Find the concentration of Ca2+, in equilibrium with CaSO4(s) and 0. 035 M SO4-2.




A solution contains 0. 0330 M Pb2+and 0. 0210 M Ag+. Can 99% of Pb2+be precipitated by chromate(CrO42-), without precipitating Ag+? What will the concentration of Pb2+be, when Ag2CrO4begins to precipitate?



If a solution containing 0. 015 M each of bromide, chloride, iodide, and thiocyanate, is treated with Cu+, in what order will the anions precipitate?

Answers

Answer 1

The concentration of Ca2+ in equilibrium with CaSO4(s) and 0.035 M SO4-2 is approximately 1.41 x 10^-3 M. When a solution containing 0.015 M each of bromide, chloride, iodide, and thiocyanate is treated with Cu+, the order of anion precipitation will be: SCN- (thiocyanate), Br- (bromide), Cl- (chloride), and I- (iodide).

To find the concentration of Ca2+ in equilibrium with CaSO4(s) and 0.035 M SO4-2, we need to use the solubility product constant (Ksp) for CaSO4. The balanced equation for the dissolution of CaSO4 is:

CaSO4(s) ⇌ Ca2+(aq) + SO4-2(aq)

The Ksp expression for CaSO4 is: Ksp = [Ca2+][SO4-2]

Let's assume the concentration of Ca2+ in equilibrium is x. Since CaSO4 is a strong electrolyte, it dissociates completely, so [Ca2+] = x and [SO4-2] = 0.035 M.

Using the Ksp expression, we have: Ksp = (x)(0.035)

Given that the Ksp of CaSO4 is 4.93 x 10^-5, we can solve for x:

4.93 x 10^-5 = x * 0.035

x = 4.93 x 10^-5 / 0.035

x = 1.41 x 10^-3 M

Therefore, the concentration of Ca2+ in equilibrium with CaSO4(s) and 0.035 M SO4-2 is approximately 1.41 x 10^-3 M.

2) To determine if 99% of Pb2+ can be precipitated without precipitating Ag+, we need to compare the solubility products (Ksp) of Pb2CrO4 and Ag2CrO4. The balanced equation for the precipitation reaction of Pb2CrO4 is: Pb2+(aq) + CrO42-(aq) ⇌ PbCrO4(s)

The Ksp expression for PbCrO4 is: Ksp(PbCrO4) = [Pb2+][CrO42-]

Similarly, for Ag2CrO4:

Ag+(aq) + CrO42-(aq) ⇌ Ag2CrO4(s)

Ksp(Ag2CrO4) = [Ag+][CrO42-]

To find if 99% of Pb2+ can be precipitated without precipitating Ag+, we compare the product of [Pb2+] and [CrO42-] with the Ksp(Ag2CrO4) value.

Let's assume the concentration of Pb2+ that can be precipitated is y. Since Pb2CrO4 is a sparingly soluble salt, we can assume that [Pb2+] = y and [CrO42-] = 0.0210 M.

Using the Ksp expression for PbCrO4, we have:

Ksp(PbCrO4) = (y)(0.0210)

Given that the Ksp of PbCrO4 is 1.6 x 10^-13, we can solve for y:

1.6 x 10^-13 = y * 0.0210

y = 1.6 x 10^-13 / 0.0210

y = 7.62 x 10^-12 M

Now we compare the product of [Pb2+] and [CrO42-] with the Ksp(Ag2CrO4) value:

(y)(0.0210) = (7.62 x 10^-12)(0.0210) = 1.60 x 10^-13

Since 1.60 x 10^-13 is smaller than the Ksp(Ag2CrO4) value, which is 1.1 x 10^-12, we can conclude that 99% of Pb2+ can be precipitated without precipitating Ag+.

When Ag2CrO4 begins to precipitate, the concentration of Pb2+ will be equal to the solubility product constant for PbCrO4. Therefore, the concentration of Pb2+ will be 1.6 x 10^-13 M.

3) To determine the order in which the anions precipitate when a solution containing 0.015 M each of bromide (Br-), chloride (Cl-), iodide (I-), and thiocyanate (SCN-) is treated with Cu+, we need to compare the solubility products (Ksp) of the corresponding precipitates.

The order of precipitation will depend on the relative magnitudes of the Ksp values. The lower the Ksp value, the less soluble the compound, and the earlier it will precipitate.

The solubility products (Ksp) for the precipitates are as follows:

CuBr: Ksp = [Cu+][Br-]

CuCl: Ksp = [Cu+][Cl-]

CuI: Ksp = [Cu+][I-]

CuSCN: Ksp = [Cu+][SCN-]

Comparing the Ksp values, we can determine the order of precipitation. The Ksp values for copper halides (CuBr, CuCl, CuI) are generally higher than the Ksp value for copper thiocyanate (CuSCN). Therefore, the order of precipitation will be as follows:CuSCN (thiocyanate) will precipitate first due to its lower Ksp value.

CuBr (bromide) will precipitate second.

CuCl (chloride) will precipitate third.

CuI (iodide) will precipitate last.

In summary, when a solution containing 0.015 M each of bromide, chloride, iodide, and thiocyanate is treated with Cu+, the order of anion precipitation will be: SCN- (thiocyanate), Br- (bromide), Cl- (chloride), and I- (iodide).

LEARN MORE ABOUT precipitation here: brainly.com/question/30904755

#SPJ11


Related Questions

Determine the number of moles of carbon dioxide that will remain when 1.720 g of sodium hydroxide is reacted completely with 1.016 g of carbon dioxide?
2NaOH + CO2 ⟶⟶ Na2CO3 + H2O
Group of answer choices
1) 1.585×10^−3mol
2) 1.585×10^3mol
3) 1.585×10^-2mol
4) 2.309×10^-2mol

Answers

To determine the number of moles of carbon dioxide that will remain when 1.720 g of sodium hydroxide reacts completely with 1.016 g of carbon dioxide, we need to use stoichiometry and the balanced chemical equation given.

First, we need to convert the given masses into moles.
Moles of NaOH = 1.720 g / 40.00 g/mol = 0.0430 mol
Moles of CO2 = 1.016 g / 44.01 g/mol = 0.0231 mol
Next, we need to determine which reactant is limiting. The balanced chemical equation shows that 2 moles of NaOH react with 1 mole of CO2. Therefore, the number of moles of CO2 needed to react completely with 0.0430 mol of NaOH is:
0.0430 mol NaOH x (1 mol CO2 / 2 mol NaOH) = 0.0215 mol CO2
Since we have 0.0231 mol of CO2, we can see that CO2 is in excess and NaOH is limiting.
Using the stoichiometry of the balanced equation, we can calculate the number of moles of Na2CO3 formed:
0.0430 mol NaOH x (1 mol Na2CO3 / 2 mol NaOH) = 0.0215 mol Na2CO3
Therefore, the number of moles of CO2 that remain is:
0.0231 mol CO2 - 0 mol CO2 (since it reacts completely) = 0.0231 mol CO2
The answer is not one of the given choices, but it is important to note that the remaining amount of CO2 is in excess and not involved in the reaction.
In conclusion, the number of moles of carbon dioxide that will remain when 1.720 g of sodium hydroxide is reacted completely with 1.016 g of carbon dioxide is 0.0231 mol.

