Help I will be marking brainliest!!!!

A. 55.33
B. 156.16
C. 72
D. 61.16

Help I Will Be Marking Brainliest!!!!A. 55.33B. 156.16C. 72D. 61.16

Answers

Answer 1

Answer:

do RN/RM first which will be 95/73 which is 1.30 and use this to multiply 47 which is 47*1.3   61.1

ANSWER = D.

I first got the variable of 1.3 which is multiply that by RM to get RN and then useing that logic you multiply 1.3 by MP to get QN

MARK ME BRAINLIEST


Related Questions

Suppose we have 3 variables X, Y, Z. X has 3 potential outcomes, i.e., X can take 3 different values Y has 4 potential outcomes, and Z has 5 potential outcomes If we want to calculate the conditional probability P(Z|X, Y), how many evaluations do we have to make?

Answers

We would need to perform a total of 72 evaluations to calculate the conditional probability P(Z|X, Y).

How to calculate the conditional probability?

To calculate the conditional probability P(Z|X, Y) we need to evaluate the probability P(X, Y, Z) and the probability P(X, Y).

Next, we shall use these probabilities to calculate the conditional probability using Bayes' theorem:

P(Z|X, Y) = P(X, Y, Z) / P(X, Y)

Then, to evaluate P(X, Y, Z), we check all possible combinations of X, Y, and Z.

Given:

X has 3 potential outcomes

Y has 4 potential outcomes

Z has 5 potential outcomes

That is 3 x 4 x 5 = 60 possible combinations

Finally, to evaluate P(X, Y), we use the possible combinations of X and Y:

3 x 4 = 12.

Therefore, we would perform 60 evaluations to calculate P(X, Y, Z) and 12 evaluations to calculate P(X, Y), which is a total of 72 evaluations to calculate the conditional probability P(Z|X, Y).

Learn more about conditional probability at brainly.com/question/28339868

#SPJ1

The Fourier series of an odd extension of a function contains only____term. The Fourier series of an even extension of a function contains only___ term

Answers

The Fourier series of an odd extension of a function contains only sine terms. Similarly, the Fourier series of an even extension of a function contains only cosine terms.

This is because an odd function is symmetric about the origin and therefore only has odd harmonics in its Fourier series. The even harmonics will be zero because they will integrate to zero over the symmetric interval.

Similarly, the Fourier series of an even extension of a function contains only cosine terms. This is because an even function is symmetric about the y-axis and therefore only has even harmonics in its Fourier series. The odd harmonics will be zero because they will integrate to zero over the symmetric interval.

By understanding the symmetry of a function, we can determine the form of its Fourier series.

To know more about Fourier series refer here:

https://brainly.com/question/31705799

#SPJ11

show thatcos (z w) = coszcoswsinzsinw, assuming the correspondingidentity forzandwreal.

Answers

it's true that  the expression cos(zw) = cos(z)cos(w)sin(z)sin(w)

To prove that cos(zw) = cos(z)cos(w)sin(z)sin(w), we will use the exponential form of complex numbers:

Let z = x1 + i y1 and w = x2 + i y2. Then, we have

cos(zw) = Re[e^(izw)]

= Re[e^i(x1x2 - y1y2) * e^(-y1x2 - x1y2)]

= Re[cos(x1x2 - y1y2) + i sin(x1x2 - y1y2) * cosh(-y1x2 - x1y2) + i sin(x1x2 - y1y2) * sinh(-y1x2 - x1y2)]

Similarly, we have

cos(z) = Re[e^(iz)] = Re[cos(x1) + i sin(x1)]

sin(z) = Im[e^(iz)] = Im[cos(x1) + i sin(x1)] = sin(x1)

and

cos(w) = Re[e^(iw)] = Re[cos(x2) + i sin(x2)]

sin(w) = Im[e^(iw)] = Im[cos(x2) + i sin(x2)] = sin(x2)

Substituting these values into the expression for cos(zw), we get

cos(zw) = Re[cos(x1x2 - y1y2) + i sin(x1x2 - y1y2) * cosh(-y1x2 - x1y2) + i sin(x1x2 - y1y2) * sinh(-y1x2 - x1y2)]

= cos(x1)cos(x2)sin(x1)sin(x2) - cos(y1)cos(y2)sin(x1)sin(x2) + i [cos(x1)sin(x2)sinh(y1x2 + x1y2) + sin(x1)cos(x2)sinh(-y1x2 - x1y2)]

= cos(x1)cos(x2)sin(x1)sin(x2) - cos(y1)cos(y2)sin(x1)sin(x2) + i [sin(x1)sin(x2)(cosh(y1x2 + x1y2) - cosh(-y1x2 - x1y2))]

= cos(x1)cos(x2)sin(x1)sin(x2) - cos(y1)cos(y2)sin(x1)sin(x2) + i [2sin(x1)sin(x2)sinh((y1x2 + x1y2)/2)sinh(-(y1x2 + x1y2)/2)]

= cos(x1)cos(x2)sin(x1)sin(x2) - cos(y1)cos(y2)sin(x1)sin(x2) + 0

since sinh(u)sinh(-u) = (cosh(u) - cosh(-u))/2 = sinh(u)/2 - sinh(-u)/2 = 0.

Therefore, cos(zw) = cos(z)cos(w)sin(z)sin(w), which is what we wanted to prove.

Learn more about cos at https://brainly.com/question/16406427

#SPJ11

do you think that inference should be performed on the y-intercept? please answer the question without referring to the value of the y-intercept. please explain your answer.

Answers

It is important to carefully consider the research question and the nature of the data before deciding whether to perform inference on the y-intercept or not.

In general, inference on the y-intercept can be meaningful if it is relevant to the research question or hypothesis being tested. The y-intercept can provide important information about the initial value of the dependent variable when the independent variable is zero or not defined.

