how can wallerstein's world system's theory be used to critically analyze the relationship between apple and foxconn?

Answers

Answer 1

Wallerstein's world system's theory argues that the global economy is divided into a core, semi-periphery, and periphery. The core countries control and dominate the world economy, while the periphery countries are exploited and dependent on the core countries.

The semi-periphery countries act as a buffer zone between the core and periphery countries. This theory can be used to critically analyze the relationship between Apple and Foxconn.Apple is based in the United States, which is considered a core country, while Foxconn is based in China, which is a semi-periphery country. Apple relies heavily on Foxconn for manufacturing its products, which are then sold globally. Foxconn, on the other hand, relies heavily on Apple for its business.

This relationship can be seen as exploitative, with Apple dominating and controlling Foxconn through its contracts and demands.Furthermore, the working conditions and wages of the Foxconn employees have been highly criticized. This can be seen as a result of the global economic system that prioritizes profit over the well-being of workers.

The exploitation of labor in the periphery countries by core countries is a characteristic of Wallerstein's world system's theory.In conclusion, Wallerstein's world system's theory provides a framework for understanding the relationship between Apple and Foxconn. It highlights the power dynamics at play and the exploitative nature of the global economy.

For more such questions on economy

https://brainly.com/question/30123521

#SPJ11


Related Questions

light of wavelength 530 nm is incident on two slits that are spaced 1.0mm apart . How far from the slits should the screen be placed so that the distance between the m = 0 and m = 1 bright fringes is 1.0 cm?

Answers

The screen should be placed 1886.8 mm (or about 1.9 meters) away from the slits in order for the distance between the m = 0 and m = 1 bright fringes to be 1.0 cm.

To solve this problem, we can use the formula for the distance between bright fringes:
y = (mλD) / d
Where y is the distance from the central bright fringe to the mth bright fringe on the screen, λ is the wavelength of the light, D is the distance from the slits to the screen, d is the distance between the two slits, and m is the order of the bright fringe.
We want to find the distance D, given that the distance between the m = 0 and m = 1 bright fringes is 1.0 cm. We know that for m = 0, y = 0, so we can use the formula for m = 1:
1 cm = (1 x 530 nm x D) / 1 mm
Solving for D, we get:
D = (1 cm x 1 mm) / (1 x 530 nm)
D = 1886.8 mm
Therefore, the screen should be placed 1886.8 mm (or about 1.9 meters) away from the slits in order for the distance between the m = 0 and m = 1 bright fringes to be 1.0 cm.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

A transmitter consists of an lc circuit with an inductance of 15 μh and a capacitance of 23 pf. What is the wavelength of the electromagnetic waves it emits?

Answers

Once you have the resonant frequency, you can plug it into the formula and find the wavelength of the electromagnetic waves emitted by the transmitter.

The formula to calculate the wavelength of electromagnetic waves is:

λ = c / f

Where λ is the wavelength, c is the speed of light (299,792,458 m/s), and f is the frequency of the waves.

To find the frequency of the waves emitted by the transmitter, we can use the resonant frequency formula for an LC circuit:

f = 1 / (2π √(LC))

Where L is the inductance (15 μH) and C is the capacitance (23 pF).

Plugging in the values, we get:

f = 1 / (2π √(15 μH * 23 pF))
f = 1.441 GHz

Now, we can use the frequency to calculate the wavelength:

λ = c / f
λ = 299,792,458 m/s / 1.441 GHz
λ = 0.208 meters or 20.8 cm

Therefore, the wavelength of the electromagnetic waves emitted by the transmitter is 20.8 cm.

To know more about  electromagnetic waves visit:-

https://brainly.com/question/3101711

#SPJ11

Water at the rate of 68 kg/min is heated from 35 to 75oC by an oil having a specific heat of 1.9 kJ/kg oC. The fluids are used in a counterflow double-pipe heat exchanger, and the oil enters the exchanger at 120oC and leaves at 75oC. The overall heat transfer coefficient is 320 W/m^2 oC.
a) Calculate the heat exchanger surface are
b) Find the required oil flow rate.

Answers

The heat exchange surface area is  0.58 [tex]m^2[/tex]. While the required oil flow rate is 133.1 kg/min.

a) To calculate the heat exchanger surface area, we can use the following equation:

Q = UA ∆Tlm

where Q is the heat transfer rate, U is the overall heat transfer coefficient, A is the heat transfer area, and ∆Tlm is the logarithmic mean temperature difference.

We know the flow rate of water and its inlet and outlet temperatures, as well as the inlet and outlet temperatures of the oil, and the overall heat transfer coefficient. We can calculate the logarithmic mean temperature difference using the formula:

∆Tlm = (∆T1 - ∆T2) / ln(∆T1 / ∆T2)

where ∆T1 is the temperature difference between the hot and cold fluids at one end of the exchanger, and ∆T2 is the temperature difference at the other end.

∆T1 = (120 - 75) = 45°C

∆T2 = (35 - 75) = -40°C

∆Tlm = [(45 - (-40)) / ln(45 / (-40))] = 61.69°C

We can now calculate the heat transfer rate using the formula:

Q = m_water * Cp_water * ∆T

where m_water is the mass flow rate of water, Cp_water is the specific heat of water, and ∆T is the temperature difference between the inlet and outlet water temperatures.

m_water = 68 kg/min

Cp_water = 4.18 kJ/kg °C

∆T = (75 - 35) = 40°C

Q = (68 * 4.18 * 40) = 11324.8 kJ/min

We can now substitute the values of Q, U, and ∆Tlm in the first equation to obtain the surface area A:

A = Q / (U * ∆Tlm) = (11324.8 / (320 * 61.69)) = 0.58 [tex]m^2[/tex]

b) To find the required oil flow rate, we can use the following equation:

Q = m_oil * Cp_oil * ∆T

where m_oil is the mass flow rate of oil, Cp_oil is the specific heat of oil, and ∆T is the temperature difference between the inlet and outlet oil temperatures.

We know Q from the previous calculation, and we can calculate ∆T as:

∆T = (120 - 75) = 45°C

Substituting the values of Q, Cp_oil, and ∆T, we obtain:

m_oil = Q / (Cp_oil * ∆T) = (11324.8 / (1.9 * 45)) = 133.1 kg/min

Therefore, the required oil flow rate is 133.1 kg/min.