To know more about NaOH visit:

https://brainly.com/question/29854404

#SPJ11

the alpha carbon of all the amino acids is a chirality center except for
Aspartic Acid
Glycine
Arginine
Threonine
Proline

Answers

The alpha carbon of all amino acids is a chirality center except for Glycine. Glycine is unique because its side chain is a hydrogen atom, which makes its alpha carbon achiral. The other amino acids listed (Aspartic Acid, Arginine, Threonine, and Proline) all have chiral alpha carbons.

This means that it has four different groups bonded to it and can exist in two enantiomeric forms (mirror images). Aspartic acid, arginine, threonine, and proline all have a central alpha carbon that is a chirality center, while glycine does not have a chiral center because it has two hydrogen atoms bonded to its alpha carbon.

Thus, the long answer to your question is that the alpha carbon of all amino acids, except glycine, is a chirality center, which allows them to exist in two different forms.

To know more about amino acids visit:-

https://brainly.com/question/30586602

#SPJ11

Which of the following is not a common solvent used for acquiring a 'H NMR spectrum? CDCl_3 CCl_4 CH_3 OH CH_3 OH D_2

Answers

In nuclear magnetic resonance (NMR) spectroscopy, different solvents are used to dissolve and analyze compounds.  [tex]CH_{3} OH[/tex] (methanol) is not a common solvent used for acquiring an 'H NMR spectrum.

In nuclear magnetic resonance (NMR) spectroscopy, different solvents are used to dissolve and analyze compounds. Common solvents for acquiring 'H NMR spectra include [tex]CDCl_{3}[/tex](deuterated chloroform), CCl4 (carbon tetrachloride), and [tex]D_{2} O[/tex] (deuterated water). However, [tex]CH_{3} OH[/tex] (methanol) is not typically used as a solvent for acquiring 'H NMR spectra.

The choice of solvent in NMR spectroscopy is crucial because it can affect the chemical shift values and the quality of the spectrum. Solvents like [tex]CDCl_{3}[/tex], [tex]CCl_{4}[/tex], and[tex]D_{2} O[/tex] are commonly used because they are deuterated, meaning that they contain isotopes of hydrogen (deuterium) that do not produce signals in the 'H NMR spectrum. This allows for a clear interpretation of the signals from the compound of interest.

On the other hand,[tex]CH_{3} OH[/tex] (methanol) is not deuterated and contains protons that would contribute to the 'H NMR spectrum. Its use as a solvent could lead to overlapping signals and interfere with the analysis of the compound being studied, which is why it is not commonly used for acquiring 'H NMR spectra.

Learn more about 'H NMR spectra here:

https://brainly.com/question/9784910

#SPJ11

what is the mass defect of sn the hydrogen atom has a mass of 1.00783 and the neutron has a mass of 1.00867

Answers

The mass defect of Sn is 50.363175 amu. The mass of the nucleus is less than the sum of its individual nucleons due to the release of binding energy during nuclear formation.

The mass defect (Δm) of a nucleus can be calculated using the formula:

Δm = Z(m_p) + N(m_n) - M

where Z is the number of protons, m_p is the mass of a proton, N is the number of neutrons, m_n is the mass of a neutron, and M is the actual mass of the nucleus.

For Sn, the atomic number is 50, so Z = 50. The number of neutrons can vary, but let's assume it has the most stable isotope, which is Sn-120. This means N = 70.

The mass of a proton is 1.007276 amu, and the mass of a neutron is 1.008665 amu. The actual mass of Sn-120 can be found in the periodic table, which is 119.902199 amu.

Using the formula above, we get:

Δm = 50(1.007276) + 70(1.008665) - 119.902199

= 50.363175 amu

Therefore, the mass defect of Sn-120 is 50.363175 amu.

To know more about the mass defect refer here :

https://brainly.com/question/11624098#

#SPJ11

Lewis Structures and Formal Charge 1) Three possible Lewis structures for the thiocyanate ion, NCS, are given below: [—c=s] (n=c=s] (n=c-s)" a) Complete each structure by adding the lone pair electrons. b) Determine the formal charges of the atoms in each structure. Formal charge can be used to distinguish between competing structures. In general, the following rules apply: i) The sum of all formal charges in a neutral molecule must be zero. ii) The sum of all formal charges in an ion must equal the charge on the ion. iii) Small or zero formal charges on individual atoms are better than larger ones. iv) When formal charge cannot be avoided on an atom, negative charges are better on more electronegative atoms. c) Decide which Lewis structure is the preferred one and give an explanation below

Answers

The preferred Lewis structure for the thiocyanate ion (NCS-) is [tex][C≡N-S]⁻[/tex].

The Lewis structures and formal charges for the thiocyanate ion[tex](NCS-)[/tex]. Here are the steps:

a) Adding lone pair electrons to each structure:

1. [tex][C≡N-S]⁻: C[/tex] has 2 lone pairs, N has 1 lone pair, and S has 2 lone pairs.
2. [tex][N=C=S]⁻: N[/tex] has 2 lone pairs, C has 3 lone pairs, and S has 2 lone pairs.
3. [tex][N-C≡S]⁻: N[/tex]has 3 lone pairs, C has 2 lone pairs, and S has 1 lone pair.

b) Determining the formal charges:

1. [tex][C≡N-S]⁻: C: 0, N: 0, S: -1[/tex]
2.[tex][N=C=S]⁻: N: -1, C: 0, S: 0[/tex]
3.[tex][N-C≡S]⁻: N: -1, C: 0, S: 0[/tex]

c) Deciding the preferred Lewis structure:

Considering the rules, Structure 1 is preferred because:
i) The sum of all formal charges equals -1, which is the charge on the ion.
ii) It has smaller or zero formal charges on individual atoms.
iii) The negative charge is on the more electronegative atom (Sulfur).

So, the preferred Lewis structure for the thiocyanate ion[tex](NCS-) is [C≡N-S]⁻.[/tex]

To learn more about atom, refer below:

https://brainly.com/question/30898688

#SPJ11

tow the line, inc. provides contracts with its clients that are presented on a "take-it-or-leave-it" basis. courts typically find these types of agreements to be _____.

Answers

Courts typically find "take-it-or-leave-it" agreements to be adhesion contracts.

Adhesion contracts are contracts that are drafted by one party with superior bargaining power, leaving the other party with no real opportunity to negotiate the terms. These contracts are often presented on a "take-it-or-leave-it" basis, meaning the accepting party must either agree to the terms as they are or decline the contract altogether. Courts recognize the inherent power imbalance in such agreements and generally scrutinize them more closely. The term "adhesion" refers to the idea that one party adheres to the terms set forth by the other party without having the ability to negotiate or modify them. This can occur in various contexts, including consumer contracts, employment agreements, and insurance policies. Courts tend to view adhesion contracts with caution, as they may contain terms that are unfairly one-sided and disadvantageous to the party with less bargaining power. In legal proceedings, courts may apply principles of contract law to determine the enforceability and validity of adhesion contracts. They may consider factors such as the clarity of the terms, the conspicuousness of any limitations or disclaimers, and the overall fairness of the agreement. If a court determines that the contract was unconscionable or contained unfair provisions, it may limit or invalidate certain terms to protect the rights of the accepting party.