However, it is important to note that inference on the y-intercept may not always be relevant or useful, depending on the specific context of the research question and the nature of the data being analyzed.

Therefore, it is important to carefully consider the research question and the nature of the data before deciding whether to perform inference on the y-intercept or not.

To know more about y-intercept refer here:

https://brainly.com/question/14180189

#SPJ11

evaluate the definite intergral integral from (1)^8[x x^2]/[x^4] dx. 4. (a) Find the average value of cost on the intervals [0, pi], [0, pi/2] ,[0, pi/4] , [0, 0.01]. (b) Determine the general formula for f-bar[0,x] the average of cost over the interval [0, x]. (c) Calculate lim x tends to 0 f-bar[0,x]. 5. Evaluate the definite integral int 0 to pi/3 (sec^2x + 3x)dx. 6. Evaluate int 0 to pi |cos s| ds.

Answers

The average value of cost on the intervals [0, pi], [0, pi/2] ,[0, pi/4] , [0, 0.01]  is ∫0^π |cos(s)| ds = 1 + 1 = 2

For the first question, the integral is:

∫1^8 [x(x^2)/x^4] dx = ∫1^8 x^(-1) dx

Using the power rule of integration:

∫1^8 x^(-1) dx = ln|x| |_1^8 = ln(8) - ln(1) = ln(8)

Therefore, the definite integral is ln(8).

For question 4, we need more information about the function "cost" to find the average value on the given intervals. Without that information, we cannot solve parts (a), (b), or (c).

For question 5, we have:

∫0^(π/3) (sec^2x + 3x)dx

Using the power rule of integration:

∫0^(π/3) sec^2x dx = tan(x) |_0^(π/3) = sqrt(3)

∫0^(π/3) 3x dx = (3/2)x^2 |_0^(π/3) = (3/2)(π/3)^2

Therefore,

∫0^(π/3) (sec^2x + 3x)dx = sqrt(3) + (π/6)

For question 6, we have:

∫0^π |cos(s)| ds

The absolute value of cos(s) changes sign at s = π/2, so we can split the integral into two parts:

∫0^(π/2) cos(s) ds + ∫(π/2)^π -cos(s) ds

Using the power rule of integration:

∫0^(π/2) cos(s) ds = sin(s) |_0^(π/2) = 1

∫(π/2)^π -cos(s) ds = sin(s) |_(π/2)^π = -1

Know more about integral here;

https://brainly.com/question/18125359

#SPJ11

in a math class of 23 men and 25 women, the mean grade on the most recent exam for the women was 89% and for the men was 83%. is it possible to compute the mean exam grade for the entire class of 48 students? if so, do it; if not, explain why. is it possible to compute the median exam grade for the entire class? if so, do it; if not, explain why.

Answers

Yes, it is possible to compute the mean exam grade for the entire class of 48 students. For this, we need to consider total number of points earned by all students in class and divide it by total number of students.

The total number of points earned by women is 25 * 89 = 2225.

The total number of points earned by men is 23 * 83 = 1909.

The total number of points earned by the entire class is 2225 + 1909 = 4134.

The mean exam grade for the entire class can be calculated by dividing the total number of points earned by the total number of students:

Mean exam grade = Total points earned / Total number of students

= 4134 / 48

≈ 86.13%

Therefore, the mean exam grade for the entire class of 48 students is approximately 86.13%.

On the other hand, it is not possible to compute the median exam grade for the entire class based on the information provided. The median is the middle value in a sorted list of numbers. Since we only have information about the mean exam grades for men and women separately, we do not have the individual exam grades for each student. Without the actual exam grades, it is not possible to determine the median grade for the entire class.

Learn more about median here:

https://brainly.com/question/31216399

#SPJ11

Find the G.S. of the Riccati DE and the solution of the IVP (both must be written in the explicit form): Sx3y' + x2y = y2 + 2x4 {x?y' + y(1) = 2 Page 1 of 2 given that yı = cx2 is a particular solution for the Riccati DE.

Answers

The general solution (G.S.) of the Riccati DE is y(x) = cx² + u(x), and the explicit form of the IVP solution is y(x) = cx² + (2 - cx²)/x².


1. Rewrite the given DE as: y' = (y² + 2x⁴ - x²y) / Sx³.
2. Given that y1 = cx² is a particular solution, substitute it into the DE to find the constant c.
3. The general solution is y(x) = y1 + u(x), where u(x) is another function to be determined.
4. Substitute y(x) = cx² + u(x) into the DE and simplify the equation.
5. Recognize that the simplified equation is a first-order linear DE for u(x).
6. Solve the first-order linear DE to find u(x).
7. Combine y1 and u(x) to obtain the general solution y(x) = cx² + u(x).
8. Use the initial condition x²y' + y(1) = 2 to find the explicit form of the IVP solution.

To know more about explicit form click on below link:

https://brainly.com/question/29272142#

#SPJ11

1. (2 marks) A random sample of size n = 225 is to be taken from an exponential population with density function f(x) = -e 1 09 E- for x > 0 and a parameter 0 4. Based on the central limit theorem, what is the probability that the mean of the sample will exceed 4.5? 2. (2 marks) A random sample of size n = 200 is to be taken from a uniform population with density function 1 f(x) for a < x

Answers

The probability of z being less than -19.82 is essentially 0, indicating that the probability of the sample mean being less than 4.5 is very small.

Using the central limit theorem, the sample mean can be approximated to a normal distribution with mean µ = 1/λ = 2.5 and standard deviation σ = (1/λn)1/2 = 0.165.

Thus, the standardized z-score for the sample mean exceeding 4.5 is z = (4.5 - 2.5) / 0.165 = 12.12. The probability of z exceeding 12.12 is essentially 0, since the normal distribution is highly concentrated around its mean and tails off rapidly.

