Graph the following exponential functions and determine the y-intercept, domain, range, and
asymptote of each function.
f(x)=5(2)^x

Graph The Following Exponential Functions And Determine The Y-intercept, Domain, Range, Andasymptote

Answers

Answer 1

The graph of the exponential function f(x) = 5(2)ˣ is as shown in the attached file.

How to draw the graph of an exponential Function?

We want to draw the graph of the exponential function;

f(x) = 5(2)ˣ

At input of x = 0, we have;

f(x) = 5(2)⁰ = 5

At input of x = 1, we have;

f(x) = 5(2)¹ = 10

At x = -1, we have;

f(x) = 5(2)⁻¹ = 2.5

At x = -2, we have;

f(x) = 5(2)⁻² = 1.25

Read more about Graph of Exponential Function at; https://brainly.com/question/12940982

#SPJ1

Graph The Following Exponential Functions And Determine The Y-intercept, Domain, Range, Andasymptote

Related Questions

Show that the symmetric property follows from euclid's common notions 1 and 4.Things which are equal to the same thing are also equal to one another. If equals be added to equals, the wholes are equal. If equals be subtracted from equals, the remainders are equal. Things which coincide with one another are equal to one another. The whole is greater than the part.

Answers

The symmetric property states that if A equals B, then B must also equal A. Euclid's common notions 1 and 4 can be used to prove this property.

First, if A equals B, then they are both equal to the same thing. This satisfies the first common notion.

Next, if we add equals to equals (A plus C equals B plus C), then the wholes are equal according to the fourth common notion. Therefore, we can conclude that B plus C equals A plus C.

Similarly, if equals are subtracted from equals (A minus C equals B minus C), then the remainders are equal. This implies that B minus C equals A minus C.

Finally, if A coincides with B, they are in the same location and are thus equal according to the fourth common notion.

Taken together, these common notions demonstrate that if A equals B, then B must also equal A, proving the symmetric property.

To know more about symmetric property, visit:

https://brainly.com/question/29206759

#SPJ11

The Harrison family bought a house for $215,000. Assuming that the


value of the house will appreciate at a continuous rate of 2. 1%, how


much will the house be worth in 10 years?

Answers

The value of the house after 10 years will be approximately $265,134.1. The continuous rate of appreciation of a house can be calculated using the formula A = [tex]Pe^{(rt)[/tex].

The continuous rate of appreciation of a house can be calculated using the formula A = Pe^(rt), where A is the final value of the house, P is the initial value, e is the mathematical constant e ≈ 2.71828, r is the continuous rate, and t is the time in years. Therefore, if the initial value of the house is $215,000 and it appreciates continuously at a rate of 2.1%, the value of the house after 10 years can be calculated as follows:  A = [tex]Pe^{(rt)[/tex]
A = $215,000[tex]e^{(0.021 * 10)[/tex]
A = $215,000[tex]e^{(0.21)[/tex]
A = $215,000 × 1.23274
A = $265,134.1

Thus, the value of the house after 10 years will be approximately $265,134.1.

To know more about continuous rate of appreciation visit:

https://brainly.com/question/15508751

#SPJ11

Recall x B denotes the coordinate vector of x with respect to a basis B for a vector space V. Given two bases B and C for V, P denotes the change of coordinates matrix, which has CAB the property that CER[x]B = [x]c for all x € V. It follows that Р — ТР o pe = (2x)? B+C CEB) Also, if we have three bases B, C, and D, then (?) (Pe) = pe Each of the following three sets is a basis for the vector space P3: E = {1, t, ť, ť}, B = {1, 1+ 2t, 2-t+3t, 4-t+{}, and C = {1+3t+t?, 2+t, 3t – 2 + 4ť", 3t} . Find and enter the matrices P= Px and Q=LC EB

Answers

To find the change of coordinates matrices P and Q, we need to express the basis vectors of each basis in terms of the other two bases and use these to construct the corresponding change of coordinates matrices.

First, let's express the basis vectors of each basis in terms of the other two bases:

E basis:

1 = 1(1) + 0(t) + 0(t^2) + 0(t^3)

t = 0(1) + 1(t) + 0(t^2) + 0(t^3)

t^2 = 0(1) + 0(t) + 1(t^2) + 0(t^3)

t^3 = 0(1) + 0(t) + 0(t^2) + 1(t^3)

B basis:

1 = 0(1) + 1(1+2t) + 2(2-t+3t^2) + 0(4-t+t^3)

t = 0(1) + 2(1+2t) - 1(2-t+3t^2) + 0(4-t+t^3)

t^2 = 0(1) - 3(1+2t) + 4(2-t+3t^2) + 0(4-t+t^3)

t^3 = 1(1) - 4(1+2t) + 1(2-t+3t^2) + 1(4-t+t^3)

C basis:

1+3t+t^2 = 1(1+2t) - 1(2-t+3t^2) + 0(4-t+t^3)

2+t = 1(1) + 0(t) + 0(t^2) + 1(t^3)

3t-2+4t^3 = 0(1+2t) + 3(2-t+3t^2) + 0(4-t+t^3)

3t = 0(1) + 0(t) + 1(t^2) + 0(t^3)

Now we can construct the change of coordinates matrices P and Q:

P matrix:

The columns of P are the coordinate vectors of the basis vectors of E with respect to B.

First column: [1, 0, 0, 0] (since 1 = 0(1) + 1(1+2t) + 2(2-t+3t^2) + 0(4-t+t^3))

Second column: [1, 2, -3, -4] (since t = 0(1) + 2(1+2t) - 1(2-t+3t^2) + 0(4-t+t^3))

Third column: [0, -1, 4, -1] (since t^2 = 0(1) - 3(1+2t) + 4(2-t+3t^2) + 0(4-t+t^3))

Fourth column: [0, 0, 0, 1] (since t^3 = 1(1) - 4(1+2t) + 1(2-t+3t^2) + 1(4-t+t^3)

To learn more about vectors visit:

brainly.com/question/29740341

#SPJ11

the mean attention span for adults in a certain village is 15 minutes with a standard deviation of 6.4. the mean of all possible samples of size 30, taken from that population equals _________.

Answers

The mean attention span for adults in a certain village is μ = 15 minutes with a standard deviation of σ = 6.4. We are interested in finding the mean of all possible samples of size n = 30, taken from that population.