Learn more about adhesion contract here:

https://brainly.com/question/30900071

#SPJ11

Ceramics have the greatest resistance to breaking under which type of stress? Compressive Tensile Shear What would be the expected crystal structure of a ceramic that is made from barium and chlorine? Fluorite Rock Salt/NaCl Zinc blende O Diamond cubis

Answers

Ceramics have the greatest resistance to breaking under compressive stress. The expected crystal structure of a ceramic made from barium and chlorine would be Rock Salt/NaCl.


Ceramics are known for their great resistance to breaking under compressive stress. This is because ceramics have a strong ionic and covalent bonding structure that allows them to resist compression. When a force is applied to a ceramic material in a compressive manner, the material will tend to collapse inwards, causing the atoms to come closer together. Because the bonds between the atoms are so strong, the material will resist this collapse and remain intact.

In terms of the expected crystal structure of a ceramic made from barium and chlorine, the most likely structure would be the rock salt or NaCl structure. This structure is characterized by a cubic lattice in which the cations and anions alternate in a regular pattern. Barium would act as the cation and chlorine as the anion. This structure is commonly found in many ionic compounds, including ceramics.

To know more about Salt visit :-

https://brainly.com/question/31814919

#SPJ11

The normal boiling point of ethanol is 78.4 C, and the heat of vaporization is Delta H vap = 38.6 kJ / mol.
What is the boiling point of ethanol in C on top of Mt. Everest, where P = 260 mmHg.

Answers

The boiling point of ethanol on top of Mt. Everest, where the pressure is 260 mmHg, is approximately 68.5°C.

At higher altitudes, the atmospheric pressure is lower, and therefore the boiling point of liquids decreases. This is because the lower pressure reduces the vapor pressure required for boiling to occur. To calculate the boiling point of ethanol at 260 mmHg, we can use the Clausius-Clapeyron equation, which relates the vapor pressure of a substance to its temperature and heat of vaporization. By plugging in the given values for the normal boiling point, heat of vaporization, and pressure on Mt. Everest, we can solve for the new boiling point. Learn more about the Clausius-Clapeyron equation and its applications at #SPJ11.

learn more about heat of vaporization

https://brainly.com/question/13372553

#SPJ11

determine whether each molecule is an e or z isomer.

Answers

To determine whether each molecule is an E or Z isomer, we can see from the location of the higher priority groups. Which is E isomers having the substituents with higher priority on the opposite sides of the double bond. Z isomers having higher priority on the same side of the double bond.

Giving names E and Z isomer is based on the order of priority of the atoms or groups attached to each carbon of the double bond. If the group or high priority atom is located on one side, it is called Z (Zusammen = together). Conversely, if the high priority groups or atoms are opposite each other, we call it E (Entgegen = opposite). Order of atomic priority, is determined by the atomic number. Atoms with greater atomic number are considered to have higher priority.

Learn more about E and Z isomer:

https://brainly.in/question/9597333

#SPJ11

classify the bonds as ionic, polar covalent, or nonpolar covalent. n-f se-cl rb-f na-f f-f i-i

Answers

Ionic bonds are formed between a metal and a nonmetal, where one atom loses one or more electrons to another atom that gains those electrons.

Polar covalent bonds are formed between two nonmetals that share electrons unequally, creating partial positive and negative charges. Nonpolar covalent bonds are formed between two nonmetals that share electrons equally, creating no partial charges. Using this information, we can classify the bonds as follows:

N-F: Polar covalent bond

Se-Cl: Polar covalent bond

Rb-F: Ionic bond

Na-F: Ionic bond

F-F: Nonpolar covalent bond

I-I: Nonpolar covalent bond

Note that for N-F and Se-Cl, the electronegativity difference between the atoms is greater than 0.5 but less than 1.7, so the bonds are considered polar covalent. For Rb-F and Na-F, the electronegativity difference is greater than 1.7, so the bonds are considered ionic. For F-F and I-I, the electronegativity difference is zero, so the bonds are considered nonpolar covalent.

For more questions like bonds visit the link below:

https://brainly.com/question/7140445

#SPJ11

Give the major organic product of each reaction of methyl pentanoate with the given 6 reagents under the conditions shown. Do not draw any byproducts formed.
−→−−−−−Reagent→Reagent Product
a. Reaction with NaOH,H2ONaOH,H2O, heat; then H+,H2OH+,H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
b. Reaction with (CH3)2CHCH2CH2OH(CH3)2CHCH2CH2OH (excess), H+H+.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
c. Reaction with (CH3CH2)2NH(CH3CH2)2NH and heat.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHNO
d. Reaction with CH3MgICH3MgI (excess), ether; then H+/H2OH+/H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
e. Reaction with LiAlH4LiAlH4, ether; then H+/H2OH+/H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
f. Reaction with DIBAL (diisobutylaluminum hydride), toluene, low temperature; then H+/H2OH+/H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO

Answers

The major organic product for this reaction sequence is pentanoic acid.

a. NaOH, H₂O, heat; then H⁺, H₂O:

The reaction with NaOH and heat will result in the saponification of methyl pentanoate to form sodium pentanoate and methanol. The sodium pentanoate will then be protonated with H+ and form the corresponding pentanoic acid.

The major organic product for this reaction sequence is pentanoic acid.

b. (CH₃)₂CHCH₂CH₂OH (excess), H+:

The reaction with (CH₃)₂CHCH₂CH₂OH and H+ is an example of an esterification reaction, which will result in the formation of an ester product.

The major organic product for this reaction is isopentyl pentanoate.

c. (CH₃CH₂)₂NH, heat:

The reaction with (CH₃CH₂)₂NH and heat is an example of an amide formation reaction, which will result in the formation of an amide product.

The major organic product for this reaction is N,N-diethylpentanamide.

d. Reaction with CH₃MgI(excess), ether; then H+/H₂O:

The reaction with CH₃MgI and excess will result in the formation of a Grignard reagent which will act as a nucleophile and attack the carbonyl group of methyl pentanoate to form a new carbon-carbon bond. The resulting product will have an alcohol functional group.

The major organic product for this reaction sequence is 3-hydroxypentanoic acid.

e. Reaction with LiAlH₄, ether; then H+/H₂O:

The reaction with LiAlH₄ is a reduction reaction, which will reduce the carbonyl group of methyl pentanoate to an alcohol group. The resulting product will have a primary alcohol functional group.

The major organic product for this reaction sequence is 3-pentanol.

f. Reaction with DIBAL (diisobutylaluminum hydride), toluene, low temperature; then H+/H₂O:

The reaction with DIBAL is a reduction reaction, which will reduce the ester group of methyl pentanoate to an aldehyde group. The aldehyde group can then be further reduced to an alcohol group with H+/H₂O.

The major organic product for this reaction sequence is 3-pentanol.

The Correct Question is:

Give the major organic product of each reaction of methyl pentanoate with the following reagents under the conditions shown. Do not draw any byproducts formed.

a. NaOH, H₂O, heat; then H+, H₂O

b. (CH₃)₂CHCH₂CH₂OH (excess), H+

c. (CH₃CH₂)₂NH, heat

d. Reaction with CH₃MgI(excess), ether; then H+/H₂O

e. Reaction with LiAlH₄, ether; then H+/H₂O

f. Reaction with DIBAL (diisobutylaluminum hydride), toluene, low temperature; then H+/H₂O

To know more about pentanoic acid follow the link:

https://brainly.com/question/16945257

#SPJ4

nai has a face-centered cubic unit cell in which the i- anions occupy corners and face centers, while the cations fit into the hole between adjacent anions. what is the radius of na if the ionic radius of i- is 216.0 pm and the density of nai is 3.667 g/cm3?