To learn more about heat exchange refer here:

https://brainly.com/question/22595817

#SPJ11

Two 65 kg astronauts leave earth in a spacecraft, sitting 1.0 m apart. How far are they from the center of the earth when the gravitational force between them is as strong as the gravitational force of the earth on one of the astronauts?

Answers

The astronauts are about 4,214 km from the center of the earth when the gravitational force between them is as strong as the gravitational force of the earth on one of the astronauts.

First, we can use the formula for the gravitational force between two objects:

[tex]F = G * (m1 * m2) / r^2[/tex]

where F is the gravitational force between the two objects, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between them.

Let's assume that the gravitational force between the two astronauts is F1, and the gravitational force between one of the astronauts and the earth is F2. We want to find the distance r where F1 = F2.

The gravitational force between the earth and one of the astronauts is:

[tex]F2 = G * (65 kg) * (5.97 x 10^24 kg) / (6.38 x 10^6 m + 1 m)^2 = 638 N[/tex]

To find the gravitational force between the two astronauts, we need to use the fact that the total mass is 130 kg (65 kg + 65 kg), and the distance between them is 1 m. Therefore:

[tex]F1 = G * (65 kg) * (65 kg) / (1 m)^2 = 4.51 x 10^-7 N[/tex]

Now we can set F1 = F2 and solve for r:

G * (65 kg)^2 / r^2 = 638 N

r = sqrt(G * (65 kg)^2 / 638 N) = 4,214 km

Learn more about force here:

https://brainly.com/question/13191643

#SPJ11

Two point charges, A and B lie along a line separated by a distance L. The point x is the midpoint of their seperation.
A----------X----------B.
Which combination of charges will yield zero electric field at the point x.
a) +1q and -1q
b) +2q and -3q
c) +1q and -4q
d) -1q and +4q
e) +4q and +4q ** i believe the answer is E. because the charge moves away from x in both directions.

Answers

if we add two charges of the same sign and magnitude at A and B, as in option +4q and +4q, then the electric fields produced by these charges at x will again have the same direction but cancel each other out in magnitude.

Therefore, the net electric field at x will be zero, and this combination of charges will yield zero electric field at the midpoint x.

The correct option is E.

The combination of charges that will yield zero electric field at the midpoint x is +4q and +4q, where both charges have the same sign and are equal in magnitude.

This can be explained using the principle of superposition. According to this principle, the electric field at any point in space is the vector sum of the electric fields produced by all the charges present in the vicinity of that point.

In the case of charges A and B separated by a distance L, the electric field at the midpoint x is given by the sum of the electric fields produced by A and B individually. Since A and B have opposite charges, their electric fields at x will have opposite directions and cancel each other out. Therefore, the net electric field at x will be zero.

Now, if we add two charges of the same magnitude and sign at A and B, the electric fields produced by these charges at x will have the same direction and add up. Therefore, the net electric field at x will not be zero, and this combination of charges will not yield zero electric field at the midpoint x.

To know more about magnitude refer here :-

https://brainly.com/question/30881682#

#SPJ11

1. given a resistor with a value of 1000. ohms, what current is drawn from a power supply with an emf of 100.v? show all calculations

Answers

The main answer to your question is that the current drawn from the power supply with an EMF of 100V and a resistor with a value of 1000 ohms is 0.1 amperes (or 100 milliamperes).

To calculate the current drawn from the power supply, we can use Ohm's law, which states that current (I) is equal to voltage (V) divided by resistance (R):

I = V / R

Plugging in the values we have:

I = 100V / 1000 ohms = 0.1 amperes

Therefore, the current drawn from the power supply is 0.1 amperes or 100 milliamperes.
the current drawn from the power supply is 0.1 A.

Here's the step-by-step explanation:

1. You are given a resistor with a value of 1000 ohms and a power supply with an EMF of 100 V.
2. To find the current drawn from the power supply, we can use Ohm's Law, which is stated as V = IR, where V is voltage, I is current, and R is resistance.
3. We are given V (100 V) and R (1000 ohms), so we can rearrange the formula to solve for I: I = V/R.
4. Now, substitute the given values into the formula: I = 100 V / 1000 ohms.
5. Perform the calculation: I = 0.1 A.

Therefore, the current drawn from the power supply is 0.1 A.

For more information on  Ohm's law visit:

https://brainly.com/question/1247379

#SPJ11

a guitar string 62 cm long vibrates with a standing wave that has 3 antinodes. (a) what harmonic is this? (b)what is the wavelength of this wave?

Answers

(a) If a guitar string 62 cm long vibrates with a standing wave that has 3 antinodes, there is 3rd harmonic (b) The wavelength of this wave is approximately 41.33 cm.


(a) Since there are 3 antinodes on the 62 cm long guitar string, this corresponds to the 3rd harmonic. This is because each antinode represents a half-wavelength, and in the 3rd harmonic, there are 1.5 wavelengths along the string.

(b) To find the wavelength of this wave, we can use the formula for the length of the string in terms of harmonics:

Length = (n × wavelength) / 2

Where n is the harmonic number (in this case, 3) and the length is 62 cm. Rearranging the formula to solve for the wavelength:

Wavelength = (2 × Length) / n
Wavelength = (2 × 62 cm) / 3
Wavelength = 124 cm / 3
Wavelength ≈ 41.33 cm

You can learn more about wavelength at: brainly.com/question/31143857

#SPJ11

In football, we see ____________________ forces when one player exerts a force on another and causes him to change his direction and or speed.

Answers

In football, we see reactive forces when one player exerts a force on another and causes him to change his direction and/or speed. Reactive forces in football occur when one player applies a force on another during a collision or contact.

These forces are a consequence of Newton's third law of motion, which states that for every action, there is an equal and opposite reaction. When a player exerts a force on another player, the second player experiences an equal and opposite force, resulting in a change in direction or speed. This can happen during tackles, challenges for the ball, or even during collisions between players. Reactive forces play a crucial role in the dynamics of football and are essential in understanding the physical interactions that take place on the field.In football, we see reactive forces when one player exerts a force on another and causes him to change his direction and/or speed. Reactive forces in football occur when one player applies a force on another during a collision or contact.

learn more about forces here:

https://brainly.com/question/15995522

#SPJ11

find the de broglie wavelength of the recoiling electron in units of picometers.

Answers

The de Broglie wavelength of the recoiling electron is 0.0633 picometers.

The de Broglie wavelength of a particle with momentum p is given by λ = h/p, where h is Planck's constant. The momentum of the recoiling electron can be found using conservation of momentum:

m_electron * v_electron = m_alpha * v_alpha

where m_electron and v_electron are the mass and velocity of the electron, and m_alpha and v_alpha are the mass and velocity of the alpha particle.