According to the central limit theorem, the distribution of sample means will be approximately normal with a mean equal to the population mean and a standard deviation equal to the population standard deviation divided by the square root of the sample size. That is:

[tex]mean of sample means = population mean = μ = 15 minutes\\standard deviation of sample means = population standard deviation / sqrt(n) = σ / sqrt(30) ≈ 1.17 minutes[/tex]

Therefore, the mean of all possible samples of size 30, taken from the population with mean 15 minutes and standard deviation 6.4 minutes, is approximately equal to 15 minutes.

To know more about standard deviation refer here:

https://brainly.com/question/13498201

#SPJ11

Consider the following.
T is the reflection through the origin in
R2: T(x, y) = (−x, −y), v = (2, 5).
(a) Find the standard matrix A for the linear transformation T.
(b) Use A to find the image of the vector v.
(c) Sketch the graph of v and its image.

Answers

(a)  the standard matrix A for the linear transformation T:    [  0 -1 ].

(b) the image of v under T is the vector (-2, -5).

(c)  To sketch the graph of v and its image, plot the vector v = (2, 5) starting from the origin (0, 0) and ending at the point (2, 5).



(a) To find the standard matrix A for the linear transformation T, we apply T to the standard basis vectors e1 = (1, 0) and e2 = (0, 1):

T(e1) = T(1, 0) = (-1, 0)
T(e2) = T(0, 1) = (0, -1)

Now, we form the matrix A using these transformed basis vectors as columns:

A = [T(e1) | T(e2)] = [(-1, 0) | (0, -1)] = [ -1  0 ]
                                                [  0 -1 ]

(b) To find the image of vector v = (2, 5) under the transformation T, we multiply the matrix A by v:

Av = [ -1  0 ] [ 2 ] = [-2]
     [  0 -1 ] [ 5 ] = [-5]

So, the image of v under T is the vector (-2, -5).

(c) To sketch the graph of v and its image, first draw a coordinate plane. Then, plot the vector v = (2, 5) starting from the origin (0, 0) and ending at the point (2, 5). Next, plot the image of v, which is (-2, -5), starting from the origin (0, 0) and ending at the point (-2, -5).

Know more about the linear transformation

https://brainly.com/question/29641138

#SPJ11

Let A [ 1 1 4 2 3 and I + A = [ 1 [2 4 2 4 (a) [6 pts.] Compute the eigenvalues and eigenvectors of A and I + A. (b) (4 pts.] Find a relationship between eigenvectors and eigenvlaues of A and those of I+A. (c) [Bonus 4 pts.] Prove the relationship you found in Part (b) for an arbitrary n xn matrix A.

Answers

(a) To compute the eigenvalues and eigenvectors of A, we solve the characteristic equation:

det(A - λI) = 0

where I is the identity matrix and λ is the eigenvalue. Substituting the given matrix A and simplifying, we have:

|1-λ 1 4|

|2 3-λ 2|

|3 4 2-λ| = 0

Expanding along the first row, we get:

(1-λ)[(3-λ)(2-λ) - 4(4)] - (1)[(2)(2-λ) - 4(4)] + (4)[(2)(4) - (3)(3)] = 0

Simplifying and rearranging, we obtain:

λ^3 - 6λ^2 - 5λ + 60 = 0

We can factor this polynomial as (λ-5)(λ-4)(λ+3) = 0, so the eigenvalues of A are λ₁ = 5, λ₂ = 4, and λ₃ = -3.

To find the eigenvectors corresponding to each eigenvalue, we substitute back into the equation (A - λI)x = 0 and solve for x.

For λ₁ = 5, we have:

|1-5 1 4|   |-4 1 4|

|2 3-5 2| x =| 2-2|

|3 4 2-5|   | 3 4-3|

Reducing this to row echelon form, we get:

|1 0 -4/5|   | 4/5|

|0 1 -2/5| x =|-1/5|

|0 0 0   |   |  0 |

So the eigenvector corresponding to λ₁ is x₁ = (4/5, -1/5, 1).

Similarly, for λ₂ = 4, we have:

|-3 1 4|   | 1|

| 2 -1 2| x =|-1|

| 3 4 -2|   | 0|

Reducing to row echelon form, we get:

|1 0 -2|   |2/3|

|0 1 -2| x =|-1/3|

|0 0 0 |   |  0 |

So the eigenvector corresponding to λ₂ is x₂ = (2/3, 1/3, 1).

Finally, for λ₃ = -3, we have:

|4 1 4|   |-1|

|2 6 2| x =| 0|

|3 4 5|   |-1|

Reducing to row echelon form, we get:

|1 0 -2/5|   | 1/5|

|0 1 1/5 | x =|-1/5|

|0 0 0   |   |  0 |

So the eigenvector corresponding to λ₃ is x₃ = (2/5, -1/5, 1).

Next, we compute the eigenvalues and eigenvectors of I + A. Since I is the identity matrix, the characteristic equation is:

det(I + A - λI) = det(A + (I - I) - λI) = det(A + (1-λ)I) = 0

Substituting the given matrix A and simplifying, we have:

|2-λ 1 4|

|2 4-λ

#SPJ11

evaluate the line integral over the curve c: x=e−tcos(t), y=e−tsin(t), 0≤t≤π/2 ∫c(x2 y2)ds

Answers

The value of the line integral over the curve c is 1/3 (1 - e^(-3π/2)).

The given line integral is:

∫c(x^2 + y^2)ds

where c is the curve given by x = e^(-t)cos(t), y = e^(-t)sin(t), 0 ≤ t ≤ π/2.

To evaluate this integral, we first need to find the parameterization of the curve c. We can parameterize c as follows:

r(t) = e^(-t)cos(t)i + e^(-t)sin(t)j, 0 ≤ t ≤ π/2

Then, the length of the curve c is given by:

s = ∫c ds = ∫0^(π/2) ||r'(t)|| dt

where ||r'(t)|| is the magnitude of the derivative of r(t):

||r'(t)|| = ||-e^(-t)sin(t)i + e^(-t)cos(t)j|| = e^(-t)

Therefore, the length of the curve c is:

s = ∫c ds = ∫0^(π/2) e^(-t) dt = 1 - e^(-π/2)

Now, we can evaluate the line integral:

∫c(x^2 + y^2)ds = ∫0^(π/2) (e^(-2t)cos^2(t) + e^(-2t)sin^2(t))e^(-t) dt

= ∫0^(π/2) e^(-3t) dt

= [-1/3 e^(-3t)]_0^(π/2)

= 1/3 (1 - e^(-3π/2))

Therefore, the value of the line integral over the curve c is 1/3 (1 - e^(-3π/2)).

