For vapor-liquid equilibrium at low pressure (so the vapor phase is an ideal gas): a. The bubble point pressure of an equimolar ideal liquid binary mixture can be calculated using Raoult's law, which states that the vapor pressure of a component in a mixture is proportional to its mole fraction in the liquid phase.
Therefore, the total vapor pressure of the mixture is the sum of the partial pressures of each component. Since the mixture is equimolar, each component has a mole fraction of 0.5 in the liquid phase. Thus, the bubble point pressure is equal to the vapor pressure of each component at its mole fraction of 0.5.
b. The bubble point vapor composition of an equimolar ideal liquid binary mixture is also equal to the mole fraction of each component in the liquid phase, which is 0.5 for each component.
c. If the liquid mixture is nonideal and described by G* = AX X2, then the bubble point pressure cannot be calculated using Raoult's law since the activity coefficients are not equal to 1. Instead, one can use an activity coefficient model such as the Wilson or NRTL model to calculate the activity coefficients and then use them in the bubble point equation to determine the bubble point pressure.
d. Similarly, if the liquid mixture is nonideal and described by G" = AxLx, the bubble point vapor composition cannot be calculated using Raoult's law. Instead, one can use an activity coefficient model to calculate the activity coefficients and then use them in the bubble point equation to determine the bubble point vapor composition.
To know about equilibrium visit:
https://brainly.com/question/30255848
#SPJ11
The driver of the truck has an acceleration of 0.4g as the truck passes over the top A of the hump in the road at constant speed. The radius of curvature of the road at the top of the hump is 98 m, and the center of mass G of the driver (considered a particle) is 2 m above the road. Calculate the speed v of the truck.
Answer:
19.81 m/s
Explanation:
The total acceleration of the truck (a) is due to the centripetal acceleration and as a result of the linear acceleration. Therefore the total acceleration (a) is given by:
[tex]a^2=a_n^2+a_t^2\\\\where\ a_n=centripetal\ acceleration=\frac{v^2}{r},a_t=linear \ acceleration\\\\But\ since\ the \ speed\ is \ constant, the \ linear \ acceleration(a_t)\ would\ be\ 0.\\\\a^2=a_n^2+a_t^2\\\\a^2=a_n^2\\\\a=a_n=\frac{v^2}{r} \\\\v^2=ar\\\\v=\sqrt{ar} \\\\a=0.4g=0.4*9.81,r=98\ m+2\ m=100\ m\\\\v=\sqrt{0.4*9.81*100} \\\\v=19.81\ m/s[/tex]
Find the derivative of x
Answer:
this is your answer. if mistake don't mind.
What current works best when the operator
encounters magnetic arc blow?
•DCEP
•ACEN
•CC
•AC
Answer:
AC
Explanation:
One situation when alternating current would work better than direct current is if the operator is encountering magnetic arc blow.
Current works best when the operator encounters magnetic arc blow is AC
Magnetic arc blow is simply defined as the arc deflection due to the warping of the magnetic field that is produced by electric arc current.
This is caused as a result of the following;
- if the material being welded has residual magnetism at an intolerable level
- When the weld root is being made, and the welding current is direct current which indicates constant direction and maintains constant polarity (either positive or negative).
Since it is caused by DC(Direct Current) which means constant polarity , it means the opposite will be better which is AC(alternating current) because it means that electricity direction will be switching to and fro and as such the polarity will also be revered in response to this back and forth switch manner.Thus, Current works best when the operator encounters magnetic arc blow is AC
Read more at; brainly.in/question/38789815?tbs_match=1
An example of a power consuming device would be a(n) ____ while an example of a non-power consuming device would be a(n) ____.
An example of a power consuming device would be a(n) light bulb, a computer device while an example of a non-power consuming device would be a(n) switch or button.
What is power consumption?The quantity of energy utilized per unit of time is known as power consumption. Power use is a significant factor in digital systems.
Power consumption is a limiting factor for the battery life of portable devices like laptop computers and cell phones.
Learn more about power consumption:
https://brainly.com/question/14860418
#SPJ1
Tech A says that LED brake lights illuminate faster than incandescent bulbs. Tech B says that LED brake lights have
more visibility and last longer. Who is correct?
Answer:
Both
Explanation:
A single crystal of a metal that has the FCC crystal structure is oriented such that a tensile stress is applied parallel to the [100] direction. If the critical resolved shear stress for this material is 2.00 MPa, calculate the magnitude of applied stress necessary to cause slip to occur on the (111) plane in the direction.