Since the alpha particle is much more massive than the electron, we can assume that the velocity of the alpha particle is negligible after the collision, and we can solve for the velocity of the electron:

v_electron = (m_alpha/m_electron) * v_alpha = (4 × 10⁻³ kg / 9.11 × 10⁻³¹ kg) × 2.5 × 10⁷ m/s = 1.09 × 10¹⁵ m/s

Now we can calculate the de Broglie wavelength:

λ = h/p = h/(m_electron * v_electron) = (6.626 × 10⁻³⁴ J s) / (9.11 × 10⁻³¹ kg × 1.09 × 10¹⁵ m/s) = 0.0633 pm

To learn more about de Broglie wavelength, here

https://brainly.com/question/17295250

#SPJ4

why do comets spend so little time in the inner solar system?

Answers

This is because the gravitational pull of the giant outer planets, particularly Jupiter, can significantly affect their trajectories and send them hurtling back out into the outer solar system.

The reason why comets spend, so little time in the inner solar system is due to their highly elliptical orbits. Their orbits take them from the outer solar system to the inner solar system and back again.

The highly elliptical orbits of comets can also be influenced by the gravitational pull of other planets. For example, Jupiter's gravity can cause comets to be ejected from the solar system or sent on a trajectory that takes them close to the sun. In some cases, the gravitational pull of a planet can even cause a comet's orbit to change, making it spend more or less time in the inner solar system.

Learn More About solar system

https://brainly.com/question/1286910

#SPJ11

Calculate the cell potential for the following reaction that takes place in an electrochemical cell at 25°C.
Fe(s) | Fe3+(aq, 0.0011M) || Fe3+(aq 2.33M) | Fe(s)
Answers: +0.066V, -0.036V, 0.00V, -0.099V, +0.20V

Answers

The cell potential for the given reaction is +0.066V.

The cell potential can be calculated using the Nernst equation, which relates the standard cell potential to the concentrations of the reactants and products in the cell:

Ecell = E°cell - (RT/nF)ln(Q)

where Ecell is the cell potential, E°cell is the standard cell potential, R is the gas constant, T is the temperature, n is the number of electrons transferred in the reaction, F is the Faraday constant, and Q is the reaction quotient.

In this case, the standard cell potential is 0 V, since the reaction involves two identical half-cells. The reaction quotient can be calculated using the concentrations of Fe³⁺ in the two half-cells:

Q = [Fe³⁺(aq, 2.33M)] / [Fe³⁺(aq, 0.0011M)]

Plugging in the values and solving for Ecell gives:

Ecell = 0 V - (0.0257 V)ln(2118.18) = +0.066V

Therefore, the cell potential for the given reaction is +0.066V.

To learn more about cell potential, here

https://brainly.com/question/1313684

#SPJ4

a particle travels along a straight line with a constant acceleration. when s = 4 ft, v = 3 ft/s and when s = 10 ft, v = 8 ft/s. determine the velocity as a function o

Answers

The velocity as a function of position can be expressed as v(s) = 1.5 + 0.5s ft/s, where s is the position in feet.

Given, a particle travels along a straight line with a constant acceleration. Let the acceleration be 'a' ft/s². According to the problem, when s = 4 ft, v = 3 ft/s and when s = 10 ft, v = 8 ft/s. Using the equations of motion, we can write:

v = u + at ...(1)

s = ut + 0.5at² ...(2)

where u is the initial velocity and s is the position.

Substituting the given values in equation (1) for s = 4 ft and s = 10 ft, we get:

3 = u + 4a ...(3)

8 = u + 10a ...(4)

Solving equations (3) and (4), we get u = -9 ft/s and a = 3/2 ft/s².

Substituting the values of u and a in equation (1), we get:

v(s) = -9 + 3/2s ft/s

Simplifying, we get:

v(s) = 1.5 + 0.5s ft/s

Therefore, the velocity as a function of position can be expressed as v(s) = 1.5 + 0.5s ft/s, where s is the position in feet.

To know more about velocity refer here:

https://brainly.com/question/28738284#

#SPJ11

an electromagnetic wave in vacuum has an electric field amplitude of 365 v/m. calculate the amplitude of the corresponding magnetic field. nt

Answers

The relationship between the electric field (E) and magnetic field (B) amplitudes in an electromagnetic wave is given by:

B = E / c

where c is the speed of light in vacuum, approximately equal to 3.00 x 10^8 meters per second.

Given that the electric field amplitude (E) is 365 V/m, we can calculate the corresponding magnetic field amplitude (B) as follows:

B = E / c

B = 365 V/m / (3.00 x 10^8 m/s)

Calculating the numerical value:

B ≈ 1.22 x 10^-6 T (tesla)

Therefore, the amplitude of the corresponding magnetic field is approximately 1.22 x 10^-6 T.

Learn more about **electromagnetic waves** and their properties here:

https://brainly.com/question/30289624?referrer=searchResults

#SPJ11

.As the Earth revolves around the Sun, what affect is visible due to the differing distances to stars and our shifting perspective on the Universe?
We see individual stars get brighter throughout the year
We see individual stars cycle through redshifts and blueshifts throughout the year
We see ALL the stars get brighter in the direction of motion of the Earth in its orbit
We see ALL the stars shifted in apparent position in the sky in the direction of the Earth’s orbit
We see the apparent position of individual stars change throughout the year

Answers

As the Earth revolves around the Sun, visible effects include a shift in the apparent position of individual stars throughout the year, changes in the brightness of stars due to varying distances, and Doppler shifts in the light emitted by stars.

This phenomenon occurs as our viewpoint on Earth shifts along its orbit, causing the stars to appear in slightly different positions in the sky.

As the Earth revolves around the Sun, our perspective on the Universe changes. The apparent position of individual stars appears to shift over the course of the year as the Earth moves along its orbit. This phenomenon is known as stellar parallax.

In addition to the shift in apparent position, the distance to stars also varies depending on the position of the Earth in its orbit. When the Earth is at its closest approach to a star, the star appears brighter than when the Earth is at its farthest point.

This is due to the inverse-square law of light, which states that the intensity of light from a source decreases as the distance from the source increases.

Furthermore, the motion of the Earth in its orbit causes a Doppler shift in the light emitted by stars. When the Earth is moving towards a star, the light appears blue-shifted, while when it is moving away, the light appears redshifted. This phenomenon is known as stellar Doppler shift and allows astronomers to study the motion of stars in our galaxy.

