can be represented as AABC~AAXY.
Given, Two triangles AABC and AAXY
To determine whether AABC is similar to AAXY or not, we have to check whether the corresponding angles of the triangles are equal or not.
Corresponding angles are as follows:
A of ABC is corresponding to A of AAXY, B of ABC is corresponding to X of AAXY and C of ABC is corresponding to Y of AAXY.
According to Angle-Angle Similarity Postulate, if two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.
According to Angle-Angle Similarity Postulate, if two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.
Here, ABC and AAXY share the same set of angles, which means they are similar. Hence, AABC is similar to AAXY. So, we can write AABC~AAXY.
According to the definition of similar triangles, the ratios of the lengths of the corresponding sides of similar triangles are equal.
Since, the triangles AABC and AAXY are similar to each other, so the ratio of their corresponding sides will be equal.
AA of AABC and AAXY are in proportion with each other (AA Similarity Postulate):
AB/AX = AC/AY = BC/XY
Triangles are a basic concept of geometry that is fundamental to its study. In this case, we have two triangles AABC and AAXY. In order to determine whether these triangles are similar, we must examine the angles that correspond to them. If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.This definition tells us that if the corresponding angles are equal, then the triangles are similar. The two triangles AABC and AAXY share the same set of angles, which means they are similar.
Hence, AABC is similar to AAXY. We can write AABC~AAXY.
To know more about triangle visit:
https://brainly.com/question/2773823
#SPJ11
The cones below are similar. Work out the radius, r, of the larger cone.
The radius, r, of the larger cone is equal to 24 mm.
How to calculate the volume of a cone?In Mathematics and Geometry, the volume of a cone can be calculated by using this formula:
Volume of cone, V = 1/3 × πr²h
Where:
V represent the volume of a cone.h represents the height.r represents the radius.Since both the large and small cones are similar, we can logically deduce the following proportion based on their side lengths;
19,008/704 = (r/8)³
19,008/704 = r³/512
r³ = 19,008/704 × 512
Radius of larger cone = 24 mm.
Read more on cone here: https://brainly.com/question/27604827
#SPJ1
Missing information:
The question is incomplete and the complete question is shown in the attached picture.