Answers

To find the radius of Na in NaI, we need to use the formula for the density of a crystal lattice:

Density = (Z × M) / (a³ × N₀)
where Z is the number of formula units in the unit cell, M is the molar mass of the compound, a is the edge length of the unit cell, and N₀ is Avogadro's number.
For NaI, Z = 4 (there are 4 I- ions per unit cell), M = 149.89 g/mol (the molar mass of NaI), and N₀ = 6.022 × 10²³. We can solve for a using the density of NaI, which is given as 3.667 g/cm³:
a = (Z × M / (Density × N₀)) ^ 1/3
Plugging in the values, we get:
a = ((4 × 149.89 g/mol) / (3.667 g/cm³ × 6.022 × 10²³)) ^ 1/3 = 5.681 Å
Now we can calculate the radius of Na using the fact that it fits into the holes between adjacent I- ions. Since the I- ion has an ionic radius of 216.0 pm, the distance between adjacent I- ions along a face diagonal of the cube is 2 × 216.0 pm = 432.0 pm = 4.320 Å. Therefore, the radius of the hole is (a / 2) - (216.0 pm / 2), or (5.681 Å / 2) - (216.0 pm / 2) = 1.962 Å.
Finally, the radius of Na is equal to the radius of the hole plus the radius of the Na+ ion. Assuming that Na+ has the same radius as K+, which is 152 pm, we get:
Radius of Na = 1.962 Å + 152 pm = 2.114 Å.

So the radius of Na in NaI is approximately 2.114 Å.

To know more about crystal lattice visit:

https://brainly.com/question/10554076

#SPJ11

Calculate the normal boiling point of liquid Q if the vapor pressure is .500 atm at 20 degrees C. The change/ delta of H of vaporization for liquid Q is 26 kJ/ mole. Do you except liquid Q to have H bonds?

Answers

The normal boiling point of liquid Q is 136.3 degrees C.

Liquid Q is expected to have H bonds because of the high boiling point

What is the normal boiling point of Liquid Q?

The normal boiling point of liquid Q can be calculated using the Clausius-Clapeyron equation given below:

[tex]ln(P_2/P_1) = -\Delta H_{vap}/R * (1/T_2 - 1/T_1)[/tex]

where

P1 and T1 are the initial vapor pressure and temperature, P2 is the vapor pressure at the boiling point (1 atm),T2 is the boiling point (in Kelvin), ΔHvap is the enthalpy of vaporization,R is the gas constant (8.314 J/(mol*K)).

T1 = 20 °C in Kelvin will be:

T1 = 20 + 273.15

T1 = 293.15 K

Substituting the given values and solving for T2:

ln(1/.500) = -2610³ J/mol / (8.314 J/(molK)) * (1/T2 - 1/293.15 K)

ln(2) = -3132.6 * (1/T2 - 1/293.15)

1/T2 - 1/293.15 = -ln(2) / 3132.6

1/T2 = 1/293.15 - ln(2) / 3132.6

T2 = 409.4 K

Normal boiling point = (409.4 - 273.15)

Normal boiling point = 136.3 °C.

Learn more about the normal boiling point at: https://brainly.com/question/13130654

#SPJ1

through a balanced equation of combustion, calculate the oxygen balance of ammonium nitrate

Answers

To determine the oxygen balance of ammonium nitrate through a balanced equation of combustion is  33.33%

Ammonium nitrate (NH4NO3) is an oxidizer commonly used in fertilizers and explosives. Its combustion reaction can be represented by a balanced chemical equation. To determine the oxygen balance, we first need to write the balanced equation for the combustion of ammonium nitrate.

The balanced equation for the decomposition of ammonium nitrate is:

NH4NO3 (s) → N2O (g) + 2H2O (g)

Now, we can calculate the oxygen balance. Oxygen balance is the difference between the oxygen content in the reactants and products, expressed as a percentage of the total oxygen content in the reactants. The formula for oxygen balance is:

Oxygen Balance = [(Oxygen in Products - Oxygen in Reactants) / Oxygen in Reactants] × 100%

In our equation, the oxygen content in the reactants (ammonium nitrate) is 3 moles, while in the products (N2O and 2H2O), the total oxygen content is 2 + (2 × 1) = 4 moles.

Now we can apply the formula:

Oxygen Balance = [(4 - 3) / 3] × 100% = (1 / 3) × 100% ≈ 33.33%

So, the oxygen balance of ammonium nitrate in its combustion reaction is approximately 33.33%. This means that during the decomposition, there is a surplus of oxygen available in the products, which is a characteristic of an effective oxidizer.

Know more about Ammonium Nitrate here:

https://brainly.com/question/29341539

#SPJ11

Three solids A, B, and C all have the same melting point of 170-171 C. A 50/50 mixture of A and B melts at 140 – 147 C. A 70/30 mixture of B and C melts at 170-171 C. What conclusions can one draw about the identities of A, B, and C?

Answers

It can be concluded that Solid A has a lower melting point than Solid B and Solid C. Solid B has a higher melting point than both Solid A and Solid C. Solid C has the highest melting point among the three solids.

The melting point of a substance is the temperature at which it changes from a solid to a liquid state. From the information provided, we can deduce the following:

Solid A and Solid B:

When a 50/50 mixture of Solid A and Solid B is formed, it has a lower melting point of 140-147 C. This suggests that Solid A has a lower melting point than Solid B since the mixture's melting point is below the individual melting points of both A and B.

Solid B and Solid C:

When a 70/30 mixture of Solid B and Solid C is formed, it has the same melting point as Solid C, which is 170-171 C. This indicates that Solid B has a higher melting point than Solid C since the mixture's melting point is equal to Solid C's melting point.

Combining these conclusions, we can summarize that Solid A has the lowest melting point, Solid B has a higher melting point than Solid A but lower than Solid C, and Solid C has the highest melting point among the three solids.

To learn more about lower melting point  click here, brainly.com/question/30419586

#SPJ11

When an electron in an unknown atom transitions from the n=3 to n=1 energy state, which statement correctly describes how the kinetic energy (KE), and potential energy (PE) of the excited electron changes in response to this transition to the n=1 energy state? KE decreases and PE increases KE decreases and PE decreases KE increases and PE increases KE increases and PE decreases

Answers

When an electron in an unknown atom transitions from the n=3 to n=1 energy state, the correct statement describing the change in kinetic energy (KE) and potential energy (PE) of the excited electron is:

KE increases and PE decreases.

As the electron transitions from a higher energy level (n=3) to a lower energy level (n=1), it moves closer to the nucleus. In the process, the electron loses potential energy because it is now in a more stable, lower energy state. Since potential energy decreases, kinetic energy must increase to conserve the total energy of the electron. Therefore, KE increases and PE decreases during this transition.

Learn more about the electron transition: https://brainly.com/question/29221248

#SPJ11

If you found two substances with the exact same properties what would that tell you?