Therefore, the visible effects of the Earth's revolution around the Sun include a shift in the apparent position of individual stars throughout the year, changes in the brightness of stars due to varying distances, and Doppler shifts in the light emitted by stars.

To know more about Doppler shifts refer here:

https://brainly.com/question/3154428#

#SPJ11

an air bubble inside an 8.80-cmcm-diameter plastic ball is 3.00 cmcm from the surface.As you look at the ball with the bubble turned toward you, how far bencath the surface does the bubble appear to be?

Answers

The air bubble inside the plastic ball appears to be 5.12 cm beneath the surface when viewed from the outside.

To determine how far beneath the surface the bubble appears to be, we need to use the concept of refraction. When light passes from one medium to another, it bends due to a change in the speed of light. In this case, the light passing from the air inside the bubble to the plastic material of the ball will bend as it enters and exits the plastic.
Using Snell's Law, we can calculate the angle of refraction for the light passing from the air to the plastic:
sin(theta2) = (n1/n2) * sin(theta1)
where:
- theta1 is the angle of incidence (which we can assume is 90 degrees since the light is passing perpendicular to the surface)
- theta2 is the angle of refraction
- n1 is the index of refraction of air (approximately 1.00)
- n2 is the index of refraction of the plastic ball (which we will assume is 1.50)
Plugging in these values, we get:
sin(theta2) = (1.00/1.50) * sin(90)
sin(theta2) = 0.67
Taking the inverse sine of both sides, we find that:
theta2 = 42 degrees
This means that the light passing through the plastic will bend at an angle of 42 degrees relative to the normal (perpendicular) to the surface.
To find how far beneath the surface the bubble appears to be, we need to calculate the distance that the light travels through the plastic before it reaches our eye. This distance will be longer than the actual distance from the bubble to the surface, since the light is bending.
Using trigonometry, we can calculate that the actual distance from the bubble to the surface (which we'll call d) is:
d = sqrt((8.80/2)^2 - (3.00)^2)
d = 7.75 cm
To find the apparent distance, we need to calculate the length of the hypotenuse of a right triangle, where one leg is the distance from the bubble to the surface (d), and the other leg is the distance that the light travels through the plastic (which we'll call x). The angle between the two legs is 42 degrees.
Using trigonometry again, we can set up the following equation:
sin(42) = x / sqrt(x^2 + d^2)
Solving for x, we get:
x = d * sin(42) / sqrt(1 - sin^2(42))
x = 5.12 cm

For more question on plastic ball click on

https://brainly.com/question/14445866

#SPJ11


The bubble inside the plastic ball is located 4.4 cm (half of the diameter) from the side of the ball facing away from you. Therefore, when you look at the bubble turned towards you, it appears to be 7.4 cm (4.4 cm + 3.0 cm) beneath the surface of the ball.

To solve this problem, we need to consider the terms: diameter, surface, and beneath

Given:
- Diameter of the plastic ball = 8.80 cm
- Distance of the air bubble from the surface = 3.00 cm

Step 1: Calculate the radius of the plastic ball
Radius = Diameter / 2
Radius = 8.80 cm / 2
Radius = 4.40 cm

Step 2: Apply the formula for the apparent depth of the air bubble
Apparent depth (d') = (Actual depth (d) * Refractive index of air (n₁)) / Refractive index of plastic (n₂)

Since the refractive index of air is approximately 1 and the refractive index of typical plastic is approximately 1.5, we can use these values in our formula:

d' = (3.00 cm * 1) / 1.5

Step 3: Calculate the apparent depth
d' = 3.00 cm / 1.5
d' = 2.00 cm

So, the air bubble appears to be 2.00 cm beneath the surface when you look at the ball with the bubble turned toward you.

Learn more about surface here : brainly.com/question/28267043

#SPJ11

Question 9 of 10
The bonds of the products store 22 kJ more energy than the bonds of the
reactants. How is energy conserved during this reaction?
OA. The reaction creates 22 kJ of energy when bonds form.
OB. The reaction uses up 22 kJ of energy when bonds break.
OC. The surroundings absorb 22 kJ of energy from the reaction
system.
D. The reaction system absorbs 22 kJ of energy from the
surroundings.
SUBMIT

Answers

The correct answer is D. The reaction system absorbs 22 kJ of energy from the surroundings.

Energy conservation in a chemical reaction is governed by the principle of conservation of energy, which states that energy cannot be created or destroyed, but only transferred or converted from one form to another. In this case, the fact that the bonds of the products store 22 kJ more energy than the bonds of the reactants implies that energy has been transferred from the surroundings to the reaction system. During a chemical reaction, bonds are broken in the reactants and new bonds are formed in the products. Breaking bonds requires energy input, while forming bonds releases energy. In this scenario, the energy stored in the new bonds of the products is greater than the energy stored in the bonds of the reactants. This means that the reaction system absorbs energy from the surroundings to facilitate the bond formation process. option(d)

For such more questions on energy

https://brainly.com/question/1634438

#SPJ11

A nonconducting container filled with 25kg of water at 20C is fitted with stirrer, which is made to turn by gravity acting on a weight of mass 35kg. The weight falls slowly through a distance of 5m in driving the stirrer. Assuming that all work done on the weight is transferred to the water and that the local acceleration of gravity is 9.8m/s2, determine:
a) The amount of work done on the water.
b) The internal-energy change of the water.
c)The final temperature of the water, for which Cp =4.18 kJ/kgC.
d)The amount of heat that must be removed from the water to return it to it initial temperature.

Answers

To return the water to its initial temperature, we need to remove the same amount of heat that was added to it:
Q_removed = ΔU = 1715 J

a) The amount of work done on the water can be calculated using the formula: work = force x distance. The force applied by the weight is equal to its weight, which is given as 35kg x 9.8m/s^2 = 343N. The distance traveled by the weight is 5m. Therefore, the work done on the water is:

work = force x distance = 343N x 5m = 1715J

b) The internal-energy change of the water can be calculated using the formula: ΔU = mCΔT, where ΔU is the change in internal energy, m is the mass of water, C is the specific heat capacity of water, and ΔT is the change in temperature.

Since the stirrer is operated by gravity, it is safe to assume that the process is adiabatic (no heat exchange with the surroundings). Therefore, all the work done on the water goes into increasing its internal energy.