Answer:
Explanation:
From the given information:
The equation for applied stress can be expressed as:
[tex]\sigma_{app} = \dfrac{\tau_{CRSS}}{cos \phi \ cos \lambda}[/tex]
where;
[tex]\phi[/tex] = angle between the applied stress [100] and [111]
To determine the [tex]\phi[/tex] and [tex]\lambda[/tex] for the system
Using the equation:
[tex]\phi= cos^{-1}\Big [\dfrac{l_1l_2+m_1m_2+n_1n_2}{\sqrt{(l_1^2+m_1^2+n_1^2)(l_2^2+m_2^2+n_2^2)}}\Big][/tex]
for [100]
[tex]l_1 = 1, m_1 = 0, n_1 = 0[/tex]
for [111]
[tex]l_1 = 1 , m_1 = 1, n_1 = 1[/tex]
Thus;
[tex]\phi= cos^{-1}\Big [\dfrac{1*1+0*1+0*1}{\sqrt{(1^2+0^2+0^2)(1^2+1^2+1^2)}}\Big][/tex]
[tex]\phi= cos^{-1}\Big [\dfrac{1}{\sqrt{(3)}}\Big][/tex]
[tex]\phi= 54.74^0[/tex]
To determine [tex]\lambda[/tex] for [tex][1 \overline 1 0][/tex]
where;
for [100]
[tex]l_1 = 1, m_1 = 0, n_1 = 0[/tex]
for [tex][1 \overline 1 0][/tex]
[tex]l_1 = 1 , m_1 = -1, n_1 = 0[/tex]
Thus;
[tex]\lambda= cos^{-1}\Big [\dfrac{1*1+0*1+0*0}{\sqrt{(1^2+0^2+0^2)(1^2+(-1)^2+0^2)}}\Big][/tex]
[tex]\phi= cos^{-1}\Big [\dfrac{1}{\sqrt{(2)}}\Big][/tex]
[tex]\phi= 45^0[/tex]
Thus, the magnitude of the applied stress can be computed as:
[tex]\sigma_{app} = \dfrac{\tau_{CRSS}}{cos \phi \ cos \lambda }[/tex]
[tex]\sigma_{app} = \dfrac{2.00}{cos (54.74) \ cos (45) }[/tex]
[tex]\mathbf{\sigma_{app} =4.89 \ MPa}[/tex]
An isolated pretimed signalized intersection has an approach with a traffic flow rate of 750 veh/h and a saturation flow rate of 3200 veh/h. This approach is allocated 32 seconds of effective green time. The cycle length is 100 seconds. Determine the average approach delay a) 4,6 s b) 30.2 s c) 34.8 s d) 35.0 s
Answer: This approach is allocated 32 seconds of effective green time. The cycle length is 100 seconds. Determine the average approach delay (using Eq. 7.27). A) 34.8 s.
A sign structure on the NJ Turnpike is to be designed to resist a wind force that produces a moment of 25 k-ft in one direction. The axial load is 30 kips. Soil conditions consist of a normally consolidated clay layer with following properties; su=800 psf, andγsat= 110 pcf. Design for a FOS of 3. Assume frost depth to be 3ft below grade
Solution :
Finding the cohesion of the soil(c) using the relation:
[tex]$c = \frac{q_u}{2}$[/tex]
Here, [tex]$q_u$[/tex] is the unconfined compression strength of the soil;
[tex]$c = \frac{800}{2}$[/tex]
= 400 psf
∴ The cohesion value is greater than 0
So the use of the angle of internal friction is 0
Referring to the table relation between bearing capacity factors and angle of internal friction.
For the angle of inter friction [tex]$0^\circ$[/tex]
[tex]$N_c = 5.14$[/tex]
[tex]$N_q = 1.0$[/tex]
[tex]$N_r = 0$[/tex]
Therefore,
[tex]$q_{ult} = (400 \times 5.14 )+(110 \times 3 \times 1.0)+(0.5 \times 100 \times 13 \times 0)$[/tex]
= 2386 psf
∴ Allowable bearing capacity [tex]$q_{a} = \frac{Q_{allow}}{A}$[/tex]
[tex]$=\frac{30}{B^2}$[/tex]
∴ [tex]$q_a = \frac{q_{ult}}{F.O.S}$[/tex]
[tex]$\frac{30}{B^2} = \frac{2386}{3}$[/tex]
∴ B = 0.2 ft
Therefore, the dimension of the square footing is 0.2 ft x 0.2 ft
[tex]$=0.04 \ ft^2$[/tex]
I don’t know the answer to this question
Answer:
I dont know the answer either
Explanation:
Answer:
flux
Explanation:
Describe how to contribute to
zero/low carbon work outcomes
within the built environment.