Answers

If two substances have exactly the same properties, it indicates that they are the same substance.

This could mean that they have the same chemical composition, molecular structure, and physical characteristics. However, it is important to note that some properties may not be enough to identify a substance uniquely, and further testing may be necessary to confirm their identity.

For example, two white powders may look the same, but one could be salt (sodium chloride) and the other could be sugar (sucrose). Both are white and crystalline, but their chemical properties are different. Therefore, testing such as chemical reactions, melting points, or other analytical techniques may be needed to distinguish them. In conclusion, finding two substances with the exact same properties could indicate that they are the same substance, but further testing may be required for confirmation.

To know more about the Substances, here

https://brainly.com/question/25849631

#SPJ1

Classify H2S as a strong acid or weak acid.

Answers

Hydrogen sulfide (chemical formula: H₂S) is classified as a weak acid.

What is a weak acid?

A Weak Acids are the acids that do not completely dissociate into their constituent ions when dissolved in solutions. When dissolved in water, an equilibrium is established between the concentration of the weak acid and its constituent ions.

Some common examples of weak acids are listed below;

Hydrogen sulfide (chemical formula: H₂S) Formic acid (chemical formula: HCOOH)Acetic acid (chemical formula: CH₃COOH)Benzoic acid (chemical formula: C₆H₅COOH)Oxalic acid (chemical formula: C₂H₂O4)Hydrofluoric acid (chemical formula: HF)Nitrous acid (chemical formula: HNO₂)

Learn more about weak acid here: https://brainly.com/question/24018697

#SPJ1

what is the coordination number around the central metal atom in dichlorobis(ethylenediamine)platinum(iv) chloride ([pt(en)₂(cl)₂]cl₂, en = h₂nch₂ch₂nh₂)?

Answers

The coordination number around the central metal atom in dichlorobis(ethylenediamine)platinum(iv) chloride ([Pt(en)₂(Cl)₂]Cl₂, en = H₂NCH₂CH₂NH₂) is 6.

This is because there are two ethylenediamine (en) ligands and two chloride (Cl) ligands, each of which has two electron pairs to donate to the coordination sphere of the platinum (Pt) central metal atom. Therefore, the total number of ligands bound to the central metal atom is 6, giving a coordination number of 6.

We can find the coordination number of compounds by:
1. Identify the central metal atom: In this complex, the central metal atom is platinum (Pt).
2. Count the ligands attached to the central metal atom: There are two ethylenediamine (en) ligands and two chloride (Cl) ligands.
3. Determine the coordination number: Each ethylenediamine (en) ligand has two donor atoms (N), while each chloride (Cl) ligand has one donor atom. So, the total number of donor atoms is (2 x 2) + (2 x 1) = 6.

Therefore, the coordination number around the central metal atom (platinum) in dichlorobis(ethylenediamine)platinum(IV) chloride is 6.

For more questions on coordination numbers: https://brainly.com/question/12498196

#SPJ11

the reaction of 4-pentanoylbiphenyl and hydrazine without potassium hydroxide is a net? a. substitution b. addition c. rearrangement d. elimination

Answers

The reaction of 4-pentanoylbiphenyl and hydrazine without potassium hydroxide is a net addition reaction. The correct option is b.

When 4-pentanoylbiphenyl reacts with hydrazine in the absence of potassium hydroxide, the carbonyl group of the 4-pentanoylbiphenyl undergoes addition reaction with hydrazine to form a hydrazone product. This is an example of a net addition reaction, where two molecules combine to form a single product.

The reaction does not involve the substitution of any functional groups, rearrangement of atoms or elimination of any functional group. The absence of potassium hydroxide in the reaction mixture does not influence the mechanism of the reaction but rather affects the rate of reaction. Potassium hydroxide is often used as a catalyst in the reaction to increase the rate of the reaction. Therefore, the correct option is b.

To know more about catalyst refer here:

https://brainly.com/question/31630881#

#SPJ11

Liquid mercury has a density of 13.690g/cm^3, and solid mercury has a density of 14.193 g/cm^3, both being measured at the melting point, -38.87 'C, at 1bar pressure. The heat of fusion is 9.75 J/g. Calculate the melting points of mercury under a pressure of (a) 10bar and (b) 3540 bar. the observed melting point under 3540 bar is -19.9'C

Answers

a) The melting point of mercury at 10 bar is -118.8°C.

b) The melting point of mercury at 3540 bar is -49.5°C

The melting point of mercury at different pressures can be calculated using the Clausius-Clapeyron equation:

ln(P2/P1) = -ΔHfus/R (1/T2 - 1/T1)

where P1 and T1 are the pressure and temperature at which the heat of fusion is known (1 bar and -38.87°C, respectively), P2 is the new pressure, T2 is the new melting point temperature, ΔHfus is the heat of fusion, R is the gas constant, and ln is the natural logarithm.

We can rearrange this equation to solve for T2:

T2 = (ΔHfus/R) * (ln(P2/P1)/(-1/T1)) + 1/T1

Substituting the given values, we get:

(a) For P2 = 10 bar:

T2 = (9.75 J/g / (8.314 J/(mol*K))) * (ln(10 bar/1 bar) / (-1 / ( -38.87°C + 273.15))) + (1 / (-38.87°C + 273.15))

T2 = 155.3 K = -118.8°C

Therefore, the melting point of mercury at 10 bar is -118.8°C.

(b) For P2 = 3540 bar:

T2 = (9.75 J/g / (8.314 J/(mol*K))) * (ln(3540 bar/1 bar) / (-1 / ( -38.87°C + 273.15))) + (1 / (-38.87°C + 273.15))

T2 = 223.6 K = -49.5°C

Learn more about The Clausius-Clapeyron: https://brainly.com/question/13162576

#SPJ11

Consider a binary liquid mixture for which the excess gibbs energy is given by G^E /RT = Ax1x2(x1 + 2x2). What is the minimum value of A for which liquid/liquid equilibrium is possible

Answers

The minimum value of A for which liquid/liquid equilibrium is possible is 1/4.

What is the value of A required for the occurrence of liquid/liquid equilibrium in a binary liquid mixture?

Liquid/liquid equilibrium occurs when the chemical potential of each component is equal in both liquid phases. In order for this to happen, the excess Gibbs energy ([tex]G^E[/tex]) of the mixture must be negative. The equation [tex]G^E[/tex] /RT = Ax1x2(x1 + 2x2) tells us that the excess Gibbs energy depends on the composition of the mixture, represented by the mole fractions x1 and x2, and the constant A.

In order for [tex]G^E[/tex] to be negative, A must be greater than zero. However, A cannot be arbitrarily large, as this would result in a divergence of [tex]G^E[/tex]. By setting the first derivative of [tex]G^E[/tex] with respect to x1 equal to zero and solving for A, we find that the minimum value of A for which liquid/liquid equilibrium is possible is 1/4.

