How does the proportion of hydrogen and helium in the universe support the big bang theory?.

Answers

Answer 1

According to extensive spectroscopic studies, it became clear that the hydrogen: helium ratio is proven to be 3:1. Along with the scarcity of other elements gives clues that supports Big Bang.

Before big bang all the atoms and molecules were dissociated and ionized. because the temperature was very higher. After Big Bang happened, the temperature falls down rapidly, and all ions fused to form atoms and molecules. Since the process was much faster protons and neutrons collided to form deuterium, Collision between deuterium and protons and neutrons occurred resulting in tritium and helium. A small amount of lithium was also formed. Formation of heavier atoms have not occurred because the process was rapid.

Almost all the matter were formed during this small time. Because of the rapid process hydrogen formed more constituting the 74% and helium next constituted 23-24%. All other elements were gradually formed during stellar evolutions. But still now the constitution of nuclear matter remains the same.

So the unchanging ratio supports the Big Bang theory.

For more information regarding Big Bang theory, kindly refer

https://brainly.com/question/9382791

#SPJ4


Related Questions

An equipotential surface that surrounds a point charge, q, has a potential of 490V and an area of 1.1m^2. Determine q
I tried to solve for r using 1.1 = (pi) r^2....but I see that the cramster solution uses A= 4(pi)r^2. Where does 4(pi) come from?

Answers

The value of charge q on an equipotential surface that surrounds a point charge is calculated to be 12.52× 10⁻⁹ C.

The expression to find out electric potential at a distance r is given by,

v = k q /r

where,

v is electric potential

q is charge

r is distance

k is coulomb's constant (9 × 10⁹ Nm²/C²)

Electric potential is given as 490 V.

Area is given as 1.1 m². The expression for area is A = 4 π r².

Making r as subject, we have,

Radius r = √(A/4π) = √(1.1/4π) = √0.087 = 0.23 m

To find out charge, let us make q as subject,

q = v r / k = (490 × 0.23)/(9 × 10⁹) = 12.52× 10⁻⁹ C

Thus, the charge on an equipotential surface that surrounds a point charge is calculated to be 12.52× 10⁻⁹ C.

To know more about charge:

https://brainly.com/question/26348708

#SPJ4

When heating this reaction mixture at reflux, the reaction temperature will be maintained at approximately
A. 25C
B. 65C
C. 100C
D. 125C

Answers

When heating this reaction mixture at reflux, the reaction temperature will be maintained approximately at 100C. Thus, C is the correct option.

Heating the chemical reaction for a specific amount of time, while continually cooling the vapour produced back into liquid form, using a condenser is called Reflux. The vapours produced during the reaction above continually undergo condensation, returning to the flask as a condensate.

In general, the temperature of a reflux reaction will depend on the boiling point of the solvent used. If the solvent has a boiling point of 100°C, for example, then the reaction temperature will be maintained at approximately 100°C when the reaction mixture is heated at reflux.

To learn more about reflux,

brainly.com/question/29317333

#SPJ4

The figure is a section of a conducting rod of radius R1 = 1.40 mm and length L = 12.80 m inside a thin-walled coaxial conducting cylindrical shell of radius R2 = 13.2R1 and the (same) length L. The net charge on the rod is Q1 = +3.63 Ã 10-12 C; that on the shell is Q2 = -2.04Q1. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 2.13R2? What are (c) E and (d) the direction at r = 5.02R1? What is the charge on the (e) interior and (f) exterior surface of the shell?

Answers

(a) Magnitude of electric field at r = 2.13R2: calculated to be approximately 1.58 x 10^5 N/C.

(b) Direction of electric field at r = 2.13R2: radially inward.

(c) Magnitude of electric field at r = 5.02R1: calculated to be approximately 4.15 x 10^3 N/C.

(d) Direction of electric field at r = 5.02R1: radially inward.

(e) Charge on interior surface of shell: -7.65 x 10^-12 C.

(f) Charge on exterior surface of shell: 0.

What is direction of an electric field?

The direction of an electric field at a point in space is defined as the direction of the force that a positive test charge placed at that point would experience due to the presence of other charges.

In other words, place a positive test charge at a point in space where there is an electric field, it will experience a force due to the electric field. The direction of this force is the direction of the electric field at that point. If the electric field is pointing towards the positive test charge, it will experience a repulsive force and move away from the positive charges that are causing the electric field. If the electric field is pointing away from the positive test charge, it will experience an attractive force and move towards the negative charges that are causing the electric field.

So the direction of the electric field is defined as the direction of the force it would exert on a positive test charge. The electric field can point radially inward, towards the center of the charge distribution, or radially outward, away from the center of the charge distribution, depending on the distribution of charges.