Learn more about line integral here

https://brainly.com/question/28381095

#SPJ11

sketch the region r of integration and switch the order of integration. 7 0 y f(x, y) dx dy

Answers

For each value of x, y varies from x to 7. We can now evaluate the integral using this new order of integration.

The given integral is:

∫ from 0 to 7, ∫ from 0 to y, f(x, y) dx dy

To switch the order of integration, we need to sketch the region of integration.

The region of integration is the triangle bounded by the x-axis, y-axis, and the line y = 7. Therefore, we can rewrite the integral as:

∫ from 0 to 7, ∫ from x to 7, f(x, y) dy dx

This is because for each value of x, y varies from x to 7.

To sketch the region of integration, we draw the line y = 7 and the x-axis. Then, we draw a vertical line at x = 0 and a diagonal line from the origin to the point (7, 7) on the line y = 7. The region of integration is the triangular region bounded by these lines.

Switching the order of integration, the integral becomes:

∫ from 0 to 7, ∫ from x to 7, f(x, y) dy dx

This means that for each value of x, y varies from x to 7. We can now evaluate the integral using this new order of integration.

Learn more about integration here

https://brainly.com/question/30215870

#SPJ11

you are given that tan(a)=8/5 and tan(b)=7. find tan(a b). give your answer as a fraction.

Answers

The value of expression is -56/67.

We can use the tangent addition formula to find tan(a + b) using the given values of tan(a) and tan(b). The formula is:

tan(a + b) = (tan(a) + tan(b)) / (1 - tan(a) * tan(b))

Plugging in the values, we get:

tan(a + b) = (8/5 + 7) / (1 - (8/5) * 7)

= (56/5) / (-27/5)

= -56/27

Therefore, tan(a b) = tan(a + b) / (1 - tan(a) * tan(b)) = (-56/27) / (1 - (8/5) * 7) = -56/67. So the answer is -56/67.

Learn more about expression here

https://brainly.com/question/1859113

#SPJ11

Calculate the cross product assuming that u×v=⟨7,6,0⟩.(u−7v)×(u+7v)

Answers

The cross product assuming that u×v=⟨7,6,0⟩.(u−7v)×(u+7v) is                ⟨-49, -7u_2 + 6u_3, -7u_3 + 6u_2⟩.

The cross product of two vectors using the distributive property:

(u - 7v) × (u + 7v) = u × u + u × 7v - 7v × u - 7v × 7v

Also, cross product is anti-commutative. Specifically, the cross product of v × w is equal to the negative of the cross product of w × v. So, we can simplify the expression as follows:

(u - 7v) × (u + 7v) = u × 7v - 7v × u - 7(u × 7v)

Now, using u × v = ⟨7, 6, 0⟩ to evaluate the cross products:

u × 7v = 7(u × v) = 7⟨7, 6, 0⟩ = ⟨49, 42, 0⟩

7v × u = -u × 7v = -⟨7, 6, 0⟩ = ⟨-7, -6, 0⟩

Substituting these values into the expression:

(u - 7v) × (u + 7v) = ⟨0, 7u_2 - 6u_3, 7u_3 - 6u_2⟩ - 7⟨7, 6, 0⟩ - 7⟨-7, -6, 0⟩

= ⟨0, 7u_2 - 6u_3, 7u_3 - 6u_2⟩ - ⟨49, 42, 0⟩ + ⟨49, 42, 0⟩

= ⟨-49, -7u_2 + 6u_3, -7u_3 + 6u_2⟩

Therefore, (u - 7v) × (u + 7v) = ⟨-49, -7u_2 + 6u_3, -7u_3 + 6u_2⟩.

Know more about cross product here:

https://brainly.com/question/30284978

#SPJ11

Find the first five terms of the sequence defined by each of the following recurrence relations and initial conditions (1) an = 6an−1, for n ≥ 1, a0 = 2 (2) (2) an = 2nan−1, for n ≥ 1, a0 = −3 (3) (3) an = a^2 n−1 , for n ≥ 2, a1 = 2 (4) (4) an = an−1 + 3an−2, for n ≥ 3, a0 = 1, a1 = 2 (5) an = nan−1 + n 2an−2, for n ≥ 2, a0 = 1, a1 = 1 (6) an = an−1 + an−3, for n ≥ 3, a0 = 1, a1 = 2, a2 = 0 2.

Answers

2, 12, 72, 432, 2592..-3, -12, -48, -192, -768..2, 4, 16, 256, 65536..1, 2, 7, 23, 76..1, 1, 4, 36, 1152..1, 2, 0, 3, 6

How to find the first five terms of each sequence given the recurrence relation and initial conditions?

(1) For the sequence defined by the recurrence relation an = 6an−1, with a0 = 2, the first five terms are: a0 = 2, a1 = 6a0 = 12, a2 = 6a1 = 72, a3 = 6a2 = 432, a4 = 6a3 = 2592.

(2) For the sequence defined by the recurrence relation an = 2nan−1, with a0 = -3, the first five terms are: a0 = -3, a1 = 2na0 = 6, a2 = 2na1 = 24, a3 = 2na2 = 96, a4 = 2na3 = 384.

(3) For the sequence defined by the recurrence relation an = a^2n−1, with a1 = 2, the first five terms are: a1 = 2, a2 = a^2a1 = 4, a3 = a^2a2 = 16, a4 = a^2a3 = 256, a5 = a^2a4 = 65536.

(4) For the sequence defined by the recurrence relation an = an−1 + 3an−2, with a0 = 1 and a1 = 2, the first five terms are: a0 = 1, a1 = 2, a2 = a1 + 3a0 = 5, a3 = a2 + 3a1 = 17, a4 = a3 + 3a2 = 56.

(5) For the sequence defined by the recurrence relation an = nan−1 + n^2an−2, with a0 = 1 and a1 = 1, the first five terms are: a0 = 1, a1 = 1, a2 = 2a1 + 2a0 = 4, a3 = 3a2 + 3^2a1 = 33, a4 = 4a3 + 4^2a2 = 416.

(6) For the sequence defined by the recurrence relation an = an−1 + an−3, with a0 = 1, a1 = 2, and a2 = 0, the first five terms are: a0 = 1, a1 = 2, a2 = 0, a3 = a2 + a0 = 1, a4 = a3 + a1 = 3.