Learn more about Gibbs energy

brainly.com/question/9179942

#SPJ11

Would you normally expect Delta H° to be positive or negative for a voltaic cell? Justify your answer.A. Many spontaneous reactions (ΔG negative) are exothermic (ΔH positive). Because voltaic cells have spontaneous reactions, you would expect ΔH to be positive for most voltaic cells.B. Many spontaneous reactions (ΔG negative) are endothermic (ΔH positive). Because voltaic cells have spontaneous reactions, you would expect ΔH to be positive for most voltaic cells.C. Many spontaneous reactions (ΔG positive) are endothermic (ΔH negative). Because voltaic cells have spontaneous reactions, you would expect ΔH to be negative for most voltaic cells.D. Many spontaneous reactions (ΔG negative) are exothermic (ΔH negative). Because voltaic cells have spontaneous reactions, you would expect ΔH to be negative for most voltaic cells.

Answers

The answer to this question is D. Many spontaneous reactions (ΔG negative) are exothermic (ΔH negative). Because voltaic cells have spontaneous reactions, you would expect ΔH to be negative for most voltaic cells.

A voltaic cell, also known as a galvanic cell, is an electrochemical cell that generates an electric current through a spontaneous redox reaction. In a voltaic cell, the electrons flow from the anode (the electrode where oxidation occurs) to the cathode (the electrode where reduction occurs), producing a potential difference between the two electrodes.

The spontaneity of the reaction is determined by the Gibbs free energy change (ΔG), which is related to the enthalpy change (ΔH) and entropy change (ΔS) by the equation ΔG = ΔH - TΔS, where T is the temperature in Kelvin.

For a spontaneous reaction, ΔG must be negative. This can occur if either ΔH is negative (exothermic) and/or ΔS is positive (increased disorder). However, for a voltaic cell, the entropy change is typically small or negligible, so the spontaneity is primarily determined by ΔH.

Many spontaneous reactions are exothermic (ΔH negative), meaning they release heat to the surroundings. This is because the products are more stable than the reactants, and the excess energy is released as heat. For a voltaic cell, this excess energy is harnessed to produce an electric current, so you would expect ΔH to be negative for most voltaic cells.

In summary, the spontaneity of a voltaic cell is determined by the Gibbs free energy change, which is related to the enthalpy change and entropy change. For most voltaic cells, the enthalpy change (ΔH) is negative (exothermic) because the excess energy is used to generate an electric current. Therefore, you would expect ΔH to be negative for most voltaic cells.

To know more about voltaic cells, refer

https://brainly.com/question/28302418

#SPJ11

Nickel can be plated from aqueous solution according to the following half reaction. How long would it take (in min) to plate 29.6 g of nickel at 4.7 A? Ni2+(aq) + 2 e- --> Ni(s)3.5*10^2 min5.9 *10^2 min1.7 *10^2 min6.2 * 10^2 min4.8 * 10^2 min

Answers

The time required to plate 29.6 g of nickel at 4.7 A is approximately 348 minutes or 5.8 hours. To calculate the time required to plate 29.6 g of nickel at 4.7 A, we need to use Faraday's law of electrolysis,

Which states that the amount of metal plated is directly proportional to the amount of electric charge passed through the solution.

The half reaction given in the question shows that 2 electrons are needed to plate 1 nickel ion (Ni2+) into solid nickel (Ni). Therefore, the amount of charge required to plate 1 mole of nickel is 2 * 96,485 C/mol = 192,970 C/mol.

The molar mass of nickel is 58.69 g/mol, so the number of moles in 29.6 g is 29.6 g / 58.69 g/mol = 0.504 mol.

The total charge required to plate this amount of nickel can be calculated as follows:

Charge (C) = 0.504 mol * 192,970 C/mol = 97,317 C

Now we can use the formula:

Time (s) = Charge (C) / Current (A)

Converting the answer to minutes, we get:

Time (min) = Time (s) / 60

Substituting the given values, we get:

Time (min) = 97,317 C / 4.7 A / 60 = 348.1 min

Therefore, the time required to plate 29.6 g of nickel at 4.7 A is approximately 348 minutes or 5.8 hours.

In terms of the answer choices provided, the closest option is 4.8 * 10^2 min, which is equivalent to 480 min or 8 hours. This is slightly higher than the calculated value of 348.1 min, but it is reasonable given that the actual plating process may have some additional factors that could affect the outcome.

For more such questions on electrolysis

https://brainly.com/question/12994141

#SPJ11

It would take approximately 352 minutes (5.9 hours) to plate 29.6 g of nickel at 4.7 A.

The amount of charge needed to plate 1 mole of nickel is 2 Faradays or 96485 C. The molar mass of nickel is 58.69 g/mol. Therefore, the amount of charge required to plate 29.6 g of nickel is (29.6 g / 58.69 g/mol) × 2 × 96485 C/mol = 3.07 × 10^6 C.

The current, I = Q/t, where Q is the charge and t is the time in seconds. Therefore, t = Q/I = (3.07 × 10^6 C) / (4.7 A) = 6.53 × 10^2 s or 352 minutes. It would take approximately 352 minutes (5.9 hours) to plate 29.6 g of nickel at 4.7 A. The amount of charge required to plate the given amount of nickel is calculated using Faraday's law, which is then divided by the given current to obtain the required time. The final result is approximately 352 minutes.

learn more about nickel here:

https://brainly.com/question/9758227

#SPJ11

An alternating current complete 100 cycles in 0. 1s. It's frequency is​

Answers

The frequency of an alternating current that completes 100 cycles in 0.1s can be calculated by dividing the number of cycles by the time taken. The frequency of the alternating current is 1000 Hz.

Frequency is a measure of how many cycles of a periodic waveform occur per unit of time. In this case, we are given that the alternating current completes 100 cycles in 0.1s. To calculate the frequency, we divide the number of cycles by the time taken.

Frequency (f) = Number of cycles / Time

Given:

Number of cycles = 100

Time = 0.1s

Substituting the values into the formula, we have:

Frequency = 100 cycles / 0.1s

Simplifying the calculation, we find:

Frequency = 1000 Hz

Therefore, the frequency of the alternating current that completes 100 cycles in 0.1s is 1000 Hz. This means that the alternating current oscillates back and forth 1000 times per second.

Learn more about alternating current here:

https://brainly.com/question/31609186

#SPJ11

complete and balance the following oxidation–reduction reaction in basic solution: cr1oh231s2 clo-1aq2¡cro4 2-1aq2 cl21g2

Answers

To balance the oxidation-reduction reaction in basic solution:

Cr(OH)₂ + ClO⁻ → CrO₄²⁻ + Cl₂


Here's the balanced equation:

6Cr(OH)₂ + 14ClO⁻ + 7H₂O → 6CrO₄²⁻ + 14Cl⁻ + 12OH
1. Identify the elements undergoing oxidation and reduction: Chromium (Cr) and Chlorine (Cl).
2. Balance the atoms in the equation except for H and O: The Cr is already balanced on both sides, while there are 14 Cl on the left side and 14 Cl on the right side, so the Cl atoms are balanced.
3. Balance the oxygen (O) atoms by adding H₂O molecules: There are 7 O atoms in the dichromate ion (CrO₄²⁻) on the right side, so we add 7 H₂O molecules on the left side.
  Cr(OH)₂ + ClO⁻ + 7H₂O → CrO₄²⁻ + Cl₂
4. Balance the hydrogen (H) atoms by adding OH⁻ ions: There are 14 H atoms on the left side (from the 7 H₂O molecules), so we add 14 OH⁻ ions on the right side.
  Cr(OH)₂ + ClO⁻ + 7H₂O → CrO₄²⁻ + Cl₂ + 14OH⁻
5. Balance the charges by adding electrons (e⁻): The total charge on the left side is -2 (from Cr(OH)₂), and on the right side, it is -2 (from CrO₄²⁻) and -2 (from Cl₂). To balance the charges, we need to add 2 electrons on the left side.
  Cr(OH)₂ + ClO⁻ + 7H₂O + 2e⁻ → CrO₄²⁻ + Cl₂ + 14OH⁻
6. Verify the balance of atoms and charges: The atoms and charges are now balanced on both sides.
  Final balanced equation: 6Cr(OH)₂ + 14ClO⁻ + 7H₂O + 2e⁻ → 6CrO₄²⁻ + 14Cl⁻ + 14OH⁻.