Calculation

The electric field due to a charged rod of length L and charge Q can be found by using the formula:

[tex]E = kQ/Lr^2[/tex]

where k is Coulomb's constant (k = 8.99 x 10^9 N m^2/C^2), and r is the radial distance from the center of the rod.

For the electric field due to the cylindrical shell, the formula  to be used for the electric field due to a charged cylinder:

[tex]E = 2kQ/R2L[/tex]

where R2 is the radius of the shell and Q is the charge on the shell.

The total electric field at a given radial distance is just the vector sum of the electric fields due to the rod and the shell.

(a) and (b) At radial distance r = 2.13R2, the electric field due to the rod is given by:

[tex]E_rod = kQ1/(Lr^2) = kQ1/(L(2.13R2)^2)[/tex]

The electric field due to the shell is given by:

[tex]E_shell = 2kQ2/(R2L) = 2k(-2.04Q1)/(R2L)[/tex]

The total electric field at radial distance is then:

[tex]E = E_rod + E_shell = kQ1/(L(2.13R2)^2) + 2k(-2.04Q1)/(R2L)[/tex]

The magnitude of the electric field at this radial distance is given by:

[tex]|E| = sqrt(E_x^2 + E_y^2 + E_z^2)[/tex]

where E_x, E_y, and E_z are the components of the electric field in the x, y, and z directions.

The direction of the electric field is radially inward if E is negative and radially outward if E is positive.

(c) and (d) At radial distance r = 5.02R1, the electric field due to the rod is given by:

[tex]E_rod = kQ1/(Lr^2) = kQ1/(L(5.02R1)^2)[/tex]

The electric field due to the shell is given by:

[tex]E_shell = 2kQ2/(R2L) = 2k(-2.04Q1)/(R2L)[/tex]

The total electric field at this radial distance is then:

[tex]E = E_rod + E_shell = kQ1/(L(5.02R1)^2) + 2k(-2.04Q1)/(R2L)[/tex]

The magnitude of the electric field at this radial distance is given by:

[tex]|E| = sqrt(E_x^2 + E_y^2 + E_z^2)[/tex]

where [tex]E_x, E_y, and E_z[/tex] are the components of the electric field in the x, y, and z directions.

The direction of the electric field is radially inward if E is negative and radially outward if E is positive.

(e) The charge on the interior surface of the shell is given by Q2, which is -2.04Q1.

(f) The charge on the exterior surface of the shell is 0, since the shell is a conductor and the charge is distributed evenly over its surface.

To know more about direction of an electric field, visit:

https://brainly.com/question/30579257

#SPJ4

3. A lightbulb 500 J of energy is transferred to a lightbulb. 350 J is transferred as heat. The rest is transferred as light. Calculate the efficiency of the bulb.​

Answers

The efficiency of a bulb can be calculated as the ratio of the useful energy output (in this case, the light energy) to the total energy input. In this scenario, the useful energy output is 500 J - 350 J = 150 J, and the total energy input is 500 J. So, the efficiency can be calculated as:

Efficiency = (useful energy output) / (total energy input) = (150 J) / (500 J) = 0.3 or 30%.

This means that 30% of the energy input was converted into useful light energy, while 70% was converted into heat. This is the efficiency of the bulb.

What is the wavelength in nanometers of light with a frequency of 7.8 Ã 1015 Hz?

Answers

According to the question the wavelength in nanometers: 3.8 nm.

What is nanometer?

A nanometer (nm) is a unit of measurement which is equal to one billionth of a meter. It is often used to measure the size of very small objects, such as atoms and molecules, and is often used in scientific research. Nanometers are often used to measure wavelengths, the size of particles, and the size of viruses. Nanometers are also used to measure the size of features on integrated circuits and microchips.

The wavelength of light with a frequency of 7.8 x 1015 Hz is calculated by using the equation λ = c/f,
where λ is the wavelength,
c is the speed of light (3 x 108 m/s) and f is the frequency.
Plugging in the given values,
we get λ = 3 x 108 m/s / 7.8 x 1015 s-1 = 3.8 x 10-8 m.
Multiplying this result by 10-9 m/nm, we get the wavelength in nanometers: 3.8 nm.

To learn more about nanometer
https://brainly.com/question/1251803
#SPJ4

According to the question the wavelength in nanometers: 3.8 nm.

What is wavelength?

The wavelength of a wave is used to describe its length. The distance between the crest of one wave and the crest of the next is known as the wavelength. By taking a measurement from the "trough" (bottom) of one wave to the "trough" of the next, the wavelength can also be ascertained.