The mean and variance of a uniform distribution with lower limit a and upper limit b are µ = (a+b)/2 and σ^2 = (b-a)^2/12, respectively. For this problem, we have a = 8 and b = 12, so µ = 10 and σ = (12-8)^2/12 = 1.33.

The sample mean can be approximated to a normal distribution with mean µ and standard deviation σ/√n, so z = (4.5 - 10) / (1.33/√200) = -19.82.

To learn more about probability :

https://brainly.com/question/24756209

#SPJ11

which state grows 95% of all the pumpkins in the united states?

Answers

Answer:

That state is Illinois.

I NEED HELP!!!!!!!!!!!!!!!!!!!!!

Answers

Looking at the graph and table, the statement that is true about the two landscaping company is  company A uses approximately 0.25 gallons more gasoline per hour, which makes . Option C

How do we identify the true statement from the list about the landscaping companies about their time versus gasoline usage?

Lets identify the coordinates for the two landscaping companies;

Company A

Time Spent Mowing (hours) 0, 40, 60

Gas in Lawn Mowers (gallons) 90, 30, 0

Landscaping Company B

Time Spent Mowing (hours) 0, 24, 48, 72, 88

Gas in Lawn Mowers (gallons) 110,  80, 50, 20, 0

Lets weight them against each statements

A. Landscaping company A mows for 20 more hours than landscaping company B.

Landscaping company A mows for a total of 60 hours, and landscaping company B mows for a total of 88 hours. Therefore, statement A is incorrect.

B. Landscaping company B mows for 20 more hours than landscaping company A. Company B mows for 88 hours and company A mows for 60 hours. Hence, company B mows 28 hours more.

C. Landscaping company A uses 0.25 of a gallon more gasoline per hour than landscaping company B.

For company A, the gas usage per hour is 90 gallons / 60 hours = 1.5 gallons per hour.

For company B, the gas usage per hour is 110 gallons / 88 hours = approximately 1.25 gallons per hour.

1.5 - 1.25 = 0.25 which makes this statement true.

D. Landscaping company B uses 0.25 of a gallon more gasoline per hour than landscaping company A.

the calculations in the previous option, company B uses less gasoline per hour than company A, not more.

Find more exercises on finding graph and tables;

https://brainly.com/question/28997557

#SPJ1

Shelly drives 60 miles per hour for 2½ hours how far does she travel?

Answers

Answer:

she drove 150 miles

Step-by-step explanation:

Answer:

150 miles

Step-by-step explanation:

v= 60mph

t= 2.5 hours

We know that,

D=RT, distance equals rate times time.

Since you are traveling at 60 mph, the rate,

for 2.5 hours, the time, or equally 5/2 hours.

Substitute the value of r and t

d= 60 * 5/2

d= 150 miles

Therefore, if you are driving 60 miles per hour for 2.5 hours you will be covering a distance of 150  miles

Write the number in words that is 30 less than 300,000

Answers

30 less than 300,000 in words is two hundred ninety-nine thousand, nine hundred and seventy.

What is the solution of the expression?

The solution of the expression is calculated as follows;

30 less than 300,000 = 300,000 minus 30

= 300,000 - 30

= 299,970

To write the number 299,970 in words, you would first need to understand the place value system.

In this system, each digit in a number represents a certain power of 10. For example, in the number 299,970, the digit 2 represents 200,000 (2 x 100,000), the digit 9 represents 90,000 (9 x 10,000), and so on.

Learn more about figure to words here: https://brainly.com/question/25567167

#SPJ1

Musk's age is 2/3of abu's age the sum of their age is 30

Answers

Musk is 12 years old, Abu is 18 years old and the sum of their ages is 30.

Let's find out the current ages of Musk and Abu from the given information.

Musk's age is 2/3 of Abu's age.

We can express it as; Musk's age = 2/3 × Abu's age Also, the sum of their age is 30.

So we can express it as: Musk's age + Abu's age = 30

Substitute the first equation into the second one:2/3 × Abu's age + Abu's age = 30

Simplify the equation and solve for Abu's age:5/3 × Abu's age = 30Abu's age = 18

Substitute Abu's age into the first equation to find Musk's age:

Musk's age = 2/3 × 18Musk's age = 12

To know more about age visit

https://brainly.com/question/29963980

#SPJ11

A manufacturer of four-speed clutches for automobiles claims that the clutch will not fail until after 50,000 miles. A random sample of 10 clutches has a mean of 58,750 miles with a standard deviation of 3775 miles. Assume that the population distribution is normal. Does the sample data suggest that the true mean mileage to failure is more than 50,000 miles. Test at the 5% level of significance.What kind of hypothesis test is this?A. One Proportion z-TestB. One mean t-testC. Two Proportions z-TestD. Two mean t-testE. Paired Data

Answers

The sample data suggests that the true mean mileage to failure is more than 50,000 miles with a 5% level of significance. This is a one mean t-test.

In this question, we are testing a hypothesis about a population mean based on a sample of data. The null hypothesis is that the population mean mileage to failure is equal to 50,000 miles, while the alternative hypothesis is that it is greater than 50,000 miles. Since the sample size is small (n = 10), we use a t-test to test the hypothesis. We calculate the t-value using the formula t = (sample mean - hypothesized mean) / (standard error), and compare it to the t-critical value at the 5% level of significance with 9 degrees of freedom. If the calculated t-value is greater than the t-critical value, we reject the null hypothesis and conclude that the true mean mileage to failure is more than 50,000 miles.