Learn more about relation

brainly.com/question/6241820

#SPJ11

Suppose that a simson line goes through the orthocenter of the triangle. show that the pole must be one of the vertices of the triangle.​ and provide model figure.

Answers

To prove that the pole of the Simson line must be one of the vertices of the triangle, we will use the following theorem:

Theorem: If the pole of the Simson line lies on the circumcircle of the triangle, then it must be one of the vertices of the triangle.

Proof: Let ABC be a triangle with circumcircle O. Let P be the pole of the Simson line with respect to triangle ABC. We need to show that P must be one of the vertices, say A, of the triangle.

Since P is the pole of the Simson line, it lies on the perpendicular bisectors of the sides of the triangle. Therefore, PA = PB = PC.

Consider the circumcircle of triangle ABC. Since PA = PB = PC, point P lies on the circumcircle of the triangle.

Now, by the Inscribed Angle Theorem, the angle subtended by an arc at the center of the circle is twice the angle subtended by the same arc at any point on the circumference.

Since P lies on the circumcircle, angle APB subtends the same arc as angle ACB at the center of the circle. Thus, angle APB = 2 * angle ACB.

Similarly, angle APC = 2 * angle ABC.

But angle APB + angle APC + angle BPC = 180 degrees (by the angles around a point add up to 360 degrees).

Substituting the above angles, we have 2 * angle ACB + 2 * angle ABC + angle BPC = 180 degrees.

Simplifying, we get angle ACB + angle ABC + angle BPC = 90 degrees.

Since angles ACB and ABC are acute angles, angle BPC must be a right angle. Therefore, P lies on the perpendicular from B to AC.

Similarly, P also lies on the perpendicular from C to AB.

Since P lies on both perpendiculars, it must be the orthocenter of triangle ABC.

Since the orthocenter is the intersection of the altitudes of the triangle, which are concurrent at one of the vertices, P must be one of the vertices of the triangle.

Therefore, the pole of the Simson line must be one of the vertices of the triangle.

Learn more about perpendicular here: brainly.com/question/32386516

#SPJ11

Nitrous acid, HNO2, has Ka = 4.5 x 10−4. What is the best description of the species present in 100 mL of a 0.1 M solution of nitrous acid after 100 mL of 0.1 M NaOH has been added?
a. HNO2(aq), H+(aq), and NO2−(aq) are all present in comparable amounts.
b. NO2−(aq) is the predominant species; much smaller amounts of OH−(aq) and HNO2(aq) exist.
c. HNO2(aq) is the predominant species; much smaller amounts of H+(aq) and NO2−(aq) exist.
d. H+(aq) and NO2−(aq) are the predominant species; much smaller amounts of HNO2(aq) exist.

Answers

The best description of the species present in the solution after 100 mL of 0.1 M NaOH has been added is:

(c): HNO₂(aq) is the predominant species; much smaller amounts of H+(aq) and NO₂−(aq) exist.

The reaction between nitrous acid and sodium hydroxide can be written as follows:

HNO₂(aq) + NaOH(aq) → NaNO₂(aq) + H₂O(l)

This is a neutralization reaction, where the acid and base react to form a salt and water. In this case, nitrous acid is the acid and sodium hydroxide is the base.

Since the initial concentration of nitrous acid is 0.1 M and an equal volume of 0.1 M NaOH is added, the final concentration of nitrous acid will be reduced by half, to 0.05 M.

To determine the species present in the solution after the reaction, we need to consider the acid-base equilibrium of nitrous acid:

HNO₂(aq) + H₂O(l) ⇌ H₃O+(aq) + NO₂−(aq)

The equilibrium constant for this reaction is the acid dissociation constant, Ka, which is given as 4.5 x 10−4.

At equilibrium, the concentrations of the species will depend on the value of Ka and the initial concentration of nitrous acid. We can use the quadratic equation to solve for the concentrations of H₃O+, NO₂−, and HNO₂:

Ka = [H₃O+][NO₂−]/[HNO₂]

Substituting the values, we get:

4.5 x 10−4 = [x][x]/[0.05−x]

Solving for x gives us:

[H₃O+] = [H+] = 0.015 M
[NO₂−] = 0.015 M
[HNO₂] = 0.035 M

Therefore, the best description of the species present in the solution after 100 mL of 0.1 M NaOH has been added is option (c): HNO₂(aq) is the predominant species; much smaller amounts of H+(aq) and NO₂−(aq) exist.

To learn more about neutralization reaction visit : https://brainly.com/question/23008798

#SPJ11

derive an expression for the specific heat capacity of the metal using the heat balance equation for an isolated system, equation (14.2). your final expression should only contain variables

Answers

The specific heat capacity of the metal can be expressed as the ratio of the product of the specific heat capacity and mass of the surroundings to the mass of the metal which is c = (ms) / m.

The specific heat capacity of a metal can be derived using the heat balance equation for an isolated system, given by equation (14.2), which relates the heat gained or lost by the system to the change in its temperature and its heat capacity.

According to the heat balance equation for an isolated system, the heat gained or lost by the system (Q) is given by:

Q = mcΔTwhere m is the mass of the metal, c is its specific heat capacity, and ΔT is the change in its temperature.

For an isolated system, the heat gained or lost by the metal must be equal to the heat lost or gained by the surroundings, which can be expressed as:

Q = -q = -msΔT

where q is the heat gained or lost by the surroundings, s is the specific heat capacity of the surroundings, and ΔT is the change in temperature of the surroundings.

Equating the two expressions for Q, we get:

mcΔT = msΔT

Simplifying and rearranging, we get:

c = (ms) / m

Therefore, the specific heat capacity of the metal can be expressed as the ratio of the product of the specific heat capacity and mass of the surroundings to the mass of the metal.

For more questions like Heat capacity click the link below:

https://brainly.com/question/28302909

#SPJ11

A company finds that the marginal​ profit, in dollars per​ foot, from drilling a well that is x feet deep is given by P′(x)=4 ^3√ x. Find the profit when a well 50 ft deep is drilled.
Question content area bottom Part 1 Set up the integral for the total profit for a well that is 50 feet deep.
P(50)= ∫ enter your response here dx
Part 2 The total profit is ​$enter your response here. ​(Round to two decimal places as​ needed.)

Answers

The total profit when a well 50 feet deep is drilled is approximately $1164.10, rounded to two decimal places.

The total profit for drilling a well that is 50 feet deep need to integrate the marginal profit function P'(x) with respect to x from 0 to 50.