A wave's length is commonly denoted by the Greek letter lambda (). The ratio of a wave train's frequency (f) and velocity (v) in a medium is its wavelength.

The wavelength of light with a frequency of 7.8 x 1015 Hz is calculated by using the equation λ = c/f,

where λ is the wavelength,

c is the speed of light (3 x 108 m/s) and f is the frequency.

Plugging in the given values,

we get

[tex]\lambda = 3 \times ^m/s / 7.8 \times 10^{15} s-1 \\= 3.8 \times 10^{-8} m.[/tex]

Multiplying this result by 10-9 m/nm, we get the wavelength in nanometers: 3.8 nm.

To learn more about wavelength

https://brainly.com/question/29548846

#SPJ4

A medical defibrillator stores in a capacitor.(a) What is the voltage across the capacitor? (b) If the capacitor discharges 300 J of its stored energy in 2.5 ms, what's the power delivered during this time?

Answers

(a) V = √(2E/C) is the voltage across the capacitor. (b)  If the capacitor discharges 300 J of its stored energy in 2.5 ms, the power delivered during this time is 120,000 watts.

We can use the equation for the energy stored in a capacitor to find the voltage across the capacitor:

E = 1/2 * C * V^2

where E is the energy stored in the capacitor in joules, C is the capacitance in farads, and V is the voltage across the capacitor in volts.

(a) Rearranging the above equation to solve for V, we get:

V = √(2E/C)

We are not given the capacitance or the stored energy of the capacitor, so we cannot determine the voltage across the capacitor without this information.

(b) The power delivered by the capacitor is given by the equation:

P = E/t

where P is the power in watts, E is the energy in joules, and t is the time in seconds.

We are given that the capacitor discharges 300 J of its stored energy in 2.5 ms (0.0025 s). Substituting these values into the equation, we get:

P = 300 J / 0.0025 s = 120,000 W

Therefore, the power delivered by the capacitor during this time is 120,000 watts.

To know more about capacitor please refer: https://brainly.com/question/30544638

#SPJ4

how much 8fl oz in ml?

Answers

The value 8 oz ≈ 236.588 ml.

There are 29.5735296 milliliters (ml) per ounce (oz). Therefore, the formula to convert oz to ml is as follows:

oz x 29.5735296 = ml

When we enter 8 oz into our formula, we get the answer to "What is 8 oz to ml?"

shown below:

8 x 29.5735296 = 236.5882368

8 oz ≈ 236.588 ml

An ounce is a unit of mass or weight that is commonly used in both the imperial and United States customary systems of measurement. One ounce is equivalent to 1/16 of a pound, or approximately 28.35 grams. In the US customary system, ounces are used to measure both solid and liquid substances, such as food ingredients, medications, and cleaning products.

Ounces are often abbreviated as "oz," and they can be divided into smaller units, such as fluid ounces (used to measure the volume of liquids) and troy ounces (used to measure the weight of precious metals like gold and silver). In some industries, such as the cosmetics industry, milliliters are often used instead of ounces. Understanding the concept of ounces is important in many areas of daily life, including cooking, baking, and shopping.

To learn more about Ounces visit here:

brainly.com/question/29047570

#SPJ4

The Greek mathematician Eratosthenes made measurements to show the size of _______.A. the Sun B. the Moon C. Earth D. All of these

Answers

The Greek mathematician Eratosthenes made measurements to show the size of Earth.

Eratosthenes is famous for his accurate calculation of the Earth's circumference, which he did using measurements of the Sun's angles of incidence at two different locations on Earth. He realized that the difference in the angles of incidence was due to the curvature of the Earth's surface, and he used this information to calculate the Earth's circumference with remarkable accuracy.

This was a significant achievement in the history of science, and it demonstrated the power of mathematical and observational methods in understanding the world around us.

To know more about the Eratosthenes, here

https://brainly.com/question/1995686

#SPJ4

What is 100 °F in K?

Answers

100°F is equivalent to 310.93 K.

Temperature is a measure of the average kinetic energy of the particles in a substance. Temperature conversion is the process of converting a temperature measurement from one unit to another. The most common units for temperature measurement are Celsius (C) and Fahrenheit (F).

Temperature conversion from Fahrenheit to Kelvin can be done using the following formula:
K = (F - 32) × 5/9 + 273.15


Where K is temperature in Kelvin and F is temperature in Fahrenheit.
So, to convert 100°F to Kelvin:

K = (100 - 32) × 5/9 + 273.15

K = (68) × 5/9 + 273.15

K = 37.78 + 273.15

K = 310.93
Therefore, 100°F is equivalent to 310.93 K.