To learn more about oxidation-reduction:

https://brainly.com/question/13182308

#SPJ11

calculate the molar solubility of lead (ii) bromide (pbbr2) in pure water. ksp = 4.67×10-6.

Answers

In order to calculate the molar solubility of lead (II) bromide (PbBr2) in pure water, we need to use the solubility product constant (Ksp) which is given as 4.67x10^-6.

The equation for the dissociation of PbBr2 in water is: PbBr2(s) ↔ Pb2+(aq) + 2Br-(aq).

The Ksp expression for this reaction is: Ksp = [Pb2+][Br-]^2.

Since we are given that the water is pure, we can assume that the initial concentrations of Pb2+ and Br- are both zero.

Let x be the molar solubility of PbBr2 in water. Then at equilibrium, the concentrations of Pb2+ and Br- are both equal to x.

4.67x10^-6 = x * (2x)^2.

Simplifying the expression gives: 4.67x10^-6 = 4x^3, x = 0.00309 M.

Therefore, the molar solubility of PbBr2 in pure water is 0.00309 M.

Read more about Molar solubility.

https://brainly.com/question/28170449

#SPJ11

Treatment of cobalt(II) oxide with oxygen at high temperatures gives Co3O4. Write a balanced chemical equation for this reaction. What is the oxidation state of cobalt in Co3O4?

Answers

The oxidation state of cobalt in Co3O4 is +8/3. The balanced chemical equation for the reaction of cobalt(II) oxide with oxygen at high temperatures to give Co3O4 is: 2 CoO + O2 → Co3O4

In this reaction, two moles of cobalt(II) oxide react with one mole of oxygen to give one mole of cobalt(III) oxide. Now, let's determine the oxidation state of cobalt in Co3O4. We know that oxygen has an oxidation state of -2. Since the compound is neutral, the sum of the oxidation states of all atoms must be zero. Therefore, we can use this information to solve for the oxidation state of cobalt. Let the oxidation state of cobalt in Co3O4 be x. The formula for Co3O4 tells us that there are three cobalt atoms in the compound. Hence, we can write:

3x + 4(-2) = 0
Solving for x, we get:
3x - 8 = 0
3x = 8
x = 8/3
Therefore, the oxidation state of cobalt in Co3O4 is +8/3.

In summary, the balanced chemical equation for the reaction of cobalt(II) oxide with oxygen at high temperatures to give Co3O4 is 2 CoO + O2 → Co3O4. The oxidation state of cobalt in Co3O4 is +8/3. So, the average oxidation state of cobalt in Co3O4 is +8/3, or approximately +2.67. It's important to note that this is an average value because Co3O4 is a mixed oxide containing both Co(II) and Co(III) oxidation states.

Learn more about oxidation state

https://brainly.com/question/17161178

#SPJ11

The Henderson-Hasselbach equation, used to calculate the pH of simple conjugate- pair buffer systems, would be expressed for an ammonia/ammonium chloride buffer as Kb(NH3) is 1.8 x 10-5 OpH = 14.0 - log(1.8 x 10-5) O pH = 4.74 + log((NH4+]/[NH31) O pH = 9.25 + log(NH4+]/[NH3) OpH = 9.25 + log(NH3][NH4+1) OpH = 4.74 + log(NH3]/[NH4+])

Answers

The Henderson-Hasselbach equation is used to calculate the pH of a simple conjugate-pair buffer system. For an ammonia/ammonium chloride buffer, the equation would be expressed as pH = 9.25 + log([NH4+]/[NH3]).

This equation takes into account the equilibrium between the weak acid (NH4+) and its conjugate base (NH3) and the dissociation constant (Kb) of the weak base (NH3), which is given as 1.8 x 10-5. By knowing the concentration of the weak acid and its conjugate base, the pH of the buffer solution can be calculated.

The correct expression of the Henderson-Hasselbalch equation for an ammonia/ammonium chloride buffer system would be:

pH = 9.25 + log([NH4+]/[NH3])

This equation takes into account the pKa value (9.25) of the conjugate acid (NH4+) and the ratio of the concentrations of the conjugate acid ([NH4+]) and base ([NH3]) in the buffer solution.

To know more about ammonium chloride buffer visit:-

https://brainly.com/question/31278059

#SPJ11

calculate the ph of solutions containing 200 mg/l of each of the following weak acids or salts of weak acids: a. acetic acid b. hypochlorous acid c. ammonia d. hydrocyanic acid

Answers

The dissociation constant (Ka) or equilibrium constant (Kb) for the acid or base, as well as the concentration of the acid or base in solution, must be known in order to compute the pH of solutions containing weak acids or salts of weak acids.

a. Acetic acid (CH3COOH) has a Ka of 1.8 x 10-5, making it a weak acid. We must translate the concentration to moles per litre (mol/L) in order to calculate the pH of a solution containing 200 mg/L of acetic acid.

200 mg/L is equivalent to 0.2 g/L, 0.2/60 g/mol, or 0.00333 mol/L.

The concentration of H+ ions in solution may now be determined using the equation for the dissociation of acetic acid:

H2O + CH3COOH H3O+ + CH3COO-

Ka is equal to [CH3COO-][H3O+]/[CH3COOH].

Given that the acid is weak, [CH3COO-] = [H3O+] and [CH3COOH] - [CH3COO-], we can write:

Ka is equal to [H3O+]2 / [CH3COOH - [H3O+]].

If you rewrite this equation, you get:

(Ka*[CH3COOH - [H3O+]]) = [H3O+]

Inputting the values, we obtain:

[H3O+] = 0.00135 mol/L (1.8 x 10-5 * 0.00333 mol/L)

pH = -log(0.00135)/-log(-log[H3O+] = 2.87

As a result, a solution with 200 mg/L of acetic acid has a pH of roughly 2.87.

b. Hypochlorous acid (HOCl), which has a Ka of 3.5 x 10-8, is a weak acid. We must convert the concentration to moles per litre (mol/L) in order to determine the pH of a solution containing 200 mg/L of HOCl.

200 mg/L is equal to 0.2 g/L, or 0.2/52.46 g/mol, or 0.00381 mol/L.

The concentration of H+ ions in solution can now be determined using the equation for the dissociation of hypochlorous acid:

OCl- + H3O+ = HOCl + H2O

Ka is equal to [OCl-][H3O+]/[HOCl].

Given that the acid is weak, [OCl-] = [H3O+] and [HOCl] - [OCl-], we can write:

Ka = [HOCl - [H3O+]] / [H3O+]2.