This gives us the total profit function P(x):

P(x) = ∫ P'(x) dx from 0 to 50

Substituting P'(x) = [tex]4 \times x^{(1/3)[/tex] into the integral we get:

P(x) = [tex]\int 4 \times x^{(1/3)[/tex] dx from 0 to 50

Integrating with respect to x get:

P(x) = 4/4 * 3/4 * x^(4/3) + C

C is the constant of integration.

The value of C we need to use the given information that the marginal profit is zero when the well is 0 feet deep.

This means that the total profit is also zero when the well is 0 feet deep.

P(0) = 0

= [tex]4/4 \times 3/4 \times 0^{(4/3)} + C[/tex]

C = 0

So the total profit function is:

P(x) = [tex]3x^{(4/3)[/tex]

The profit when a well 50 feet deep is drilled is:

P(50) = [tex]3 \times 50^{(4/3)[/tex] dollars

Using a calculator to evaluate this expression, we get:

P(50) = [tex]3 \times 50^{(4/3)[/tex]

≈ $1164.10

For similar questions on profit

https://brainly.com/question/26483369

#SPJ11

In an all boys school, the heights of the student body are normally distributed with a mean of 69 inches and a standard deviation of 3.5 inches. Using the empirical rule,
determine the interval of heights that represents the middle 68% of male heights from this school.

Answers

The middle 68% of the male heights from the school is given as follows:

65.5 inches to 72.5 inches.

What does the Empirical Rule state?

The Empirical Rule states that, for a normally distributed random variable, the symmetric distribution of scores is presented as follows:

The percentage of scores within one standard deviation of the mean of the distribution is of approximately 68%.The percentage of scores within two standard deviations of the mean of the distribution is of approximately 95%.The percentage of scores within three standard deviations of the mean off the distribution is of approximately 99.7%.

For the middle 68% of measures, we take the measures that are within one standard deviation of the mean, hence the bounds are given as follows:

69 - 3.5 = 65.5 inches.69 + 3.5 = 72.5 inches.

More can be learned about the Empirical Rule at https://brainly.com/question/10093236

#SPJ1

A linear regression analysis reveals a strong, negative, linear relationship between x and y. Which of the following could possibly be the results from this analysis? ŷ = 27.4+13.1x, r = -0.95 ỹ = 0.85-0.25x, r = -0.85 0 $ = 13.1+27.4x, r = 0.95 ỹ = 542-385x, r = -0.15 0 $ = 13.1-27.4x, r = 0.85

Answers

The only possible result from a linear regression analysis revealing a strong, negative, linear relationship between x and y is ŷ = 27.4+13.1x, r = -0.95.

When a linear regression analysis reveals a strong, negative, linear relationship between x and y, it means that as x increases, y decreases at a constant rate.

In other words, there is a negative correlation between the two variables.
Out of the five possible results listed, the only one that could possibly be the result of this analysis is:

ŷ = 27.4+13.1x,

r = -0.95.

This is because the equation shows that as x increases, ŷ (the predicted value of y) also increases, but at a negative rate of 13.1.

Additionally,

The correlation coefficient (r) is negative and close to -1, indicating a strong negative correlation between x and y.
The other options cannot be the result of this analysis because they either have positive correlation coefficients (r) or equations that do not show a negative relationship between x and y.

For example,

The equation ỹ = 542-385x, r = -0.15 shows a negative correlation coefficient, but the negative sign in front of x indicates a positive relationship between x and y, which contradicts the initial statement of a negative linear relationship.

For similar question on linear regression:

https://brainly.com/question/29665935

#SPJ11

This equation has a negative slope (-0.25) and a correlation coefficient of -0.85, which indicates a strong negative linear relationship between x and y.

Based on the information provided, the correct answer is ŷ = 27.4+13.1x, r = -0.95. This is because a strong, negative linear relationship between x and y means that as x increases, y decreases and vice versa. The coefficient of determination (r-squared) measures the strength of the relationship between the two variables, and a value of -0.95 indicates a very strong negative relationship. The other answer choices do not fit this criteria, as they either have positive relationships (r values close to 1) or weaker negative relationships (r values close to 0). Therefore, the only possible choice is ŷ = 27.4+13.1x, r = -0.95.


A strong, negative, linear relationship between x and y would be represented by a linear equation with a negative slope and a correlation coefficient (r) close to -1. Among the given options, ỹ = 0.85 - 0.25x, r = -0.85 best represents this relationship. This equation has a negative slope (-0.25) and a correlation coefficient of -0.85, which indicates a strong negative linear relationship between x and y.

Learn more about correlation at: brainly.com/question/31588111

#SPJ11

Equivalence relations on numbers. About The domain of the following relations is the set of all integers. Determine if the following relations are equivalence relations. Justify your answers. (a) XRy if x - y = 3m for some integer m. (b) XRy if x + y = 3m for some integer m.

Answers

a) The relation XRy is an equivalence relation.

b) The relation XRy is not an equivalence relation.

(a) Let's first check if the relation XRy is reflexive. For any integer x, we have x - x = 3(0), which means xRx. So the relation is reflexive.

Next, we check if it's symmetric. If x - y = 3m, then y - x = -3m, which is also of the form 3n (where n = -m). So the relation is symmetric.

Finally, we check if it's transitive. If x - y = 3m and y - z = 3n, then x - z = (x - y) + (y - z) = 3m + 3n = 3(m + n). So the relation is transitive.

(b) Again, let's check if XRy is reflexive. For any integer x, we have x + x = 3(2x/3), which means xRx. So the relation is reflexive.

Next, we check if it's symmetric. If x + y = 3m, then y + x = 3m, so the relation is symmetric.

Finally, we check if it's transitive. If x + y = 3m and y + z = 3n, then x + z = (x + y) + (y + z) - 2y = 3(m + n) - 2y. This expression is not necessarily of the form 3p for some integer p, so the relation is not transitive.

for such more question on equivalence

https://brainly.com/question/2328454

#SPJ11

(a) XRy if x - y = 3m for some integer m:

This relation is not an equivalence relation. To be an equivalence relation, it must satisfy the following three conditions: reflexivity, symmetry, and transitivity.

Reflexivity: For any integer x, x + x = 2x, which is a multiple of 3 when x is a multiple of 3. Therefore, xRx for all integers x.

Symmetry: If xRy, then x + y = 3m for some integer m. This implies that y + x = 3m, which is also a multiple of 3. Hence, yRx.