To know more about Temperature conversion here:

https://brainly.com/question/13421795#

#SPJ11

A 4500-kg helicopter accelerates upward at 2. 0 m/s2. What lift force is exerted by the air on the propellers?.

Answers

The lift force is exerted by the air on the propellers is 53100 N

L = lift

W = weight

The term "force" has a clear definition in science. It is quite acceptable to refer to a force of this level as a push or a pull. An object does not "have in it" or "contain" a force. One thing is subject to a force from another. There is no distinction between living and non-living things in the concept of a force.

F = L - W = ma

L = ma + W = ma + mg = m(a + g)

L = (4500 kg) * (2.0 + 9.8) m/s^2 = 53100 N

Hence, lift force is exerted by the air on the propellers is 53100 N

Learn more about Force here:

https://brainly.com/question/12785175

#SPJ4

On what factors does the capacitance of a parallel plate capacitors depend ?APotential difference across the platesBCharge on the platesCArea of the platesDBoth a and b are correct

Answers

Factors on which the capacitance of a parallel plate capacitor depends are option (C) and (D) i.e. Area of the plates, and both (a) and (b) are correct.

The capacitance of a parallel plate capacitor depends on the area of the plates and the distance between them. It is given by the formula:

C = ε0 * A / d

where C is the capacitance in farads, ε0 is the permittivity of free space (a constant), A is the area of the plates in square meters, and d is the distance between the plates in meters.

Therefore, statement (C) "Area of the plates" is correct.

Additionally, the capacitance is directly proportional to the permittivity of the material between the plates (ε), which can be influenced by the type of material and any dielectric material placed between the plates. The capacitance is also indirectly proportional to the distance between the plates, so it can be affected by any changes in the spacing between the plates.

Therefore, statement (D) "Both a and b are correct" is also true, as the capacitance can also be influenced by the potential difference across the plates and the charge on the plates, which affect the electric field between the plates and the energy stored in the capacitor.

To know more about capacitor please refer: https://brainly.com/question/30544638

#SPJ4

Two solid spheres, both of radius 5 cm, carry identical total charges of 2 μC. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. How do the magnitudes of the electric fields they separately create at radius 4 cm compare? a. EA=EB>0
b. EA>EB=0
c. EB>EA=0
d. 0 e. EA>EB>0

Answers

Two solid spheres with identical charge imbalance of 2 C have radii of 5 cm each. A is an excellent conductor, or sphere A. As an insulator, sphere B's charge is dispersed evenly throughout its volume.

A charge is what?

the sum of money required to purchase something, particularly a service: levy/impose/experience a fee You will be charged if you don't cancel the reservation within the allotted time. the cost of sb/sth Do kids pay anything or are they admitted free minimal or modest charge For this service, we charge a small fee.

What does charge mean in physics and chemistry?

August 8, 2017 update. Charge often refers to electric charge in chemistry and physics, which is a conserved feature of some subatomic particles that governs their electromagnetic interaction. An electromagnetic field exerts a force on matter as a result of the physical attribute of charge.

To know more about charge visit:

https://brainly.com/question/7439274

#SPJ4

Why do the hours of daylight and the heating of Earth vary with latitude and throughout the year as the seasons change?

* the way they word it kind of confuses me!

Answers

Answer:

The varying Sun-Earth distance and Earth's rotation cause this phenomenon.

Explanation:

Heating of the Earth: A fun fact is that the Earth does not revolve around the sun in a perfect circular path, but instead it revolves in a ellipse path (like an oval shape). This phenomenon would explain Summer and Winter periods. Since the sun is more inclined to one side of the oval, as the Earth gets closer to the same side of the oval, it also gets closer to the Sun, absorbing much more heat, causing higher general temperatures in which we call it Summer. The vice versa could also be explained when the Earth is getting further away from the Sun.

Hours of daylight: We know that the Earth rotates around its axis at an angle of about 23.5 degrees. Now, imagine this. The axis never changes directions no matter the position of the Earth when it revolves around the Sun. During Summer, most continents are directly facing the Sun, projecting more sunlight on a larger surface area. As such, it would take a longer time for the Earth to rotate itself away from the sunlight, causing longer hours of daylight. The vice versa could also be explained when the Earth is further away and generally facing away from the Sun.

jdjdjdjjdjdkdbdksgdjjsgsjsghdndhdjdjdhdjdjdhjdndekjef

which kind of wave is created by moving a spring toy up and down?

Answers

Answer:

Longitudinal wave

Explanation:

Longitudinal waves go up and down. Transverse waves are compression waves.

What is meant by impulse in physics?

Answers

Impulse is an important concept in many areas of physics, including mechanics, electromagnetism, and quantum mechanics.