Answer:
day if you workout without Zero billing that means you're not sweating. Sweating you're not losing anything that means you have zero outcomes
Explanation:
The pressure less than atmospheric pressure is known as:
Suction pressure
Negative gauge pressure
Vacuum pressure
All of the above
Answer:
answer is option (d) all of the above
If the sum of the two numbers is 4 and the sum of their squares minus three times their product is 76,find the number
Answer:
-2 and 6
Explanation:
Let "x" and "y" be 2 numbers.
The sum of the two numbers is 4. The mathematical expression is:
x + y = 4
y = 4 - x [1]
The sum of their squares minus three times their product is 76. The mathematical expression is:
x² + y² - 3 x y = 76 [2]
If we substitute [1] in [2], we get:
x² + (4 - x)² - 3 x (4 - x) = 76
x² + 16 - 8 x + x² - 12 x + 3 x² = 76
5 x² - 20 x - 60 = 0
We apply the solving formula for second order equations and we get x₁ = 6 and x₂ = -2.
If we replace these x values in [1], we get:
y₁ = 4 - x₁ = 4 - 6 = -2
y₂ = 4 - x₂ = 4 - (-2) = 6
As a consequence, one of the numbers is 6 and the other is -2.
A cylindrical bar of metal having a diameter of 15.7 mm and a length of 178 mm is deformed elastically in tension with a force of 49100 N. Given that the elastic modulus and Poisson's ratio of the metal are 67.1 GPa and 0.34 respectively, Determine the following:(a) The amount by which this specimen will elongate (in mm) in the direction of the applied stress. The entry field with incorrect answer now contains modified data.(b) The change in diameter of the specimen (in mm). Indicate an increase in diameter with a positive number and a decrease with a negative number.
Answer:
0.6727
-0.02017
Explanation:
diameter = 15.7
l = 178
E =elastic modulus = 67.1 Gpa
poisson ratio = 0.34
p = force = 49100N
first we calculate the area of the cross section
[tex]A=\frac{\pi }{4} d^{2}[/tex]
[tex]A=\frac{\pi }{4} (15.7)^{2} \\A = \frac{774.683}{4} \\[/tex]
A = 193.6mm²
1. Change in directon of the applied stress
[tex]= \frac{pl}{AE}[/tex]
= 49100*178/193.6*67.1*10³
= [tex]=\frac{8739800}{12990560}[/tex]
δl = 0.6727 mm
2. change in diameter of the specimen
equation for poisson distribution =
m = -(δd/d) / (δl/l)
0.34 = (δd/15.7) / (0.6727/178)
0.34 = (-δd * 178) / 15.7 * 0.6727
0.34 = -178δd / 10.56139
we cross multiply
10.56139*0.34 =-178δd
3.5908726 = -178δd
δd = 3.5908726/-178
δd = -0.02017 mm
the change in dimeter has a negative sign. it decreases
Lab scale tests performed on a cell broth with a viscosity of 5cP gave a specific cake resistance of 1 x1011 cm/g and a negligible medium resistance. The cake solids (dry basis) per volume of filtrate was 20 g/liter. It is desired to operate a larger rotary vacuum filter (diameter 8 m and length 12 m) at a vacuum pressure of 80 kPA with a cake formation time of 20 s and a cycle time of 60 s. Determine the filtration rate in volumes/hr expected for the rotary vacuum filter.
Answer:
5.118 m^3/hr
Explanation:
Given data:
viscosity of cell broth = 5cP
cake resistance = 1*1011 cm/g
dry basis per volume of filtrate = 20 g/liter
Diameter = 8m , Length = 12m
vacuum pressure = 80 kpa
cake formation time = 20 s
cycle time = 60 s
Determine the filtration rate in volumes/hr expected fir the rotary vacuum filter
attached below is a detailed solution of the question
Hence The filtration rate in volumes/hr expected for the rotary vacuum filter
V' = ( [tex]\frac{60}{20}[/tex] ) * 1706.0670
= 5118.201 liters ≈ 5.118 m^3/hr
This is silence I couldent find the tab... 30 points plus marked brainliest if corrects!