Transitivity: If xRy and yRz, then x + y = 3m and y + z = 3n for some integers m and n. Adding these two equations gives x + y + y + z = 3(m + n), which simplifies to x + z + 2y = 3(m + n). Since 2y is a multiple of 3, x + z must also be a multiple of 3. Therefore, xRz.

Since this relation satisfies all three properties of an equivalence relation, it is indeed an equivalence relation.

Learn more about numbers here : brainly.com/question/17429689

#SPJ11

(From Hardcover Book, Marsden/Tromba, Vector Calculus, 6th ed., Section 1.5, # 7 or from your Ebook in the Supplementary Exercises for Section 11.7, #184) Let v, w E Rn. If ||vl-w-show that v + w and v - w are orthogonal (perpendicular).

Answers

v + w and v - w are orthogonal.

To show that v + w and v - w are orthogonal, we need to show that their dot product is zero.

We have:

(v + w) . (v - w) = ||v||^2 - ||w||^2

Now, since ||v|| = ||w||, we can simplify this to:

(v + w) . (v - w) = 0

Know more about orthogonal here:

https://brainly.com/question/2292926

#SPJ11

31. show that any matrix of rank r can be written as the sum of r matrices of rank 1.

Answers

To show that any matrix of rank r can be written as the sum of r matrices of rank 1, we will use the concept of matrix decomposition.

Let's consider an arbitrary matrix A of size m x n with rank r. By definition, the rank of a matrix is the maximum number of linearly independent rows or columns. This means that we can express A as a sum of r matrices of rank 1.

We start by performing the singular value decomposition (SVD) of matrix A:

A = U * Σ * V^T

where U is an m x r matrix, Σ is an r x r diagonal matrix with non-negative singular values on the diagonal, and V^T is the transpose of an r x n matrix V.

We can rewrite the singular value decomposition as:

A = σ1 * u1 * v1^T + σ2 * u2 * v2^T + ... + σr * ur * vr^T

where σ1, σ2, ..., σr are the singular values of A, and u1, u2, ..., ur and v1, v2, ..., vr are the corresponding left and right singular vectors, respectively.

Each term in the above expression is a rank 1 matrix, as it is an outer product of a column vector and a row vector. The rank 1 matrices are of the form x * y^T, where x and y are column vectors.

Thus, we have expressed matrix A as the sum of r matrices of rank 1.

In summary, any matrix of rank r can be written as the sum of r matrices of rank 1, where each term in the sum is a rank 1 matrix obtained from the singular value decomposition of the original matrix.

Learn more about diagonal here: brainly.com/question/32388209

#SPJ11

the series 7/8 − 7/10 + 7/12 − 7/14 + 7/16 − ..... can be rewritten as[infinity]\sum(-1)^(n-1) 7/??n=1

Answers

The series 7/8 − 7/10 + 7/12 − 7/14 + 7/16 − ..... is an alternating series, meaning that the signs of the terms alternate between positive and negative. To rewrite this series as a summation notation with an infinity symbol, we need to first determine the pattern of the denominator.


The denominators of the terms in the series are 8, 10, 12, 14, 16, .... We can see that the denominator of the nth term is 8 + 2(n-1), or 2n + 6.
Using this pattern, we can rewrite the series as:
7/8 − 7/10 + 7/12 − 7/14 + 7/16 − ..... = ∑(-1)^(n-1) 7/(2n + 6) from n = 1 to infinity.
Therefore, the answer to your question is:
The series 7/8 − 7/10 + 7/12 − 7/14 + 7/16 − ..... can be rewritten as ∑(-1)^(n-1) 7/(2n + 6) from n = 1 to infinity.

Rewriting the given series using summation notation. The series you provided is:
7/8 − 7/10 + 7/12 − 7/14 + 7/16 − ...
This series can be rewritten using the summation notation as:
∑((-1)^(n-1) * 7/(6+2n)) from n=1 to infinity.

To know more about alternating series visit:

https://brainly.com/question/16969349

#SPJ11

ind the general solution of the system of differential equations d 9 -4 dt* 5 5 Hint: The characteristic polynomial of the coefficient matrix is 12 – 142 +65.

Answers

The general solution of the given system of differential equations is x(t) = c₁e^(3t) + c₂e^(2t), y(t) = c₁e^(3t) + c₂te^(2t), where c₁ and c₂ are arbitrary constants.

To find the general solution, we first need to find the eigenvalues of the coefficient matrix. The characteristic polynomial of the coefficient matrix is obtained by setting the determinant of the matrix minus λ times the identity matrix equal to zero, where λ is the eigenvalue. In this case, the characteristic polynomial is 12 - 14λ + 65.

To find the eigenvalues, we solve the characteristic polynomial equation 12 - 14λ + 65 = 0. Solving this quadratic equation, we find two eigenvalues: λ₁ = 3 and λ₂ = 2.

Next, we find the corresponding eigenvectors associated with each eigenvalue. Substituting λ₁ = 3 into the matrix equation (A - λ₁I)v₁ = 0, we find the eigenvector v₁ = [1, 1]. Similarly, substituting λ₂ = 2, we find the eigenvector v₂ = [1, 2].

Finally, using the eigenvalues and eigenvectors, we can write the general solution of the system of differential equations as x(t) = c₁e^(3t) + c₂e^(2t) and y(t) = c₁e^(3t) + c₂te^(2t), where c₁ and c₂ are arbitrary constants. This solution represents all possible solutions to the given system of differential equations

Learn more about differential equations here:

https://brainly.com/question/25731911

#SPJ11

(a) Find the values of p for which the following integral converges:
∫[infinity]e 1/(x(ln(x))^p)dx
Input youranswer by writing it as an interval. Enter brackets or parentheses in the first and fourth blanks as appropriate, and enter the interval endpoints in the second and third blanks. Use INF and NINF (in upper-case letters) for positive and negative infinity if needed. If the improper integral diverges for all p, type an upper-case "D" in every blank.

Answers

The values of p for which the integral converges is (1, ∞).

To determine the convergence of the integral, we can use the integral test. For the integral to converge, the function inside the integral (i.e., 1/(x(ln(x))^p)) must be integrable, and hence, it must be positive, continuous, and decreasing for all x greater than some constant N.

Let f(x) = 1/(x(ln(x))^p). Then, we have:

f'(x) = -(ln(x))^(p-1)/(x^(p+1))

For f to be decreasing, f'(x) must be negative. Thus, we have:

p > 1

Also, f(x) is continuous and positive for x > 1. Hence, the integral converges for p > 1.