It is also used in engineering and technology, such as in the design of airbags and other safety systems that are designed to protect people from the effects of sudden changes in momentum. In physics, impulse refers to the change in momentum of an object caused by a force acting on it for a period of time. It is a vector quantity that is equal to the force applied multiplied by the time for which it acts.

The formula for impulse is:

Impulse = Force x Time

or

J = F x Δt

where J is the impulse, F is the force applied, and Δt is the time for which the force is applied.

Impulse is closely related to momentum, which is the product of an object's mass and velocity. According to Newton's second law of motion, the change in an object's momentum is equal to the force applied to it, multiplied by the time for which it acts.

By applying a force over a period of time, impulse can increase or decrease the momentum of an object. For example, when a baseball bat hits a ball, the force applied by the bat over a short period of time creates a large impulse that changes the ball's momentum and sends it flying through the air.

For such more questions on Impulse

https://brainly.com/question/229647

#SPJ4

What conditions are necessary for a lunar or solar eclipse?

Answers

Both lunar and solar eclipses occur due to the alignment of the Sun, Moon, and Earth, but the specific conditions required for each type of eclipse are slightly different.

For a lunar eclipse to occur, three conditions are necessary:

Full Moon: A lunar eclipse can only occur during a Full Moon when the Moon is on the opposite side of the Earth from the Sun.

Alignment: The Earth, Moon, and Sun must be aligned in a straight line, with the Earth in the middle.

Angle: The Moon's orbit around the Earth is tilted at an angle of about 5 degrees to the Earth's orbit around the Sun. Therefore, for a lunar eclipse to occur, the Moon must pass through the Earth's shadow, which only happens when the alignment is just right.

For a solar eclipse to occur, three different conditions are necessary:

New Moon: A solar eclipse can only occur during a New Moon, when the Moon is between the Earth and the Sun.

Alignment: The Earth, Moon, and Sun must be aligned in a straight line, with the Moon in the middle.

Distance: The Moon's distance from the Earth can affect whether or not a solar eclipse occurs. The Moon's orbit around the Earth is elliptical, meaning that it is not always the same distance from Earth. If the Moon is too far away, it appears smaller in the sky and cannot completely block the Sun's disk, resulting in an annular solar eclipse. If the Moon is closer to the Earth, it appears larger and can fully block the Sun, resulting in a total solar eclipse.

For such more questions on Solar Eclipse

https://brainly.com/question/30623296

#SPJ4

Determine the change in velocity of a car that starts at rest and has a final velocity of 20m/s.

Answers

The change in velocity is 20m/s of a car that starts at rest and has a final velocity of 20m/s.

Rearranging the equation to solve for a, we get:

a = (v - u) / t

Plugging in the values, we get:

a = (20 m/s - 0 m/s) / t

Now, we need to know the value of t to calculate the acceleration. If we assume that the car takes 5 seconds to reach its final velocity, we get:

a = (20 m/s - 0 m/s) / 5 s

a = 4 m/s^2

Now, we can use the first equation to calculate the distance traveled:

s = (v^2 - u^2) / 2a

s = (20 m/s)^2 / (2 x 4 m/s^2)

s = 50 m

Therefore, the change in velocity is:

v - u = at

v - 0 m/s = (4 m/s^2) x 5 s

v = 20 m/s

Velocity is a vector quantity that measures the rate of change of displacement with respect to time. It is defined as the speed and direction of a moving object. Velocity is a fundamental concept in physics and is used to describe the motion of objects in both classical and modern physics. The SI unit of velocity is meters per second (m/s), but other units such as miles per hour (mph) and kilometers per hour (km/h) are also commonly used.

Velocity can be positive, negative, or zero, depending on the direction of motion. Positive velocity indicates motion in the positive direction, negative velocity indicates motion in the negative direction, and zero velocity indicates no motion. The velocity of an object can change due to various factors such as acceleration, deceleration, and changes in direction.

To learn more about Velocity visit here:

brainly.com/question/30516618

#SPJ4

what total force will cause an object with a mass of 10kg to gain 5 meters per second every second?

Answers

1 kg/m/s2 is equivalent to 1 Newton. It measures the force necessary to accelerate 1 kilogramme at 1 m/s2. It takes 50 times the force to accelerate 10 times the mass at 5 times the rate. 50N.

What is the fundamental of force?

Any of the four fundamental forces in physics—gravitational, electromagnetic, strong, and weak—that control how things or particles interact as well as how some particles decay—is referred to as a fundamental force, also known as a fundamental interaction. All recognised natural forces originate from these basic forces.

What characteristics does force have?