The most recent evidence supporting the theory of plate tectonics would include
es )
A)
GPS monitoring of plate speeds and movements.
B)
the WWII discovery of paleomagnetic reversals.
Elimi
O
the 1963 mapping of the tectonic plate boundaries.
D
C-14 dating of marine fossils found in the Himalayas.
who was part of dempwolf his firm when he first started
Explanation:
Dempwolf created by John Augustus, Among the most prominent innovative solutions in Southern California Pennsylvania was established by Dempwolf with brother Reinhardt or uncle's son Frederick entered the company of J.A. Dozens of structures in 10 states were engineered by Dempwolf.
Check Your Understanding: True Stress and Stress A cylindrical specimen of a metal alloy 47.7 mm long and 9.72 mm in diameter is stressed in tension. A true stress of 399 MPa causes the specimen to plastically elongate to a length of 54.4 mm. If it is known that the strain-hardening exponent for this alloy is 0.2, calculate the true stress (in MPa) necessary to plastically elongate a specimen of this same material from a length of 47.7 mm to a length of 57.8 mm.
Answer:
The answer is "583.042533 MPa".
Explanation:
Solve the following for the real state strain 1:
[tex]\varepsilon_{T}=\In \frac{I_{il}}{I_{01}}[/tex]
Solve the following for the real stress and pressure for the stable.[tex]\sigma_{r1}=K(\varepsilon_{r1})^{n}[/tex]
[tex]K=\frac{\sigma_{r1}}{[\In \frac{I_{il}}{I_{01}}]^n}[/tex]
Solve the following for the true state stress and stress2.
[tex]\sigma_{r2}=K(\varepsilon_{r2})^n[/tex]
[tex]=\frac{\sigma_{r1}}{[\In \frac{I_{il}}{I_{01}}]^n} \times [\In \frac{I_{i2}}{I_{02}}]^n\\\\=\frac{399 \ MPa}{[In \frac{54.4}{47.7}]^{0.2}} \times [In \frac{57.8}{47.7}]^{0.2}\\\\ =\frac{399 \ MPa}{[ In (1.14046122)]^{0.2}} \times [In (1.21174004)]^{0.2}\\\\ =\frac{399 \ MPa}{[ In (1.02663509)]} \times [In 1.03915873]\\\\=\frac{399 \ MPa}{0.0114161042} \times 0.0166818905\\\\= 399 \ MPa \times 1.46125948\\\\=583.042533\ \ MPa[/tex]
how skateboards works?
Answer
The skateboarder applies pressure to the trucks and gives/releases pressure on the levers. Second, the wheels and the axles are also examples of simple machines. They help the skater ride, spin, grind, and do a bunch of other radical movements on a skateboard.:
Explanation:
A 50-mm cube of the graphite fiber reinforced polymer matrix composite material is subjected to 125-kN uniformly distributed compressive force in the direction 2, which is perpendicular to the fiber direction (direction 1). The cube is constrained against expansion in direction 3. Determine:
a. changes in the 50-mm dimensions.
b. stresses required to provide constraints.
Answer:
hello some parts of your question is missing attached below is the missing part
answer :
A) Determine changes in the 50-mm dimensions
The changes are : 0.006mm compression in y-direction
0.002 mm expansion in x and z directions
B) the stress required are evenly distributed
Explanation:
Given data :
50-mm cube of graphite fiber reinforced polymer matrix
subjected to 125-KN force in direction 2,
direction 2 is perpendicular to fiber direction ( direction 1 ) and cube is constrained against expansion in direction 3
A) Determine changes in the 50-mm dimensions
The changes are : 0.006mm compression in y-direction
0.002 mm expansion in x and z directions
B) the stress required are evenly distributed
attached below is the detailed solution
What are the top 4 solar inventions, how they are used, and how they are better than the original way of powering them
A group of students launches a model rocket in the vertical direction. Based on tracking data, they determine that the altitude of the rocket was 89.6 ft at the end of the powered portion of the flight and that the rocket landed 16.5 s later. The descent parachute failed to deploy so that the rocket fell freely to the ground after reaching its maximum altitude. Assume that g = 32.2 ft/s2.
Determine
(a) the speed v1 of the rocket at the end of powered flight,
(b) the maximum altitude reached by the rocket.