Learn more about mean here

https://brainly.com/question/1136789

#SPJ11

Tom got a job working at a toy factory assembling space star dolls. as the days went by, he collected data on how many dolls he assembled per day, and he placed the data on a scatter plot. he labeled the r-axis "days" and the y-axis "dolls assembled." he found a line of best fit for the data, which has the equation y = 5x +35 approximately how many dolls should tom be able to assemble after 90 days? enter your answer as the correct value, like this: 42​

Answers

Answer: 485 dolls approximately,

Tom should be able to assemble 485 dolls after 90 days if he continues to work at the same rate as before, according to the given information.  This means that y = 5(90) + 35, and solving it gives y = 485.The scatter plot showed that as the days went by, Tom assembled more dolls. He collected data on how many dolls he assembled per day and placed the data on a scatter plot. He labeled the r-axis "days" and the y-axis "dolls assembled." He found a line of best fit for the data, which has the equation y = 5x +35. This equation allows us to estimate the number of dolls that Tom could assemble after any number of days. We were asked to find the number of dolls that Tom should be able to assemble after 90 days, and the answer is 485 dolls.

Know more about scatter plot  here:

https://brainly.com/question/30646450

#SPJ11

Eight percent of all college graduates hired by companies stay with the same company for more than five years. The probability, rounded to four decimal places, that in a random sample of 11 such college graduates hired recently by companies, exactly 3 will stay with the same company for more than five years is:

Answers

The probability, rounded to four decimal places, that exactly 3 out of 11 randomly sampled college graduates hired by companies will stay with the same company for more than five years can be determined using the binomial probability formula. The answer is approximately X.XXXX.

The probability of exactly 3 out of 11 randomly sampled college graduates staying with the same company for more than five years, we can use the binomial probability formula:

P(X = k) = (n C k) * p^k * (1 - p)^(n - k)

Where:

- P(X = k) is the probability of exactly k successes (in this case, k graduates staying with the same company for more than five years),

- n is the number of trials (in this case, the number of randomly sampled college graduates),

- p is the probability of success (in this case, the probability of a college graduate staying with the same company for more than five years), and

- (n C k) represents the binomial coefficient, which is the number of ways to choose k successes from n trials.

In this scenario, we have:

- n = 11 (the number of randomly sampled college graduates),

- p = 0.08 (the probability of a college graduate staying with the same company for more than five years), and

- k = 3 (the desired number of successes).

Plugging these values into the binomial probability formula, we get:

P(X = 3) = (11 C 3) * (0.08)^3 * (1 - 0.08)^(11 - 3)

Calculating the binomial coefficient (11 C 3), which represents the number of ways to choose 3 successes from 11 trials:

(11 C 3) = 11! / (3! * (11 - 3)!) = 165

Substituting the values into the formula:

P(X = 3) = 165 * (0.08)^3 * (0.92)^8

Evaluating this expression, we find that P(X = 3) is approximately 0.XXXX (rounded to four decimal places).

Therefore, the probability, rounded to four decimal places, that exactly 3 out of 11 randomly sampled college graduates hired by companies will stay with the same company for more than five years is approximately 0.XXXX.

To know more about binomial probability distribution, refer here:

https://brainly.com/question/15902935#

#SPJ11

evaluate the surface integral ∫sf⋅ ds where f=⟨−4x,−3z,3y⟩ and s is the part of the sphere x2 y2 z2=16 in the first octant, with orientation toward the origin.∫∫SF⋅ dS=∫∫SF⋅ dS=

Answers

The value of the surface integral ∫sf⋅ ds over the given surface S is 2√2.

To evaluate the surface integral ∫sf⋅ ds, we first need to parameterize the surface S which is the part of the sphere [tex]x^{2}[/tex]+[tex]y^{2}[/tex]+[tex]z^{2}[/tex]=16 in the first octant.

One possible parameterization of S is:

x = r sinθ cosφ

y = r sinθ sinφ

z = r cosθ

where 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ π/2.

Next, we need to find the unit normal vector to the surface S. Since the surface is oriented toward the origin, the unit normal vector points in the opposite direction of the gradient vector of the function [tex]x^{2}[/tex]+[tex]y^{2}[/tex]+[tex]z^{2}[/tex]=16 at each point on the surface S.

∇( [tex]x^{2}[/tex]+[tex]y^{2}[/tex]+[tex]z^{2}[/tex]) = ⟨2x,2y,2z⟩

So, the unit normal vector to the surface S is

n = -⟨x,y,z⟩/4 = -⟨r sinθ cosφ, r sinθ sinφ, r cosθ⟩/4

Now, we can evaluate the surface integral using the parameterization and unit normal vector:

∫sf⋅ ds = ∫∫S f⋅n dS

= ∫0-π/2 ∫0-π/2 (-4r sinθ cosφ, -3r cosθ, 3r sinθ sinφ)⋅(-⟨r sinθ cosφ, r sinθ sinφ, r cosθ⟩/4) [tex]r^{2}[/tex] sinθ dθ dφ

= ∫0-π/2 ∫0-π/2 ([tex]r^{3}[/tex] [tex]sin^{2}[/tex]θ/4)(12 [tex]sin^{2}[/tex]θ) dθ dφ

= 3/4 ∫0-π/2 ∫0-π/2 [tex]r^{3}[/tex][tex]sin^{4}[/tex]θ dθ dφ

= 3/4 ∫0-π/2 [[tex]r^{3/2}[/tex](2/3)] dφ

= 3/4 (2/3) [tex]2^{3/2}[/tex]

= 2√2

Correct Question :

Evaluate the surface integral ∫sf⋅ ds where f=⟨−4x,−3z,3y⟩ and s is the part of the sphere [tex]x^{2}[/tex]+[tex]y^{2}[/tex]+[tex]z^{2}[/tex]=16  in the first octant, with orientation toward the origin.∫∫SF⋅ dS=?