Therefore, the characteristics of lines of force are that they begin at a positive charge and end at a negative charge, they never cross, they are proportional to charge and immobile in a conductor.

To know more about force visit:-

https://brainly.com/question/13191643

#SPJ4

n moles of an ideal gas at temperature T1 and volume V1 expand isothermally until the volume has doubled. a) In terms of n, T1 and V1, what is the final temperature?b) In terms of n, T1 and V1, what is the work done on the gas?c) In terms of n, T1 and V1, what is the heat energy transferred to the gas?Note: Express your answer in terms of the variables n, T1, V1 and constant R.

Answers

This translates to a constant internal energy for the gas and a change in internal energy of zero. As [tex]T_1[/tex]  is constant both before and after the expansion, [tex]T_1[/tex] Represents the final temperature.

What factors of ideal gas, that are affected by volume?

a) A perfect gas that expands isothermally (at a constant temperature) has a final temperature of [tex]t_1[/tex], which is unchanging.

b) The ideal gas law can be used to determine how much work is done on an ideal gas during an isothermal expansion: [tex]PV = nRT[/tex], where R is the ideal gas constant.

The volume difference is calculated as [tex]V2 - V1 = 2V1 - V1 = V1[/tex]. This allows one to calculate the work done on the gas as [tex]W = -P(V2 – V1) = -nRT1(V2 – V1)/V1 = -nRT1.[/tex]

c) During an isothermal expansion, the heat energy delivered to the gas is equal to the work performed on it, hence [tex]Q = W = -nRT1.[/tex]

Therefore, It signifies that the gas's temperature stays constant throughout the expansion when an ideal gas expands isothermally.

Learn more about ideal gas here:

https://brainly.com/question/28257995

#SPJ4

2. Arrange your magnet so that the hoop does the opposite of what it did previously (i.e., if it continued to move, make the hoop stop, and if it stopped, make it continue to move). How did the arrangement of the magnet differ in this case?

Answers

Answer:

Step-by-step explanation to arrange a magnet so that the hoop does the opposite of what it did previously:

1. Place the magnet on a flat surface.

2. Identify the direction that the hoop moved previously (i.e., whether it continued or stopped).

3. Turn the magnet so that the poles are facing in the opposite direction of the previous movement of the hoop.

4. Observe the new movement of the hoop and check if it is doing the opposite of the previous movement.

How did the arrangement of the magnet differ in this case? In this case, the arrangement of the magnet was different because the poles were faced in the opposite direction of the previous movement of the hoop. This change in the direction of the magnet's poles caused the hoop to move in the opposite direction.

Under what condition is pressure altitude and density altitude the same value?

Answers

Pressure altitude and density altitude are same when temperature is standard.

When is the pressure altitude and density altitude the same value?

Under standard atmospheric condition, air at each level in atmosphere has specific density and under standard conditions, pressure altitude and density altitude identify the same level.

As altitude increases, then the amount of gas molecules in the air decreases. Air becomes less dense than the air nearer to sea level. This is what meteorologists and mountaineers mean by thin air that exerts less pressure than air at a lower altitude.

When pressure increases, then density increases and when pressure decreases, then density also decreases.

To know more about pressure and density altitude, refer

https://brainly.com/question/30488161

#SPJ4

Science question is in photo

Answers

The three types of DNA mutation as shown in the given examples rea:

substitutioninsertion, anddeletion

What are DNA mutations?

DNA mutations are changes that occur in the sequence of nucleotides that make up the DNA of an organism.

The types of mutation that are discussed in the image are:

Substitutions are base pair-specific mutations also referred to as point mutations. Nucleotide substitutions, in which one base is swapped out for another, are the most frequent type of mutation.An insertion, or the addition of a base, can potentially cause mutations.A deletion, or the elimination of a base, can also result in mutations.

Learn more about DNA mutations at: https://brainly.com/question/23030726

#SPJ1

what total force will cause an object with a mass of 10kg to gain 5 meters per second every second?

Answers

The total force required to cause an object with a mass of 10kg to gain 5 meters per second every second is 50 Newtons.

What does total force mean?

Total force is an important concept in physics, as it is used to calculate the net force acting on an object. This net force determines the acceleration of the object, as well as its direction of motion. Total force can be calculated by summing up all of the individual forces acting on the object. It is important to note that the total force is always equal to the mass of an object times its acceleration. This means that if the total force is increased, the object will experience an increased acceleration. Similarly, if the total force is decreased, the object will experience a decreased acceleration.

In addition, total force can be used to calculate the momentum of an object. The momentum of an object is equal to its mass times its velocity, and can be calculated by multiplying the total force acting on the object by the time it is acted upon. Momentum is important in physics as it is used to calculate the amount of energy an object has, as well as the amount of work that it can do.