If you rewrite this equation, you get:

(Ka*[HOCl - [H3O+]]) = [H3O+]

Inputting the values, we obtain:

[H3O+] is equal to (3.5 x 10-8 * 0.00381 mol/L) = 6.12 x 10-5 mol/L.

pH = -log[H3O+] = -log(6.12 x 10-5), which equals 4.21.

As a result, a solution with 200 mg/L of hypochlorous acid has a pH of roughly 4.21.

c. Ammonia (NH3) has a Kb of 1.8 x 10-5 and is a weak base. In order to get the pH of a solution with 200 mg/L of ammonia, we must convert

For more such question on pH

https://brainly.com/question/31380289

#SPJ11

A solution with 200 mg/L of hypochlorous acid has a pH of roughly 4.21. c. Ammonia (NH3) has a Kb of 1.8 x 10-5 and is a weak base. In order to get the pH of a solution with 200 mg/L of ammonia, we must convert

The dissociation constant (Ka) or equilibrium constant (Kb) for the acid or base, as well as the concentration of the acid or base in solution, must be known in order to compute the pH of solutions containing weak acids or salts of weak acids. a. Acetic acid (CH3COOH) has a Ka of 1.8 x 10-5, making it a weak acid. We must translate the concentration to moles per litre (mol/L) in order to calculate the pH of a solution containing 200 mg/L of acetic acid.

200 mg/L is equivalent to 0.2 g/L, 0.2/60 g/mol, or 0.00333 mol/L.

The concentration of H+ ions in solution may now be determined using the equation for the dissociation of acetic acid:

H2O + CH3COOH H3O+ + CH3COO-

Ka is equal to [CH3COO-][H3O+]/[CH3COOH].

Given that the acid is weak, [CH3COO-] = [H3O+] and [CH3COOH] - [CH3COO-], we can write:

Ka is equal to [H3O+]2 / [CH3COOH - [H3O+]].

If you rewrite this equation, you get:

(Ka*[CH3COOH - [H3O+]]) = [H3O+]

Inputting the values, we obtain:

[H3O+] = 0.00135 mol/L (1.8 x 10-5 * 0.00333 mol/L)

pH = -log(0.00135)/-log(-log[H3O+] = 2.87

As a result, a solution with 200 mg/L of acetic acid has a pH of roughly 2.87.

b. Hypochlorous acid (HOCl), which has a Ka of 3.5 x 10-8, is a weak acid. We must convert the concentration to moles per litre (mol/L) in order to determine the pH of a solution containing 200 mg/L of HOCl.

200 mg/L is equal to 0.2 g/L, or 0.2/52.46 g/mol, or 0.00381 mol/L.

The concentration of H+ ions in solution can now be determined using the equation for the dissociation of hypochlorous acid:

OCl- + H3O+ = HOCl + H2O

Ka is equal to [OCl-][H3O+]/[HOCl].

Given that the acid is weak, [OCl-] = [H3O+] and [HOCl] - [OCl-], we can write: Ka = [HOCl - [H3O+]] / [H3O+]2.

If you rewrite this equation, you get:

(Ka*[HOCl - [H3O+]]) = [H3O+]

Inputting the values, we obtain:

[H3O+] is equal to (3.5 x 10-8 * 0.00381 mol/L) = 6.12 x 10-5 mol/L.

pH = -log[H3O+] = -log(6.12 x 10-5), which equals 4.21.

Learn more about  pH here:

brainly.com/question/31380289

#SPJ11

Other Questions
7. what anatomical feature gives cows (and many other animals) better night vision than humans? if preferred stock is noncumulative, the company is required to pay dividends that were passed in previous years. T/F? what is the genetic code explain redundancy and the wobble phenomenon In addition to imprisonment and probation, which of the following is a sentencing option available to a judge?a. Remittanceb. Forfeiturec. Hangingd. Parole Shifting the position of the center of gravity forward will decrease the magnitude of the required control forces exerted by the pilot during normal operations.T/F Find a closed form expression for how many different types of towers of height n are possible, that can be made by vertically stacking short and tall blocks, when all short blocks have height 1 and come in two different colors {Shortblue, Shortred}, while all tall blocks have height 2 and come in 3 different colors {Tallgreen, Tallyellow, Tallpink}? For example, note that there are two possible towers of height n = 1 because we can only use one of the short blocks, and there are 2 x 2 +3 = 7 possible towers of height n = 2 because we can either stack two short blocks (4 possibilities) or use one tall block (3 possibilities). Hint: Let the number of different possible towers of height n be y[n]. We have y[n] = 0 for n < 0, y[1] = 2, y[2] = 7, and y[n] = 2y[n- 1] +3y[n 2] (erplain why) for n > 2. Set up a difference equation valid for all n by including a suitable input t[n], and use z-transforms to solve it to find y[n] in closed form. Pls help yes yes yes yes two people are randomly selected from a group of 5 men and 5 women. the random variable x is the number of men selected. find the probability distribution for x. (see example 8.) lily, the nurse practitioner is seeing mr. reynolds today. she would recognize that which of the following is a potential adverse side effects of autonomic-anticholinergic agents? How do personality disorder differ from the personality characteristics of typical people?A) They lead to more maladaptive, distressful and inflexible behaviors.B) They include personality trait not experienced by typical peopleC) They are generally treat succefully with antipyschotic medicationD) They are caused by epigenetic processes. How did the protagonist change in the resolution of your novel or short story? Describe him or her in the exposition and in the resolution to show the change. Describe the change in two to three sentences and use a quotation from the text to support your description. Include a page number for the quotation. Note: Make Your Own Story $7 -Dollars $1.25- Quarters 35- Nickels 50- Dimes 8- Penny= cgm, which stands for ________, includes online consumer comments, discussions, reviews, photos, images, videos, podcasts, and webcasts. declare a pair playattempts with an integer as the first element and a double as the second element. do not initialize the pair. Use Exercise 18 and Corollary 1 to show that if is an integer greater than then $\left(\begin{array}{c}{n} \\ {\ln / 2 \rfloor}\end{array}\right) \geq 2^{n} rhythm in nineteenth century music, compared with that from the previous century, was frequently less regular and more complex.T/F Sebastian Belle, CPA, has billed her clients for services performed. She subsequently receives payments from her clients. What entry will Sebastian make upon receipt of the payments?a. Debit Unearned Service Revenue and credit Service Revenue b. Debit Cash and credit Accounts Receivable c. Debit Accounts Receivable and credit Service Revenue d. Debit Cash and credit Service Revenue identify the problem that sociologist mile durkheim recognized as caused by rapid social change and disruption of social networks and values. 1. Market Efficiency Implications: Explain why a characteristic of an efficient market is that investments in that market have zero NPVs.2. Semistrong Efficiency: If a market is semistrong form efficient, is it also weak form efficient? Explain.3. Preferred Stock and Bond Yields: The yields on nonconvertible preferred stock are lower than the yields on corporate bonds. Why is there a difference? Which investors are the primary holders of preferred stock? Why? Simplify the expression below:243x^9 y^16A. 3x^4y^827xB. 3x^3y^427C. 9x^3y^43D. 9x^4y^83xE. 9x^3y^83