Answer:
[tex]u = 260.22m/s[/tex]
[tex]S_{max} = 1141.07ft[/tex]
Explanation:
Given
[tex]S_0 = 89.6ft[/tex] --- Initial altitude
[tex]S_{16.5} = 0ft[/tex] -- Altitude after 16.5 seconds
[tex]a = -g = -32.2ft/s^2[/tex] --- Acceleration (It is negative because it is an upward movement i.e. against gravity)
Solving (a): Final Speed of the rocket
To do this, we make use of:
[tex]S = ut + \frac{1}{2}at^2[/tex]
The final altitude after 16.5 seconds is represented as:
[tex]S_{16.5} = S_0 + ut + \frac{1}{2}at^2[/tex]
Substitute the following values:
[tex]S_0 = 89.6ft[/tex] [tex]S_{16.5} = 0ft[/tex] [tex]a = -g = -32.2ft/s^2[/tex] and [tex]t = 16.5[/tex]
So, we have:
[tex]0 = 89.6 + u * 16.5 - \frac{1}{2} * 32.2 * 16.5^2[/tex]
[tex]0 = 89.6 + u * 16.5 - \frac{1}{2} * 8766.45[/tex]
[tex]0 = 89.6 + 16.5u- 4383.225[/tex]
Collect Like Terms
[tex]16.5u = -89.6 +4383.225[/tex]
[tex]16.5u = 4293.625[/tex]
Make u the subject
[tex]u = \frac{4293.625}{16.5}[/tex]
[tex]u = 260.21969697[/tex]
[tex]u = 260.22m/s[/tex]
Solving (b): The maximum height attained
First, we calculate the time taken to attain the maximum height.
Using:
[tex]v=u + at[/tex]
At the maximum height:
[tex]v =0[/tex] --- The final velocity
[tex]u = 260.22m/s[/tex]
[tex]a = -g = -32.2ft/s^2[/tex]
So, we have:
[tex]0 = 260.22 - 32.2t[/tex]
Collect Like Terms
[tex]32.2t = 260.22[/tex]
Make t the subject
[tex]t = \frac{260.22}{ 32.2}[/tex]
[tex]t = 8.08s[/tex]
The maximum height is then calculated as:
[tex]S_{max} = S_0 + ut + \frac{1}{2}at^2[/tex]
This gives:
[tex]S_{max} = 89.6 + 260.22 * 8.08 - \frac{1}{2} * 32.2 * 8.08^2[/tex]
[tex]S_{max} = 89.6 + 260.22 * 8.08 - \frac{1}{2} * 2102.22[/tex]
[tex]S_{max} = 89.6 + 260.22 * 8.08 - 1051.11[/tex]
[tex]S_{max} = 1141.0676[/tex]
[tex]S_{max} = 1141.07ft[/tex]
Hence, the maximum height is 1141.07ft
Which of the following choices accurately contrasts a categorical syllogism with a conditional syllogism?
An argument constructed as a categorical syllogism uses deductive reasoning whereas an argument constructed as a conditional syllogism uses inductive reasoning.
A categorical syllogism contains two premise statements and one conclusion whereas a conditional syllogism contains one premise statement and one conclusion.
A categorical syllogism argues that A and B are both members of C whereas a conditional syllogism argues that if A is true then B is also true.
An argument constructed as a categorical syllogism is valid whereas an argument constructed as a conditional syllogism is invalid.
Answer:
The correct option is - A categorical syllogism argues that A and B are both members of C whereas a conditional syllogism argues that if A is true then B is also true.
Explanation:
As,
Categorical syllogisms follow an "If A is part of C, then B is part of C" logic.
Conditional syllogisms follow an "If A is true, then B is true" pattern of logic.
So,
The correct option is - A categorical syllogism argues that A and B are both members of C whereas a conditional syllogism argues that if A is true then B is also true.
what is the distance in term of wavelengh between successive minima in the standing wave ratio
Answer:
hi there
Explanation:
I have an AC waveform with the voltage peak value of 100 V. I'm trying to find the RMS value of the voltage
Answer:
98 x 100=9,00
Explanation:
During a shrinkage limit test, a 19.3 cm3 saturated clay sample with a mass of 37 g was placed in a porcelain dish and dried in the oven. The oven-dried sample had a mass of 28 g with a final volume of 16 cm3 . Determine the shrinkage limit and the shrinkage ratio.