The mass of water is given as 25kg and the specific heat capacity of water is 4.18 kJ/kgC. The change in temperature can be calculated using the formula:

ΔT = work / (mC)

Substituting the values, we get:

ΔT = 1715J / (25kg x 4.18 kJ/kgC) = 16.3C

Therefore, the internal-energy change of the water is:

ΔU = mCΔT = 25kg x 4.18 kJ/kgC x 16.3C = 1715J

c) The final temperature of the water can be calculated by adding the change in temperature to the initial temperature. The initial temperature is given as 20C. Therefore, the final temperature is:

final temperature = initial temperature + ΔT = 20C + 16.3C = 36.3C

d) The amount of heat that must be removed from the water to return it to its initial temperature can be calculated using the formula: Q = mCΔT, where Q is the heat transferred, m is the mass of water, C is the specific heat capacity of water, and ΔT is the change in temperature.

Since the water needs to be returned to its initial temperature of 20C, the change in temperature is -16.3C. Therefore, the amount of heat that must be removed from the water is:

Q = mCΔT = 25kg x 4.18 kJ/kgC x (-16.3C) = -1700J

Note that the negative sign indicates that heat must be removed from the water.
a) The amount of work done on the water can be calculated using the formula W = mgh, where m is the mass of the weight, g is the acceleration due to gravity, and h is the height the weight falls.

W = (35 kg)(9.8 m/s²)(5 m) = 1715 J (joules)

b) Since all the work done on the weight is transferred to the water as internal energy, the internal-energy change of the water is equal to the work done:

ΔU = 1715 J

c) To find the final temperature of the water, we can use the formula ΔU = mcΔT, where ΔU is the internal-energy change, m is the mass of the water, c is the specific heat capacity of water (Cp), and ΔT is the change in temperature.

1715 J = (25 kg)(4180 J/kg°C)(ΔT)
ΔT = 1715 J / (25 kg * 4180 J/kg°C) = 0.0164 °C

The initial temperature of the water is 20°C, so the final temperature is:

T_final = 20°C + 0.0164°C = 20.0164°C

To know more about work done visit:-

https://brainly.com/question/13662169

#SPJ11

A thermal neutron has a speed v at temperature T = 300 K and kinetic energy m_n v^2/2 = 3 kT/2. Calculate its deBroglie wavelength. State whether a beam of these neutrons could be diffracted by a crystal, and why? (b) Use Heisenberg's Uncertainty principle to estimate the kinetic energy (in MeV) of a nucleon bound within a nucleus of radius 10^- 15 m.

Answers

a) The deBroglie wavelength is h/√(2m_nkT/3). This wavelength is on the order of the spacing between atoms in a crystal, which suggests that a beam of these neutrons could be diffracted by a crystal.

b) The estimated kinetic energy of a nucleon bound within a nucleus of radius 10⁻¹⁵ m is approximately 20 MeV.

In physics, the deBroglie wavelength is a concept that relates the wave-like properties of matter, such as particles like neutrons, to their momentum. Heisenberg's Uncertainty principle, on the other hand, states that there is an inherent uncertainty in the position and momentum of a particle. In this problem, we will use these concepts to determine the deBroglie wavelength of a neutron and estimate the kinetic energy of a nucleon bound within a nucleus.

(a) The deBroglie wavelength of a particle is given by the equation λ = h/p, where λ is the wavelength, h is Planck's constant, and p is the momentum of the particle. For a neutron with kinetic energy 3 kT/2, we can use the expression for kinetic energy in terms of momentum, which is given by 1/2 mv² = p²/2m, to find the momentum of the neutron as p = √(2m_nkT/3), where m_n is the mass of a neutron. Substituting this into the expression for deBroglie wavelength, we get λ = h/√(2m_nkT/3).

Plugging in the values of h, m_n, k, and T, we get λ = 1.23 Å. This wavelength is on the order of the spacing between atoms in a crystal, which suggests that a beam of these neutrons could be diffracted by a crystal.

(b) Heisenberg's Uncertainty principle states that the product of the uncertainties in the position and momentum of a particle is always greater than or equal to Planck's constant divided by 2π. Mathematically, this is expressed as ΔxΔp ≥ h/2π, where Δx is the uncertainty in position, and Δp is the uncertainty in momentum.

For a nucleon bound within a nucleus of radius 10⁻¹⁵ m, we can take the uncertainty in position to be roughly the size of the nucleus, which is Δx ≈ 10⁻¹⁵ m. Using the mass of a nucleon as m = 1.67 x 10⁻²⁷ kg, we can estimate the momentum uncertainty as Δp ≈ h/(2Δx). Substituting these values into the Uncertainty principle, we get:

ΔxΔp = (10⁻¹⁵ m)(h/2Δx) = h/2 ≈ 5.27 x 10⁻³⁵ J s

We can use the expression for kinetic energy in terms of momentum to find the kinetic energy associated with this momentum uncertainty. The kinetic energy is given by K = p²/2m, so we can estimate it as:

K ≈ Δp²/2m = (h^2/4Δx²)/(2m) = h²/(8mΔx²) ≈ 20 MeV

Therefore, the estimated kinetic energy of a nucleon bound within a nucleus of radius 10^-15 m is approximately 20 MeV.

Learn more about wavelength at: https://brainly.com/question/27892029

#SPJ11

a cylindrical container with a cross-sectional area of 64.2 cm2 holds a fluid of density 776 kg/m3. at the bottom of the container the pressure is 121 kpa. assume Pat = 101 kPa. What is the depth of the fluid, in meters?

Answers

If a cylindrical container with a cross-sectional area of 64.2 cm2 holds a fluid of density 776 kg/m3 The depth of the fluid in the cylindrical container is 2.56 meters.

We can use the hydrostatic equation to find the depth of the fluid in the cylindrical container:

ΔP = ρgh

where:

ΔP = difference in pressure (Pa)

ρ = density of fluid (kg/m3)

g = acceleration due to gravity (9.81 m/s2)

h = height or depth of fluid (m)

First, let's convert the cross-sectional area from cm2 to m2:

64.2 cm2 = 0.00642 m2

Next, let's find the difference in pressure:

ΔP = 121 kPa - 101 kPa = 20 kPa = 20,000 Pa

Now, let's plug in the values we have into the hydrostatic equation and solve for h:

ΔP = ρgh

20,000 Pa = (776 kg/m3)(9.81 m/s2)h

h = 2.56 meters

Therefore, the depth of the fluid in the cylindrical container is 2.56 meters.

learn more about hydrostatic here:

https://brainly.com/question/28206120

#SPJ11

If a cylindrical container with a cross-sectional area of 64.2 cm2 holds a fluid of density 776 kg/m3 The depth of the fluid in the cylindrical container is 2.56 meters.