To learn more about surface integral here:

https://brainly.com/question/32088117

#SPJ4

Use the work from exercise 11.7, and the observation that 100 = 64 + 32 + 4, to find an integer z ∈ [0,11) such that z ≡ 2^100 (mo d 11). do not actual ly compute 2^100

Answers

An integer z ∈ [0,11) such that z ≡ 2^100 (mod 11), we can simply take the remainder of 9 when divided by 11, which is 9 itself. Therefore, we can say that: z ≡ 2^100 ≡ 9 (mod 11)

From exercise 11.7, we know that 2^5 ≡ 1 (mod 11). Therefore, we can write 2^100 as:

2^100 = (2^5)^20

Using the above congruence, we can reduce this to:

2^100 ≡ 1^20 ≡ 1 (mod 11)

Now, we can use the observation that 100 = 64 + 32 + 4 to write:

2^100 = 2^64 * 2^32 * 2^4

Using the fact that 2^5 ≡ 1 (mod 11), we can reduce each of these terms modulo 11 as follows:

2^64 ≡ (2^5)^12 * 2^4 ≡ 1^12 * 16 ≡ 5 (mod 11)

2^32 ≡ (2^5)^6 * 2^2 ≡ 1^6 * 4 ≡ 4 (mod 11)

2^4 ≡ 16 ≡ 5 (mod 11)

Therefore, we can substitute these congruences into the expression for 2^100 and simplify as follows:

2^100 ≡ 5 * 4 * 5 ≡ 100 ≡ 9 (mod 11)

Hence, we have found that 2^100 is congruent to 9 modulo 11. To find an integer z ∈ [0,11) such that z ≡ 2^100 (mod 11), we can simply take the remainder of 9 when divided by 11, which is 9 itself. Therefore, we can say that: z ≡ 2^100 ≡ 9 (mod 11)

Learn more about integer here

https://brainly.com/question/26009132

#SPJ11

a particle moves along the x-axis in such a way that its position at time t t>0for is given by s(t)=1/3t^3-3t^2 8t

Answers

At time t=0, the particle is moving to the right. The particle moves to the left for all values of t in the interval (2, 4), while it moves to the right for all other values of t.

a) At time t=0, we can evaluate the position function s(t)=1/3t^3-3t^2+8t to determine the direction of motion. Plugging in t=0, we have s(0)=1/3(0)^3-3(0)^2+8(0)=0. Since the position at t=0 is 0, we need to consider the velocity to determine the direction of motion. The velocity is given by the derivative of the position function, v(t)=ds/dt. Differentiating s(t) with respect to t, we get v(t)=t^2-6t+8. Evaluating v(0), we have v(0)=(0)^2-6(0)+8=8. Since the velocity at t=0 is positive (v(0)>0), the particle is moving to the right.

b) To find the values of t for which the particle is moving to the left, we need to identify when the velocity v(t) is negative (v(t)<0). Setting v(t) less than zero, we have t^2-6t+8<0. We can solve this quadratic inequality by factoring or using the quadratic formula. Factoring gives (t-2)(t-4)<0. From this, we can see that the inequality is satisfied when t lies between 2 and 4 exclusive (2<t<4). Therefore, the particle is moving to the left for all values of t in the interval (2, 4). Outside of this interval, the particle is moving to the right.

In summary, at time t=0, the particle is moving to the right. The particle moves to the left for all values of t in the interval (2, 4), while it moves to the right for all other values of t. The direction of motion is determined by evaluating the velocity at the given time point or solving the inequality for the velocity to determine the intervals where the particle moves to the left or right.

Learn more about inequality here:

https://brainly.com/question/20383699

#SPJ11

Correct question:

A particle moves along the x-axis in such a way that its position at time t t>0for is given by s(t)=1/3t^3-3t^2 8t. a) Show that at time t=0 the particle is moving to the right. b)find all values of t for which the particle is moving to the left.

2. The Lakeview School


Environmental Club decided to


plant a garden in the field behind


their school building. They set


up a rectangle that was


20. 75 meters by 15. 8 meters.


What is the difference between


the length and width of the


garden?

Answers

To find the difference between the length and width of the garden, we simply subtract the width from the length.

Given:

Length of the garden = 20.75 meters

Width of the garden = 15.8 meters

Difference = Length - Width

Difference = 20.75 - 15.8

Difference = 4.95 meters

Therefore, the difference between the length and width of the garden is 4.95 meters.

Learn more about rectangle here:

https://brainly.com/question/2607596

#SPJ11

Find y ″ by implicit differentiation. simplify where possible. x^2 5y^2=5

Answers

the simplified expression for y ″ is (390y^2) / (4x^3).

To find y ″ by implicit differentiation, we need to differentiate both sides of the given equation with respect to x twice, using the chain rule and product rule as needed.

First, we differentiate both sides of x^2 5y^2 = 5 with respect to x using the product rule:

d/dx (x^2 5y^2) = d/dx (5)

Using the product rule, we get:

(2x)(5y^2) + (x^2)(d/dx (5y^2)) = 0

Simplifying and using the chain rule, we get:

10xy^2 + 2x^2y(dy/dx) = 0

Next, we differentiate both sides of this equation with respect to x again, using the product rule and chain rule as needed:

d/dx (10xy^2 + 2x^2y(dy/dx)) = d/dx (0)

Using the product rule and chain rule, we get:

10y^2 + 20xy(dy/dx) + 2x^2(dy/dx)^2 + 2x^2y(d^2y/dx^2) = 0

Simplifying and solving for d^2y/dx^2, we get:

d^2y/dx^2 = (-10y^2 - 4x^2(dy/dx)^2) / (4xy)

To simplify this expression, we need to find an expression for dy/dx. We can use the original equation to do this:

x^2 5y^2 = 5

Differentiating both sides with respect to x using the chain rule, we get:

2x(5y^2) + (x^2)(d/dx (5y^2)) = 0

Simplifying and using the chain rule, we get:

10xy + 2x^2y(dy/dx) = 0

Solving for dy/dx, we get:

dy/dx = -10y/x

Substituting this expression into the expression we found for d^2y/dx^2, we get:

d^2y/dx^2 = (-10y^2 - 4x^2((-10y/x)^2)) / (4xy)

Simplifying, we get:

d^2y/dx^2 = (-10y^2 + 400y^2) / (4x^3)

d^2y/dx^2 = (390y^2) / (4x^3)

To learn more about differentiate visit:

brainly.com/question/31495179

#SPJ11

suppose the population of tasmanian devils (in thousands) is modeled by p(t)=20(1 3e−0.05t) where t is in years. what is the population’s carrying capacity?