Therefore, the values of p for which the integral converges is (1, ∞).

Learn more about  converges here:

https://brainly.com/question/29258536

#SPJ11

evaluate the line integral, where c is the given curve. xyeyz dy, c: x = 3t, y = 2t2, z = 3t3, 0 ≤ t ≤ 1 c

Answers

The line integral simplifies to: ∫(c) xyeyz dy = 18t^6e^(3t^3)

To evaluate the line integral, we need to compute the following expression:

∫(c) xyeyz dy

where c is the curve parameterized by x = 3t, y = 2t^2, z = 3t^3, and t ranges from 0 to 1.

First, we express y and z in terms of t:

y = 2t^2

z = 3t^3

Next, we substitute these expressions into the integrand:

xyeyz = (3t)(2t^2)(e^(3t^3))(3t^3)

Simplifying this expression, we have:

xyeyz = 18t^6e^(3t^3)

Now, we can compute the line integral:

∫(c) xyeyz dy = ∫[0,1] 18t^6e^(3t^3) dy

To solve this integral, we integrate with respect to y, keeping t as a constant:

∫[0,1] 18t^6e^(3t^3) dy = 18t^6e^(3t^3) ∫[0,1] dy

Since the limits of integration are from 0 to 1, the integral of dy simply evaluates to 1:

∫[0,1] dy = 1

Know more about line integral here;

https://brainly.com/question/30763905

#SPJ11

An engineer created a scale drawing of a building using a scale in which 0.25 inch represents 2 feet. The length of the actual building is 250 feet. What is the length in inches of the building in the scale drawing? A - 7 ft3 | B - 7.25 ft3 | C - 8.5 ft3 | D - 10.5 ft3

Answers

The length of the building in the scale drawing is 31. 25 Inches

We have,

Scale: 0.25 inch = 2 feet

So, 1 inch = 8 feet

Now, the length of building is 250 feet.

Then, the length of budling in inch is

= 250/ 8

= 31.25 inches

Thus, the length of the building in the scale drawing is 31. 25 Inches

Learn more about Scale factor here:

brainly.com/question/25324744

#SPJ1

Please help me with this question! I am stuck!

Answers

Answer: 2/5

Step-by-step explanation:

there's 5 parts and 2 of them are even therefore 2 out of 5 chances are them being even

Answer: 1/10

Step-by-step explanation:

The probability of spinning any one number on the spinner is 1/5, and the probability of flipping heads or tails on the coin is 1/2. To find the probability of spinning a number AND flipping heads, you would multiply the probabilities: (1/5) x (1/2)=1/10. So the probability of the compound even is 1/10.

Hope this helps

. prove that f1 f3 ⋯ f2n−1 = f2n when n is a positive integer

Answers

The equation holds for k+1, completing the induction step. Therefore, we can conclude that the equation f1 f3 ⋯ f2n−1 = f2n is true for all positive integers n.

To prove that f1 f3 ⋯ f2n−1 = f2n when n is a positive integer, we need to use mathematical induction.
First, we need to establish the base case. When n=1, we have f1=f2, which is true.
Now, assume that the equation is true for some positive integer k, meaning f1 f3 ⋯ f2k−1 = f2k.
We need to show that it is also true for k+1.
f1 f3 ⋯ f2k−1 f2k+1 = f2k+2
Using the definition of Fibonacci sequence, we know that:
f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, f8 = 21, and so on.
Substituting these values, we get:
1*2*5*...*f(2k-1)*f(2k+1) = f(2k+2)
Rearranging the left side:
f(2k)*2*5*...*f(2k-1)*f(2k+1) = f(2k+2)
We know that f(2k) = f(2k+1) - f(2k-1) and f(2k+2) = f(2k+1) + f(2k+1).
Substituting these values, we get:
(f(2k+1) - f(2k-1))*2*5*...*f(2k-1)*f(2k+1) = f(2k+1) + f(2k+1)
Dividing both sides by f(2k+1):
(2*5*...*f(2k-1) - f(2k-1)) = 1
Simplifying:
f(2k+1) = 2*5*...*f(2k-1)
Therefore, f1 f3 ⋯ f2k+1 = f(2k+1) and f2k+2 = f(2k+1) + f(2k+1), so we have:
f1 f3 ⋯ f2k+1 f2k+2 = f(2k+1) + f(2k+1) = 2f(2k+1) = 2(2*5*...*f(2k-1)) = f(2k+2)
This proves that the equation holds for k+1, completing the induction step. Therefore, we can conclude that the equation f1 f3 ⋯ f2n−1 = f2n is true for all positive integers n.

Learn more about induction here

https://brainly.com/question/29503103

#SPJ11

(Image: 5
Let G (V, E) be a digraph in which every vertex is a source, or a sink, or both a
sink and a source.
(a)
Prove that G has neither self-loops nor anti-parallel edges.
(b)
Let Gu
=
(V, Eu) be the undirected graph obtained by erasing the direction on
the edges of G. Prove that G" has chromatic number 1 or 2.
You are not required to draw anything in your proofs.)

Answers

(a) To prove that G has neither self-loops nor anti-parallel edges, we will assume the contrary and show that it leads to a contradiction.

Assume there exists a vertex v in G that has a self-loop, meaning there is an edge (v, v) in G. Since every vertex in G is either a source, a sink, or both, this self-loop implies that v is both a source and a sink. However, this contradicts the assumption that every vertex in G is either a source or a sink, but not both. Therefore, G cannot have self-loops.

Now, assume there exist two vertices u and v in G such that there are anti-parallel edges between them, i.e., both (u, v) and (v, u) are edges in G. Since every vertex in G is either a source, a sink, or both, this implies that u is a source and a sink, and v is also a source and a sink. Again, this contradicts the assumption that every vertex in G is either a source or a sink, but not both. Therefore, G cannot have anti-parallel edges.

Hence, we have proved that G has neither self-loops nor anti-parallel edges.

(b) Let's consider the undirected graph Gu obtained by erasing the direction on the edges of G. We need to prove that Gu has a chromatic number of 1 or 2.

Since every vertex in G is either a source, a sink, or both, it implies that every vertex in Gu has either outgoing edges only, incoming edges only, or both incoming and outgoing edges. Therefore, in Gu, a vertex can be colored with one color if it has either all incoming or all outgoing edges, and with a second color if it has both incoming and outgoing edges.