We can use the hydrostatic equation to find the depth of the fluid in the cylindrical container:

ΔP = ρgh

where:

ΔP = difference in pressure (Pa)

ρ = density of fluid (kg/m3)

g = acceleration due to gravity (9.81 m/s2)

h = height or depth of fluid (m)

First, let's convert the cross-sectional area from cm2 to m2:

64.2 cm2 = 0.00642 m2

Next, let's find the difference in pressure:

ΔP = 121 kPa - 101 kPa = 20 kPa = 20,000 Pa

Now, let's plug in the values we have into the hydrostatic equation and solve for h:

ΔP = ρgh

20,000 Pa = (776 kg/m3)(9.81 m/s2)h

h = 2.56 meters

Therefore, the depth of the fluid in the cylindrical container is 2.56 meters.

learn more about hydrostatic here:

brainly.com/question/28206120

#SPJ11

An inductor has a peak current of 280 μA when the peak voltage at 45 MHz is 3.1 V .
Part A
What is the inductance?
L= ?
If the voltage is held constant, what is the peak current at 90 MHz ?
Express your answer using two significant figures.
L=

Answers

The inductance is 3.91 x 10^-5 H and the peak current at 90 MHz is approximately 14 μA.

Part A
To find the inductance (L), we can use the formula for inductive reactance (X_L) and Ohm's law (V = I * R).

X_L = 2 * π * f * L
V = I * X_L


Given the peak current (I) of 280 μA (0.00028 A) and the peak voltage (V) of 3.1 V at a frequency (f) of 45 MHz (45,000,000 Hz), we can rearrange the equations to solve for L:

L = V / (2 * π * f * I)

L = 3.1 V / (2 * π * 45,000,000 Hz * 0.00028 A)

L ≈ 3.91 x 10^-5 H

Part B
To find the peak current at 90 MHz, we can use the inductive reactance formula again:

X_L2 = 2 * π * f2 * L

Where f2 = 90 MHz (90,000,000 Hz).

X_L2 = 2 * π * 90,000,000 Hz * 3.91 x 10^-5 H

X_L2 ≈ 2.2 x 10^5 Ω

Now, we can use Ohm's law to find the peak current (I2) at 90 MHz:

I2 = V / X_L2

I2 = 3.1 V / 2.2 x 10^5  Ω

I2 ≈ 1.4 x 10^-5 A (or 14 μA)

To know more about the inductance, click here;

https://brainly.com/question/18575018

#SPJ11

the diode laser keychain you use to entertain your cat has a wavelength of 653 nmnm . if the laser emits 5.00×1017 photons during a 30.0 ss feline play session, what is its average power output

Answers

The average power output of the laser keychain during the feline play session is 5.07 x 10^-3 W.

The energy of each photon can be calculated using the equation:

E = hc/λ

where h is Planck's constant (6.626 x 10^-34 J*s), c is the speed of light (2.998 x 10^8 m/s), and λ is the wavelength in meters.

Converting the given wavelength to meters:

653 nm = 6.53 x 10^-7 m

Thus, the energy of each photon is:

E = (6.626 x 10^-34 J*s)(2.998 x 10^8 m/s)/(6.53 x 10^-7 m) = 3.044 x 10^-19 J

The number of photons emitted during the play session is given as 5.00 x 10^17 photons.

The total energy emitted during the play session is:

E_total = N_photons x E_photon = (5.00 x 10^17 photons)(3.044 x 10^-19 J/photon) = 1.522 x 10^-1 J

The average power output can be calculated using the equation:

P = E_total / t

where t is the time in seconds.

Substituting the values:

P = (1.522 x 10^-1 J) / (30.0 s) = 5.07 x 10^-3 W

To know more about average power output click here:

https://brainly.com/question/31944446#

#SPJ11

An automobile engine slows down from 4600 rpm to 1200 rpm in 2.2s . Calculate its angular acceleration, assumed constant. Express your answer using two significant figures. ang accel=____________rad/s^2 Calculate the total number of revolutions the engine makes in this time. Express your answer using two significant figures. N=______rev

Answers

θ = 528.6 rad * 1 rev / (2π rad) = 84.0 rev

The total number of revolutions the engine makes in 2.2 seconds is 84.0 revolutions.

To find the angular acceleration of the engine, we can use the formula:

α = (ωf - ωi) / t

where α is the angular acceleration, ωi is the initial angular velocity, ωf is the final angular velocity, and t is the time interval.

We are given:

ωi = 4600 rpm

ωf = 1200 rpm

t = 2.2 s

Converting the initial and final angular velocities to radians per second:

ωi = 4600 rpm * 2π / 60 = 482.39 rad/s

ωf = 1200 rpm * 2π / 60 = 125.66 rad/s

Substituting the values into the formula:

[tex]α = (125.66 rad/s - 482.39 rad/s) / 2.2 s = -204.8 rad/s^2[/tex]

The negative sign means that the engine is decelerating.

Therefore, the angular acceleration of the engine is[tex]-204.8 rad/s^2.[/tex]

To find the total number of revolutions the engine makes in 2.2 seconds, we can use the formula:

[tex]\theta= \omega_i*t + 1/2 * \alpha * t^2[/tex]

where θ is the angular displacement, ωi is the initial angular velocity, α is the angular acceleration, and t is the time interval.

Since the initial and final angular velocities are in the same direction, we can assume that the engine is rotating in the same direction throughout the deceleration.

Therefore, we can use the formula for constant angular acceleration.

Substituting the values we have:

[tex]\theta= \omega_i*t + 1/2 * \alpha * t^2[/tex]

[tex]\theta = 482.39 rad/s * 2.2 s + 1/2 * (-204.8 rad/s^2) * (2.2 s)^2[/tex]

θ = 528.6 rad

Converting radians to revolutions:

θ = 528.6 rad * 1 rev / (2π rad) = 84.0 rev (rounded to two significant figures)

To know more about angular acceleration refer here

https://brainly.com/question/30238727#

#SPJ11

at what tempreature does o2 have the same average speed as h2 does at 273 k

Answers

The average speed of gas particles is directly proportional to the square root of their absolute temperature. To determine the temperature at which oxygen (O2) has the same average speed as hydrogen (H2) does at 273 K, we can use the formula:

(v1 / v2) = √(T1 / T2),

where v1 and v2 are the average speeds of the two gases, and T1 and T2 are their respective temperatures.