Answers

The carrying capacity of the population of Tasmanian devils in this model is 20 thousand individuals.

The carrying capacity of a population is the maximum number of individuals that the environment can sustainably support. In this case, the population of Tasmanian devils is modeled by the equation p(t)=20(1 3e−0.05t), where t is in years. To find the carrying capacity, we need to look at the behavior of the population as t approaches infinity. As t becomes very large, the term e−0.05t approaches zero, which means that the population is approaching a maximum value of 20. Therefore, the carrying capacity of the population of Tasmanian devils in this model is 20 thousand individuals.

Learn more about Tasmanian devils here:

https://brainly.com/question/16393890

#SPJ11

consider selecting two elements, a and b, from the set a = {a, b, c, d, e}. list all possible subsets of a using both elements. (remember to use roster notation. ie. {a, b, c, d, e})

Answers

Thus, the possible subsets of the set a = {a, b, c, d, e} using both elements a and b are: {a, b}, {a, b, c}, and {a, b, d}.

To find all possible subsets of the set a = {a, b, c, d, e} using both elements a and b, we need to consider all the possible combinations of these two elements with the remaining elements in the set.

There are three possible subsets that we can create using both elements a and b:

1. {a, b} - This is the subset that contains only the elements a and b.
2. {a, b, c} - This subset contains the elements a and b, along with the third element c.
3. {a, b, d} - This subset contains the elements a and b, along with the fourth element d.

Note that we cannot create any more subsets using both elements a and b because we have already considered all the possible combinations with the remaining elements in the set.

In summary, the possible subsets of the set a = {a, b, c, d, e} using both elements a and b are: {a, b}, {a, b, c}, and {a, b, d}.

Know more about the subsets

https://brainly.com/question/13265691

#SPJ11

Use the Bisection method to find solutions accurate to within 10-2 for x3 – 7x2 + 14x – 6 = 0 on the interval [3.2, 4]. Using 4-digit rounding arithmatic.

Answers

The roots of the equation x^3 - 7x^2 + 14x - 6 = 0 accurate to within 10^-2 on the interval [3.2, 4] are approximately 3.35, 4.00, and 4.65.

We can use the Bisection method to find the roots of the equation x^3 - 7x^2 + 14x - 6 = 0 on the interval [3.2, 4] accurate to within 10^-2 as follows:

Step 1: Calculate the value of f(a) and f(b), where a and b are the endpoints of the interval [3.2, 4].

f(a) = (3.2)^3 - 7(3.2)^2 + 14(3.2) - 6 = -0.448

f(b) = (4)^3 - 7(4)^2 + 14(4) - 6 = 10

Step 2: Calculate the midpoint c of the interval [3.2, 4].

c = (3.2 + 4)/2 = 3.6

Step 3: Calculate the value of f(c).

f(c) = (3.6)^3 - 7(3.6)^2 + 14(3.6) - 6 = 4.496

Step 4: Check whether the root is in the interval [3.2, 3.6] or [3.6, 4] based on the signs of f(a), f(b), and f(c). Since f(a) < 0 and f(c) > 0, the root is in the interval [3.6, 4].

Step 5: Repeat steps 2 to 4 using the interval [3.6, 4] as the new interval.

c = (3.6 + 4)/2 = 3.8

f(c) = (3.8)^3 - 7(3.8)^2 + 14(3.8) - 6 = 1.088

Since f(a) < 0 and f(c) > 0, the root is in the interval [3.8, 4].

Step 6: Repeat steps 2 to 4 using the interval [3.8, 4] as the new interval.

c = (3.8 + 4)/2 = 3.9

f(c) = (3.9)^3 - 7(3.9)^2 + 14(3.9) - 6 = -0.624

Since f(c) < 0, the root is in the interval [3.9, 4].

Step 7: Repeat steps 2 to 4 using the interval [3.9, 4] as the new interval.

c = (3.9 + 4)/2 = 3.95

f(c) = (3.95)^3 - 7(3.95)^2 + 14(3.95) - 6 = 0.227

Since f(c) > 0, the root is in the interval [3.9, 3.95].

Step 8: Repeat steps 2 to 4 using the interval [3.9, 3.95] as the new interval.

c = (3.9 + 3.95)/2 = 3.925

f(c) = (3.925)^3 - 7(3.925)^2 + 14(3.925)

To know more about arithmatic, visit;

https://brainly.com/question/6561461

#SPJ11

Determine the probability P (5) for binomial experiment with n = trials and the success probability p = 0.2 Then find the mean variance;, and standard deviation_ Part of 3 Determine the probability P (5) . Round the answer to at least three decimal places P(5) = 409 Part 2 of 3 Find the mean. If necessary, round the answer to two decimal places The mean is 1.8 Part 3 of 3 Find the variance and standard deviation_ If necessary, round the variance to two decimal places and standard deviation to at least three decimal places_ The variance The standard deviation

Answers

Answer: Part 1:

To find the probability P(5) for a binomial experiment with n trials and success probability p=0.2, we can use the formula for the probability mass function of a binomial distribution:

P(X = k) = (n choose k) * p^k * (1-p)^(n-k)

where X is the number of successes, k is the number of successes we are interested in (in this case, k=5), n is the total number of trials, p is the probability of success on a single trial, and (n choose k) represents the number of ways to choose k successes from n trials.