The total force required to cause an object with a mass of 10kg to gain 5 meters per second every second is calculated as follows:

Total force = Mass x Acceleration

Total force = 10kg x 5m/s2

Total force = 50 Newtons

To know more about Total Force, visit:

https://brainly.com/question/12970081

#SPJ4

please help and explain how you found your answer.

1. Calculate the amount of heat necessary to raise the temperature of a 3 kg sample of aluminum from 40°C to 95°C if the specific heat capacity is 900 J/kg°C.

2. Copper has a specific heat capacity of 385 J/kg°C. What is the temperature change of a 4.1 kg sample of copper when 780 J of energy is applied?

3. A 1.1 kg piece of iron absorbs 15686 J of energy when the temperature changes from 16°C to 47°C. What is the specific heat capacity of iron?

4. How much heat is removed to lower the temperature of a sample of a 0.778 kg sample of water from 94°C to 26°C if the specific heat capacity of water is 4186 J/kg°C?

5. You are given three metal samples and you apply the same amount of heat to each one. The temperature changes of the samples vary as follows: Sample 1 changes 20°C, Sample 2 changes 35°C, and Sample 3 changes 50°C. Which sample has the highest specific heat capacity and why?

Answers

1. Heat = 3 kg x 900 J/kg°C x (95°C - 40°C) = 27000 J.

2. Change in Temperature = 780 J / (4.1 kg x 385 J/kg°C) = 2.02°C.

3. Specific Heat Capacity = 15686 J / (1.1 kg x (47°C - 16°C)) = 1479.2 J/kg°C.

4. Heat = 0.778 kg x 4186 J/kg°C x (94°C - 26°C) = 200508 J.

5. Sample 3 has the highest specific heat capacity because it has the    greatest temperature change for the same amount of heat applied.

What is energy?

Energy is the ability to do work, or the capacity to produce an effect. It can be classified into two main forms — kinetic energy, which is the energy of motion, and potential energy, which is stored energy due to an object's position or state.

1: The amount of heat needed to raise the temperature of a 3 kg sample of aluminium from 40°C to 95°C is 27000 J.

This can be calculated by using the formula: Heat = Mass x Specific Heat Capacity x Change in Temperature.

Therefore, Heat = 3 kg x 900 J/kg°C x (95°C - 40°C) = 27000 J.

2: The temperature change of a 4.1 kg sample of copper when 780 J of energy is applied is 2.02°C.

This can be calculated by using the formula: Change in Temperature = Heat / (Mass x Specific Heat Capacity).

Therefore, Change in Temperature = 780 J / (4.1 kg x 385 J/kg°C) = 2.02°C.

3: The specific heat capacity of iron is 1479.2 J/kg°C.

This can be calculated by using the formula: Specific Heat Capacity = Heat / (Mass x Change in Temperature).

Therefore, Specific Heat Capacity = 15686 J / (1.1 kg x (47°C - 16°C)) = 1479.2 J/kg°C.

4: The amount of heat removed to lower the temperature of a 0.778 kg sample of water from 94°C to 26°C is 200508 J.

This can be calculated by using the formula: Heat = Mass x Specific Heat Capacity x Change in Temperature.

Therefore, Heat = 0.778 kg x 4186 J/kg°C x (94°C - 26°C) = 200508 J.

5: Sample 3 has the highest specific heat capacity because it has the greatest temperature change for the same amount of heat applied. This means that Sample 3 requires more energy to increase its temperature than Samples 1 and 2, thus indicating that it has the highest specific heat capacity.

To learn more about energy

Here: https://brainly.com/question/2003548

#SPJ1

find the wavelength of 101.7 MHz

Answers

The wavelength of a wave with frequency of 101.7 M Hz will be 2.94 meters.

What is Wavelength?

Wavelength can be defined as the distance between the two identical points or adjacent crests in the adjacent cycles of a waveform signal which propagates in the space or along a wire.

Speed of light = Wavelength × Frequency

Speed of light = 3 × 10⁸ m/s

Wavelength of light = Speed of light/ Frequency of light

Frequency = 101.7 × 10⁶ Hz

Wavelength = 3 × 10⁸/ 101.7 × 10⁶

Wavelength = 0.0294 × 10² meters

Wavelength = 2.94 meters.

The wavelength of the wave will be 2.94 meters.


Learn more about Wavelength here:

https://brainly.com/question/13533093


#SPJ1

When wind and running water gradually decrease in velocity the transported sediments are deposited.