Answer:
shrinkae limit = 20.35%
shrinkage ratio = 1.45
Explanation:
1. to get the shrinkage limit we would first calculate the moisture content w.
w = (37-28)/28
= 9/28
= 0.3214
then the formula for shrinkage limit is
[tex][w-\frac{(V-Vd}{wd} ]*100[/tex]
w = 0.3214
V = 19.3
Vd = 16
Wd = 28
when we put these values into the formula:
[tex][0.3214-\frac{(19.3-16)}{28} ]*100\\[/tex]
= 20.35%
2. the shrinkage limit = Wd/V
= 28/19.3
= 1.45
Now, you get a turn to practice writing a short program in Scratch. Try to re-create the program that was shown that turns the sprite in a circle. After you have completed that activity, see if you can make one of the improvements suggested. For example, you can try adding a sound. If you run into problems, think about some of the creative problem-solving techniques that were discussed.
When complete, briefly comment on challenges or breakthroughs you encountered while completing the guided practice activity.
Pls help im giving 100 points for this i have this due in minutes
Answer:
u need to plan it out
Explanation:
u need to plan it out
Answer:
use the turn 1 degrees option and put a repeat loop on it
Explanation:
u can add sound in ur loop
The demand schedules for Jones, Smith, and other buyers are shown in the table below:
Draw the 4 demand curves for i) Jones ii) Smith iii) Other buyers and iv) All buyers.
The demand curve is the graphical representation of the relationship between the price of a good and the quantity demanded for a given period of time.
What is a demand schedule?A demand schedule is a table which shows the quantity demanded of a good or service at different price levels.
A demand schedule can be graphed as a continuous demand curve on a chart where the Y-axis represents the price and the X-axis represents quantity.
Here, a typical representation, the price will appear on the left vertical axis, the quantity demanded on the horizontal axis.
Note that the complete information wasn't found and an overview was given.
Learn more about demand on:
https://brainly.com/question/1245771
#SPJ1
Two sites are being considered for wind power generation. On the first site, the wind blows steadily at 7 m/s for 3000 hours per year. On the second site, the wind blows steadily at 10 m/s for 2000 hours per year. The density of air on the both sites is 1.25 kg/m3 . Assuming the wind power generation is negligible during other times.Calculate the maximum power of wind on each site per unit area, in kW/m2 .
Solution :
Given :
[tex]$V_1 = 7 \ m/s$[/tex]
Operation time, [tex]$T_1$[/tex] = 3000 hours per year
[tex]$V_2 = 10 \ m/s$[/tex]
Operation time, [tex]$T_2$[/tex] = 2000 hours per year
The density, ρ = [tex]$1.25 \ kg/m^3$[/tex]
The wind blows steadily. So, the K.E. = [tex]$(0.5 \dot{m} V^2)$[/tex]
[tex]$= \dot{m} \times 0.5 V^2$[/tex]
The power generation is the time rate of the kinetic energy which can be calculated as follows:
Power = [tex]$\Delta \ \dot{K.E.} = \dot{m} \frac{V^2}{2}$[/tex]
Regarding that [tex]$\dot m \propto V$[/tex]. Then,
Power [tex]$ \propto V^3$[/tex] → Power = constant x [tex]$V^3$[/tex]
Since, [tex]$\rho_a$[/tex] is constant for both the sites and the area is the same as same winf turbine is used.
For the first site,
Power, [tex]$P_1= \text{const.} \times V_1^3$[/tex]
[tex]$P_1 = \text{const.} \times 343 \ W$[/tex]
For the second site,
Power, [tex]$P_2 = \text{const.} \times V_2^3 \ W$[/tex]
[tex]$P_2 = \text{const.} \times 1000 \ W$[/tex]
If the hypotenuse of a right triangle is 12 and an acute angle is 37 degrees find leg a and leg b lengths
scrity añao devid codicie
With _____, only one criterion must evaluate true in order for a record to be selected and with _____, all criteria must be evaluate true in order for a record to be selected.
a. parameter criteria, double criteria
b. function criteria, IF criteria
c. simple criteria, complex criteria
d. OR criteria, AND criteria
Answer:
d
Explanation:
OR criteria, AND criteria
In an OR criteria, it doesn't need all the records to be true. Just one record is enough and all other criterion becomes true.
In an AND criteria, it's unlike the OR criteria and works in opposite. It needs every member of the record to be true to be able to adjudge the whole record as true.
And as such, we have
With OR criteria, only one criterion must evaluate true in order for a record to be selected and with AND criteria, all criteria must be evaluate true in order for a record to be selected.