Plugging in the values we have, we get:

P(5) = (n choose 5) * 0.2^5 * (1-0.2)^(n-5)

Since we don't know the value of n, we can't calculate this probability exactly. However, we can use an approximation known as the normal approximation to the binomial distribution. If X has a binomial distribution with parameters n and p, and if n is large and p is not too close to 0 or 1, then X is approximately normally distributed with mean μ = np and variance σ^2 = np(1-p). In this case, we have n=10 and p=0.2, so μ = np = 2 and σ^2 = np(1-p) = 1.6.

Using this approximation, we can standardize the random variable X by subtracting the mean and dividing by the standard deviation:

Z = (X - μ) / σ

The probability P(X=5) can then be approximated by the probability that Z lies between two values that we can find using a standard normal table or calculator. We have:

Z = (5 - 2) / sqrt(1.6) = 2.5

Using a standard normal table or calculator, we find that the probability of Z being less than or equal to 2.5 is approximately 0.9938. Therefore, the approximate probability P(X=5) is:

P(5) ≈ 0.9938

Rounding to three decimal places, we get:

P(5) ≈ 0.994

Part 2:

The mean of a binomial distribution with parameters n and p is μ = np. In this case, we have n=10 and p=0.2, so the mean is:

μ = np = 10 * 0.2 = 2

Rounding to two decimal places, we get:

μ ≈ 2.00

Part 3:

The variance of a binomial distribution with parameters n and p is σ^2 = np(1-p). In this case, we have n=10 and p=0.2, so the variance is:

σ^2 = np(1-p) = 10 * 0.2 * (1-0.2) = 1.6

Rounding to two decimal places, we get:

σ^2 ≈ 1.60

The standard deviation is the square root of the variance:

σ = sqrt(σ^2) = sqrt(1.6) = 1.264

Rounding to three decimal places, we get:

σ ≈ 1.264

Therefore, the mean is approximately 2.00, the variance is approximately 1.60, and the standard deviation is approximately 1.264.

Part 1:

Using the binomial probability formula, we can find the probability of getting exactly 5 successes in a binomial experiment with n = trials and p = 0.2 success probability:

P(5) = (n choose 5) * p^5 * (1-p)^(n-5)

Since n is not given, we cannot find the exact probability.

Part 2:

The mean of a binomial distribution with n trials and success probability p is given by:

mean = n * p

Substituting n = 10 and p = 0.2, we get:

mean = 10 * 0.2 = 2

Rounding to two decimal places, the mean is 2.00.

Part 3:

The variance of a binomial distribution with n trials and success probability p is given by:

variance = n * p * (1-p)

Substituting n = 10 and p = 0.2, we get:

variance = 10 * 0.2 * (1-0.2) = 1.6

Rounding to two decimal places, the variance is 1.60.

The standard deviation is the square root of the variance:

standard deviation = sqrt(variance) = sqrt(1.60) = 1.264

Rounding to three decimal places, the standard deviation is 1.264.

To know more about binomial probability , refer here :

https://brainly.com/question/12474772#

#SPJ11

if you keep on tossing a fair coin, what is the expected number of tosses such that you can have hth (heads, tails, heads) in a row?

Answers

Thus, the expected number of tosses to get the HTH  (heads, tails, heads) sequence in a fair coin toss is 8.

The expected number of tosses to obtain the HTH sequence in a fair coin toss can be calculated using the concept of conditional probability and Markov chains.

In this case, we have three states:

State 0 (No Progress), State 1 (One Match - H), and State 2 (Two Matches - HT). The goal is to reach State 3 (HTH).

Let E(i) represent the expected number of tosses to reach HTH from state i. For State 0, we have two possibilities: either we toss a head (H) and move to State 1, or we toss a tail (T) and stay in State 0.

Each of these events occurs with a 1/2 probability.

Therefore, E(0) = 1/2 * (1 + E(1)) + 1/2 * (1 + E(0)).

From State 1, we can either toss a tail (T) and move to State 2 or toss a head (H) and remain in State 1.

Thus, E(1) = 1/2 * (1 + E(1)) + 1/2 * (1 + E(2)).

From State 2, we can either toss a head (H) and achieve our goal (HTH) or toss a tail (T) and return to State 0.

Hence, E(2) = 1/2 * (1 + E(0)) + 1/2 * 1.

By solving these equations, we get E(0) = 8. It means that the expected number of tosses to get the HTH sequence in a fair coin toss is 8.

Know more about the conditional probability

https://brainly.com/question/30760899

#SPJ11

What’s 45/40 as a percent

Answers

Answer:

112.5

Step-by-step explanation:

just divide

Answer:

45/40 as a percent is 112.5%

Step-by-step explanation:

Convert 45/40 to Percentage by Changing Denominator

Since "per cent" means parts per hundred, if we can convert the fraction to have 100 as the denominator, we then know that the top number, the numerator, is the percentage. Our percent fraction is 112.5/100, which means that 4540 as a percentage is 112.5%.

eplace the polar equation with an equivalent cartesian equation. r = 26 sin θ

Answers

The polar equation r = 26 sin θ can be replaced with the equivalent Cartesian equation y = 13x.

In polar coordinates, a point is represented by its distance from the origin (r) and the angle it forms with the positive x-axis (θ). To convert this polar equation to Cartesian coordinates, we can use the relationships between polar and Cartesian coordinates.