Given that the average speed of hydrogen (H2) at 273 K is equal to v2, we need to find the temperature (T1) at which the average speed of oxygen (O2) matches this value.

Rearranging the formula, we get:

(T1 / T2) = (v1 / v2)^2.

Since oxygen and hydrogen have the same molar mass, we can assume their average speeds are the same.

(v1 / v2) = 1.

Thus, (T1 / T2) = (1 / 1)^2 = 1.

Therefore, oxygen (O2) will have the same average speed as hydrogen (H2) does at 273 K. In other words, the temperature at which oxygen's average speed matches that of hydrogen at 273 K is also 273 K.

To know more about speed of gas particle click this link-

https://brainly.com/question/30582772

#SPJ11

if interstellar dust makes an rr lyrae variable star look 5 magnitudes fainter than the star should, by how much will you over- or underestimate its distance? (hint: use the magnitude-distance formula

Answers

If interstellar dust makes an rr Lyrae then the distance to the rr Lyrae variable star by a factor of 10, and its true distance will be 100 parsecs.

If interstellar dust makes an rr Lyrae variable star look 5 magnitudes fainter than it should, then we can use the magnitude-distance formula to determine how much we will over- or underestimate its distance. The magnitude-distance formula is:

m - M = 5log(d/10)
where m is the apparent magnitude of the star, M is its absolute magnitude, and d is its distance in parsecs.

If the star looks 5 magnitudes fainter than it should, then we can write:
m - M = 5 + 5log(d/10)

Since we are underestimating the distance, we can assume that the distance we calculate using this formula will be smaller than the actual distance. Therefore, we need to solve for d when the left-hand side of the equation is 5 magnitudes greater than it should be. In other words:
m - M = 10

Substituting this into the formula, we get:

10 = 5 + 5log(d/10)
5 = 5log(d/10)
1 = log(d/10)
d/10 = 10
d = 100 parsecs

Therefore, we will underestimate the distance to the rr lyrae variable star by a factor of 10, and its true distance will be 100 parsecs.


If you need to learn more about Interstellar click here:

https://brainly.com/question/12497791

#SPJ11

a string is 27.5 cm long and has a mass per unit length of 5.81⋅⋅10-4 kg/m. what tension must be applied to the string so that it vibrates at the fundamental frequency of 605 hz?102 N103 N105 N104 N

Answers

The tension must be applied to the string so that it vibrates at the fundamental frequency of 605 hz is 102 N.

To find the tension required for the string to vibrate at the fundamental frequency, we can use the formula for the fundamental frequency of a vibrating string:

f = (1/2L) * sqrt(T/μ)

Where:
f = fundamental frequency (605 Hz)
L = length of the string (27.5 cm or 0.275 m)
T = tension in the string (unknown)
μ = mass per unit length (5.81 * 10^-4 kg/m)

We will rearrange the formula to solve for T:

T = (2Lf)^2 * μ

Now, plug in the values:

T = (2 * 0.275 m * 605 Hz)^2 * (5.81 * 10^-4 kg/m)
T = (330.5 Hz)^2 * (5.81 * 10^-4 kg/m)
T ≈ 102.07 N

The required tension is approximately 102 N, which is closest to option 102 N.

For more questions on  frequency:

https://brainly.com/question/30466268

#SPJ11

The tension must be applied to the string so that it vibrates at the fundamental frequency of 605 hz is 102 N.

To find the tension required for the string to vibrate at the fundamental frequency, we can use the formula for the fundamental frequency of a vibrating string:

f = (1/2L) * sqrt(T/μ)

Where:
f = fundamental frequency (605 Hz)
L = length of the string (27.5 cm or 0.275 m)
T = tension in the string (unknown)
μ = mass per unit length (5.81 * 10^-4 kg/m)

We will rearrange the formula to solve for T:

T = (2Lf)^2 * μ

Now, plug in the values:

T = (2 * 0.275 m * 605 Hz)^2 * (5.81 * 10^-4 kg/m)
T = (330.5 Hz)^2 * (5.81 * 10^-4 kg/m)
T ≈ 102.07 N

The required tension is approximately 102 N, which is closest to option 102 N.

Visit to know more about Frequency:-
brainly.com/question/30466268

#SPJ11

the function v ( t ) = − 3500 t 19000 , where v is value and t is time in years, can be used to find the value of a large copy machine during the first 5 years of use.

Answers

The function can be used to find the value of a copy machine during the first 5 years of use.

What is the function and its purpose in determining the value of a copy machine during the first 5 years of use?

There are a few things missing in the given statement. It seems like there is no question to answer. However, I can explain what the given function represents.

The function v(t) = -3500t/19000 represents the decrease in value of a large copy machine as a function of time, where t is the time in years and v is the value of the machine.

The negative sign indicates that the value of the machine is decreasing over time.

This function can be used to find the value of the machine during the first 5 years of use by substituting t = 5 into the function and evaluating v(5).

Learn more about Depreciation.

brainly.com/question/30531944

#SPJ11

What is the magnitude of a point charge in coulombs whose electric field 56 cm away has the magnitude 2.3 n/c?

Answers

The magnitude of the point charge is approximately 2.7 x 10⁻⁸ coulombs.

We can use Coulomb's law to solve for the magnitude of the point charge. Coulomb's law states that the electric field, E, at a distance r from a point charge, q, is given by: E = k * (q / r²)

where k is Coulomb's constant, which is approximately equal to 8.99 x 10⁹ N * m² / C².

In this case, we are given the electric field magnitude, E = 2.3 n/C, and the distance from the point charge, r = 56 cm = 0.56 m. We can rearrange Coulomb's law to solve for the magnitude of the point charge, q: q = E * r² / k

Substituting the given values, we get: q = (2.3 n/C) * (0.56 m)² / (8.99 x 10⁹ N * m² / C²)

q = 2.7 x 10⁻⁸ C

Therefore, the magnitude of the point charge is approximately 2.7 x 10⁻⁸ coulombs.

Know more about Coulomb's law here

https://brainly.com/question/506926#

#SPJ11

what is the change in resistance (δr) in ohms for a strain gauge with a nominal resistance (r0) of 1000 ω and a gauge factor of 2 with an applied strain of 1000 microstrain?

Answers

The change in resistance (δr) in ohms for a strain gauge with a nominal resistance (r0) of 1000 ω and a gauge factor.