If Gu has a vertex with all incoming or all outgoing edges, it can be colored with one color. Otherwise, if Gu has a vertex with both incoming and outgoing edges, it can be colored with a second color. This proves that the chromatic number of Gu is either 1 or 2.

Therefore, we have proved that the undirected graph Gu obtained from G has a chromatic number of 1 or 2.

Learn more about vertices here: brainly.com/question/32386525

#SPJ11

Navarro, Incorporated, plans to issue new zero coupon bonds with a par value of $1,000 to fund a new project. The bonds will have a YTM of 5. 43 percent and mature in 20 years. If we assume semiannual compounding, at what price will the bonds sell?

Answers

To calculate the price at which the zero-coupon bonds will sell, we can use the formula for present value (PV) of a bond:

[tex]PV = F / (1 + r/n)^(n*t)[/tex]

Where:

PV = Present value or price of the bond

F = Par value of the bond ($1,000)

r = Yield to maturity (YTM) as a decimal (5.43% = 0.0543)

n = Number of compounding periods per year (semiannual, so n = 2)

t = Number of years to maturity (20 years)

Plugging in the values into the formula, we can calculate the price at which the bonds will sell:

PV = 1000 / (1 + 0.0543/2)^(2*20)

= 1000 / (1 + 0.02715)^(40)

= 1000 / (1.02715)^(40)

≈ 1000 / 0.49198

≈ $2033.69

Therefore, the bonds will sell at approximately $2,033.69.

Learn more about compounding here:

https://brainly.com/question/24274034

#SPJ11

The Minitab output includes a prediction for y when x∗=500. If an overfed adult burned an additional 500 NEA calories, we can be 95% confident that the person's fat gain would be between
1. −0.01 and 0 kg
2. 0.13 and 3.44 kg
3. 1.30 and 2.27 jg
4. 2.85 and 4.16 kg

Answers

We can be 95% confident that the person's fat gain would be between 0.13 and 3.44 kg.

So, the correct answer is option 2.

Based on the Minitab output, when an overfed adult burns an additional 500 NEA (non-exercise activity) calories (x* = 500), we can be 95% confident that the person's fat gain (y) would be between 0.13 and 3.44 kg.

This range is the confidence interval for the predicted fat gain and indicates that there is a 95% probability that the true fat gain value lies within this interval.

In this case, option 2 (0.13 and 3.44 kg) is the correct answer.

Learn more about interval at

https://brainly.com/question/13708942

#SPJ11

Other Questions
if interstellar dust makes an rr lyrae variable star look 5 magnitudes fainter than the star should, by how much will you over- or underestimate its distance? (hint: use the magnitude-distance formula staging a venue means to do which of the following? A. plant trees and flowers B. create an advertisement for the event C. set up and decorate for the eventD. all of the above people who are quick to respond to such peripheral cues as a communicator's attractiveness are those with a(n) need for cognition.a.lowb.averagec.highd.slightly above average WILL GIVE BRAINLIEST!!Which method and additional information would prove ONP and MNL similar by the AA similarity postulate?Use a rigid transformation to prove that OPN MLN. Use rigid and nonrigid transformations to prove segment PN over segment MN = segment LN over segment ON. Use a rigid transformation to prove that NPO LNM. Use rigid and nonrigid transformations to prove segment LN over segment ON = segment PN over segment MN How has manufacturing in the united states changed over its history? a student made a mistake while performing gram staining. what is the best explanation for a gram-negative bacterium appearing purple after performing a gram stain? point possible Tap on the reaction coordinate for a two-step, exothermic reaction in which the first step is faster than the second one. . R Potential energy Potential energy R Potential energy P Reaction coordinate Reaction coordinate Reaction coordinate X Selected Answer - Incorrect R R P P Reaction coordinate Reaction coordinate Reaction coordinate 2 1 point possible Rank the following elemental step molecularities in order of speed. Fastest Tetramolecular X Trimolecular X Bimolecular Unimolecular Slowest 1. use the ti 84 calculator to find the z score for which the area to its left is 0.13. Round your answer to two decimal places.2. use the ti 84 calculator to find the z score for which the area to the right is 0.09. round your answer to two decimal places.3. use the ti 84 calculator to find the z scores that bound the middle 76% of the area under the standard normal curve. enter the answers in ascending order and roundto two decimal places.the z scores for the given area are ------- and -------.4. the population has a mean of 10 and a standard deviation of 6. round your answer to 4 decimal places.a) what proportion of the population is less than 21?b) what is the probability that a randomly chosen value will be greater then 7? the series n=1[infinity](1)n 1n converges to s. based on the alternating series error bound, what is the least number of terms in the series that must be summed to guarantee a partial sum that is within 0.03 of S? a. 34 b. 333 c.111 d.9999 PLEASE HELP WITH THIS! PLEASE! SURFACE AREA. I HAVE NO CLUE!! Which of the following correctly accesses the fifth (5th) element stored in foo, an array with 100 elements?Group of answer choicesfoo(5);None of the othersfoo(4);foo(3);foo(6); how to address a cover letter to an unknown person A hair dryer draws a current of 9.1A a. How long does it take for 1.910^3C of charge to pass through the hair dryer? b. How many electrons does this amount of charge represent? time management is very essential for the nurse manager. which of the following is not a good time-management technique? decision-making is described by the nursing educator as the process one uses to: What is 4 across minus 1 across? [Edit 1; (4 across is 647 and 1 across is 133).]I can't find the answer to this and I'm doing a math cross and this is the last one that I can't find the answer to.Please help me with this! Thank you![Edit 2; (I have already found the answer to this question so I don't need the answer to this question anymore but still, feel free to answer this question though!).] Find the inverse Laplace transform f(t)=L1{F(s)} of the function F(s)=5040s78s. f(t)=L1{5040s78s}= Find the formula for an exponential equation that passes through the points (-4,3) and (6,1). The exponential equation should be of the form y=ab^x. Round a and b values to at least 5 decimals, where appropriate. You were hired as a consultant to Keys Company, and you wereprovided with the following data: Target capitalstructure: 40% debt, 10% preferred, and 50% commonequity. The after-tax cost of debt is 4.00%, the cost ofpreferred is 7.50%, and the cost of retained earnings is11.50%. The firm will not be issuing any new stock. What is the firms WACC?(Points: 4)A. 7.55%B. 7.73%C. 7.94%D. 8.10%E. 8.32% let x = (1, 2, 3)t , y = (y1, y2, y3) t , z = (4, 2, 1)t . compute 2x, 3y, x 2y 3z.