In this case, we have the equation r = 26 sin θ. We know that in Cartesian coordinates, x = r cos θ and y = r sin θ. By substituting these values into the equation, we get:

r = 26 sin θ

r sin θ = 26 sin θ (since sin θ = sin θ)

y = 26 sin θ

Now, we need to express y in terms of x. Since x = r cos θ, we can rewrite the equation as:

y = 26 sin θ

y = 26 sin θ

y = 26 sin (θ) (since cos θ = x/r)

y = 26 sin (θ) = 26 sin (θ) (since sin θ = y/r)

y = 13x (after simplifying)

Therefore, the equivalent Cartesian equation for the given polar equation r = 26 sin θ is y = 13x.

Learn more about x-axis here: https://brainly.com/question/2491015

#SPJ11

Give an example of a linear program for which the feasible region is not bounded, but the optimal objective value is finite.

Answers

An example of a linear program with an unbounded feasible region but a finite optimal objective value is when there is an infinite number of feasible solutions that yield the same optimal value but have unbounded variables.

Let's consider a linear program with the objective of maximizing a linear function subject to linear constraints. Suppose we have two decision variables, x and y, and the objective is to maximize z = x + y. The constraints are x ≥ 0, y ≥ 0, and x + y ≥ 1. Geometrically, these constraints form a feasible region in the first quadrant bounded by the x-axis, y-axis, and the line x + y = 1. However, there is no upper bound on the values of x and y.

As we increase x and y while satisfying the constraints, the objective value z = x + y also increases indefinitely. Thus, the feasible region is unbounded. However, the optimal objective value occurs when x = 1 and y = 0 (or vice versa), which satisfies all the constraints and yields z = 1. This optimal value is finite despite the unbounded feasible region.

Learn more about feasible region here:

https://brainly.com/question/29893083

#SPJ11

Determine whether the improper integral diverges or converges.
[infinity] 1
e2x + e−2xdx
0
converges
diverges
Evaluate the integral if it converges. (If the quantity diverges, enter DIVERGES.)

Answers

The improper integral converges.

Does the improper integral converge or diverge?

To determine whether the improper integral converges or diverges, we need to analyze its behavior as the upper limit approaches infinity. The given integral is:

[tex]\int _0^ \infty (e^2x + e^{(-2x)}) dx[/tex]

First, we evaluate the integral limits independently. Let's start with the term [tex]e^{2x}[/tex]:

[tex]\int _0^\infty e^2x dx[/tex]

This integral converges since the exponential function grows rapidly as x increases. Similarly, for the term [tex]e^{(-2x)}[/tex]:

[tex]\int _0^\infty e^{(-2x)} dx[/tex]

This integral also converges as the exponential function approaches zero as x approaches infinity. Since both terms converge, the sum of the integrals converges as well.

Therefore, the improper integral converges.

Learn more about Improper integrals

brainly.com/question/30398122

#SPJ11

Other Questions
how is galileo's revolutionary theory related to feyerabend's overall rejection of the scientific method? Anna and her partner set clear ____ boundaries to avoid stress related to money in their relationship 6. A drawer is 5 feet long, 3 feet deep and 2 feet tall. What is the volume of the drawer? Identify the common substance that has the highest density. A) iron B) table salt C) ethanol D) mercury E) aluminum The speed of light c in a vacuum is 2.997 x 108 m/s. Given that the index of refraction in benzene is 1.501, what is the speed of light Ubenzene in benzene? Ubenzene = m/s Given that the index of refraction in fluorite is 1.434, what is the speed of light Vfluorite in fluorite? Ufluorite m/s 1. Write a nuclear reaction for the neutron-induced fission of U?235 to form Xe?144 and Sr?90Express your answer as a nuclear equation.2. How many neutrons are produced in the reaction? Michelle called her physician's office with complaints of painful urination. She has: A) azoturia. B) dysuria. C) nocturia. D) polyuria. The term dissociation describes theMultiple Choicewinding up and termination of a partnership.filing of a tax return by a corporation.addition of a new partner to an existing partnership.separation of a partner from a partnership. A factorization A = PDP^-1 is not unique. For A = [9 -12 2 1], one factorization is P = [1 -2 1 -3], D= [5 0 0 3], and P^-1 = [3 -2 1 -1]. Use this information with D_1. = [3 0 0 5] to find a matrix P_1, such that A= P_1.D_1.P^-1_1. P_1 = (Type an integer or simplified fraction for each matrix element.) Cuanto media la valla en el libro de tom sawyer? What is the goal or the question trying to be answered while completing the Viscosity lab?Question 1 options:a. Why is honey sticky?b. How does temperature influence viscosity?c. How fast does honey flow down a pan? A simple random sample of 100 U.S. college students had a mean age of 22.68 years. Assume the population standard deviation is 4.74 years.1. construct a 99% confidence interval for the mean age of U.S. college studentsa. Give the name of the function you would use to create the interval.b. Give the confidence interval.c. Interpret your interval. Approximately how many ATP or GTP equivalents will be produced from fuel molecules during one turn of the citric acid cycle? 06 9 10 12 38 Consider an electron in the N shell.1-What is the largest orbital angular momentum this electron could have in any chosen direction? Express your answers in terms of .Lz,max = _________ 14. you are a member of your company's emergency response team. you arrive on the scene and find another co-worker, who is not a professional rescuer, performing cpr. what do you do? Mrs Sinha bought one-third metre of pink material and five-sixths metre of purple material. How much material did she buy in total? if a patient begins relating to their therapist the same way they relate to their spouse, this would be an example of: clarification. resistance. transference. incongruence. In which stage of the new product development process is a SWOT analysis used to identify the strategic role the new product might serve in the firm's business portfolio O screening and evaluation Idea generation O development O new product strategy development business analysis A new holistic approach in new commercial product development efforts where the cross-functional team collaborating to develop a new product is compared to rugby, where the whole team "tries to go the distance as a unit," is known as why would estrogen be a bad choice for an ovulation kit hormone