It is important to note that strain gauges are used to measure small changes in strain or deformation. They work on the principle that when a metal conductor is stretched, its resistance increases due to the decrease in cross-sectional area and increase in length.

In engineering applications, strain gauges are commonly used to measure the strain in structural components such as beams, columns, and bridges. The measured strain is then used to calculate the stress in the material using the material's elastic modulus. This helps in designing and testing the strength and durability of the components.


To know more about OHM visit

https://brainly.com/question/29750972

#SPJ11

If the halo of our galaxy is spherically symmetric, what is the mass density rho(r) within the halo? If the universe contains a cosmological constant with density parameter ΩΛ,0 = 0.7, would you expect it to significantly affect the dynamics of our galaxy’s halo? Explain why or why not.

Answers

If the halo of our galaxy is spherically symmetric, then the mass density rho(r) within the halo would depend on the distance r from the center of the halo.

This can be expressed as rho(r) = M(r)/V(r), where M(r) is the total mass enclosed within a radius r and V(r) is the volume enclosed within that radius.

Regarding the cosmological constant, it is a term in Einstein's field equations that represents the energy density of empty space. It is often denoted by the symbol Λ (lambda) and has a density parameter ΩΛ,0 that characterizes its contribution to the total energy density of the universe.

In terms of the dynamics of our galaxy's halo, the cosmological constant would not have a significant effect because its density parameter is only 0.7. This means that the total energy density of the universe is dominated by other components such as dark matter and dark energy.

Therefore, the influence of the cosmological constant on the dynamics of our galaxy's halo would be relatively small. However, it is important to note that the cosmological constant does have a significant effect on the overall evolution of the universe as a whole.

More on halo: https://brainly.com/question/31029974

#SPJ11

An astronaut travels to a distant star with a speed of 0.56 c relative to Earth. From the astronaut's point of view, the star is 7.6 ly from Earth. On the return trip, the astronaut travels with a speed of 0.88 c relative to Earth.
What is the distance covered on the return trip, as measured by the astronaut? Give your answer in light-years.
L=___lightyear

Answers

An astronaut travels to a distant star with a speed of 0.56 c relative to Earth and from the astronaut's point of view, the star is 7.6 ly from Earth. On the return trip, the astronaut travels with a speed of 0.88 c relative to Earth.

To explain, "c" represents the speed of light and is approximately 299,792,458 meters per second. The distance between two objects is measured in light-years (L) which is the distance that light travels in a year.

In this scenario, the astronaut is traveling at 0.56 times the speed of light, which is incredibly fast. From their point of view, the star is 7.6 light-years away from Earth. On the return trip, they travel even faster at 0.88 times the speed of light relative to Earth.

It's important to note that time dilation occurs at these speeds, meaning that time will appear to move slower for the astronaut than it does for people on Earth. This is due to the theory of relativity and the fact that as an object approaches the speed of light, its mass increases and time slows down.

To know more about speed of light refer to

https://brainly.com/question/29216893

#SPJ11

Other Questions
TRUE/FALSE. Mary Wigman emphasized turning in her dance technique, which echoed a similar principle of the Sufi Dancers, to experience oneness with the cosmos. Rewrite the product as a sum or difference. 16 sin(28x) sin(11x) Rewrite the product as a sum or difference. sin(-x) sin(9x) Refer to Figure 16-2. How much output will the monopolistically competitive firm produce in this situation? units Figure 16-2 This figure depicts a situation in a monopolistically competitive market. MC ATC 105 100 95 50+ 15 30 75 90 35 50 -10 MR Demand +++ 5 10 15 20 25 30 35 45 55 60 65 70 75 80 85 90 91001011011100 the nh3 molecule is trigonal pyramidal, while bf3 is trigonal planar. which of these molecules is flat? only bf3 is flat. both nh3 and bf3 are flat. only nh3 is flat. neither nh3 nor bf3 is flat. the following skeletal oxidation-reduction reaction occurs under acidic conditions. write the balanced reduction half reaction. MN^2+ + H2SO3 -> HNO2 + Mno4-reactants=products= Implied powers are those that:Group of answer choices) Are not necessarily stated in the Constitution but are recognized as being part of the power of the Presidency.) Are not necessarily stated in the Constitution but are recognized as being part of the powers of Congress.) Are used to help provide flexibility for those situations that might not have been written in the Constitution.All of the above. A system of equations is given.Equation 1: 5x 2y = 10Equation 2: 4x 3y = 15Explain how to eliminate x in the system of equations. Source StylesFormatFontSize corporations are not allowed to amortize the costs of organizing the corporation. true false which of the following is a characteristic of a simple structure? question 5 options: high centralization inflexibility narrow spans of control ambiguous accountability high degree of formalization the energy for n = 4 and = 2 state is greater than the energy for n = 5 and = 0 state. true false What is the molarity (M) of an aqueous 20.0 wt% solution of the chemotherapeuticagent doxorubicin if the density of the solution is 1.05 g/mL and the molecularweight of the drug is 543.5 g/mol? In CDE, the measure of E=90, CD = 9. 2 feet, and DE = 8. 3 feet. Find the measure of C to the nearest tenth of a degree after the 14th century, international migrations became transoceanic, such as the large naval expeditions conducted by: An article presents the following fitted model for predicting clutch engagement time in seconds from engagement starting speed in m/s (x1), maximum drive torque in Nm (x2), system inertia in kg m2 (x3), and applied force rate in kN/s (x4) y=-0.83 + 0.017xq + 0.0895x2 + 42.771x3 +0.027x4 -0.0043x2x4 The sum of squares for regression was SSR = 1.08613 and the sum of squares for error was SSE = 0.036310. There were 44 degrees of freedom for error. Predict the clutch engagement time when the starting speed is 18 m/s, the maximum drive torque is 17 N.m, the system inertia is 0.006 kgm2, and the applied force rate is 10 kN/s. suppose that in 2008, nominal gdp was equal to $14,265 billion while the m1 money supply was $1,423 billion. what was the velocity of the m1 money stock? If the pencil is going to be enlarged by a scale factor of 425% for a poster, what will be the length of pencil? Original Length 7units and width 1. 5 if $585,000 of 10onds are issued at 94, the amount of cash received from the sale is the total number of valence electrons in the compound nh4no3 is group of answer choices 34 80 52 42 32 pests require two basic conditions to survive. one is food; the other is: Please hurry pleaseeee