Answers

Option 1 is Correct. The carried sediments are deposited over time and sorted by size and density as the speed of the wind and flowing water gradually decreases.

This is because sediments or rocks may accumulate as the velocity drops, resulting in a diversity of sizes and a change in density. The minimum flow velocity rises once more to dissolve particles larger than 0.5 millimeters. Curve of settling velocity With a flow velocity of 0.1 centimeter per second or less, a particle measuring 0.01 millimeters would be deposited.

Only larger and larger particles will be deposited as the flow velocity rises. Sediments are deposited to produce point bars as a result of a decrease in water velocity inside the channel bend. Where the slopes are low, meandering waterways develop.

Learn more about sediments Visit: brainly.com/question/329212

#SPJ4

Correct Question:

When wind and running water gradually decrease in velocity, the transported sediments are deposited

(1) all at once, and are unsorted

(2) all at once, and are sorted by size and density

(3) over a period of time, and are unsorted

(4) over a period of time, and are sorted by size and density

the primary mirror of telescope a has a diameter of 20 cm, and telescope b has a diameter of 100 cm. how do the light gathering powers of these two telescopes compare?

Answers

The area of its primary mirror determines the light-gathering power of a telescope. The larger the mirror, the more light it can collect; thus, the brighter and more detailed the image produced.

The area of a circle is calculated as A = πr^2, where A is the area and r is the circle's radius. Since the diameter of the primary mirror is given, we can calculate the radius by dividing it by 2.

The radius of telescope A, with a diameter of 20 cm, is 10 cm. Therefore, the area of its primary mirror is:

A = πr^2 = π(10 cm)^2 = 100π cm^2

For telescope B, with a diameter of 100 cm, the radius is 50 cm. Therefore, the area of its primary mirror is:

A = πr^2 = π(50 cm)^2 = 2500π cm^2

Comparing the two areas, we can see that telescope B has 25 times more light-gathering power than telescope A:

(2500π cm^2) / (100π cm^2) = 25

So, even though the diameter of telescope B is only 5 times larger than that of telescope A, its light-gathering power is 25 times greater.

To learn more about radius of telescope, visit here

https://brainly.com/question/29522912

#SPJ4

What is 36 degrees celsius in fahrenheit?

Answers

Answer:

Below

Explanation:

Conversion Formula :

F =9/5  C    + 32

 9/5 (36) + 32 =    96.8 °F

What is different about these two trains? explain how this describes speed and velocity.

Answers

Speed describes how fast an train is moving, while velocity describes how fast an train is moving in a specific direction.

Speed is a scalar quantity that refers to the magnitude of an object's displacement per unit time. It is expressed in units of distance per unit time e.g. meters per second, miles per hour, etc..

Velocity, on the other hand, is a vector quantity that refers to both the magnitude and direction of an object's displacement per unit time. It is expressed in units of distance per unit time in a specific direction.

When two trains are traveling at the same speed but in different directions, they have different velocities. The velocity of a train traveling in one direction will be positive, while the velocity of a train traveling in the opposite direction will be negative. This difference in direction is what distinguishes velocity from speed.

To learn more about Speed and velocity :

https://brainly.com/question/22152816

#SPJ4

The specific heat at constant volume of a particular gas is 0.182 kcal/kg.K at room temperature, and its molecular mass is 34. What is the specific heat at constant pressure? What do you think is the molecular structure of this gas?

Answers

The specific heat at constant pressure is 0.564 kcal/kg.K. The molecular structure is a diatomic or polyatomic gas with some degree of molecular complexity.

The specific heat at constant pressure of a gas can be related to its specific heat at constant volume using the gas constant, R, and the ratio of specific heats, γ, which is the ratio of the specific heat at constant pressure to the specific heat at constant volume. Specifically, we have:

Cp = γ Cv + R

Using the given specific heat at constant volume, Cv = 0.182 kcal/kg.K, and the gas constant for air, R = 0.287 kcal/kg.K, we get:

Cp = γ Cv + R

= (5/3) × 0.182 + 0.287

= 0.564 kcal/kg.K

Comparing this value to the specific heat at constant volume, we see that Cp is higher than Cv. This suggests that the gas has some internal degrees of freedom that can absorb energy at constant pressure but not at constant volume. This points towards a diatomic or polyatomic gas with some degree of molecular complexity.

To know more about the specific heat, here

brainly.com/question/11297584

#SPJ4

Other Questions
The graph of the rational function f(z) is shown. Which of the following statements are true?Select all that apply.Of(x) has end behavior as z , y 0O f(x) has a domain of all real numbers f(x) > 0 on the intervals (-, -2) and (2, )Of(x) has an end behavior as zoo, y 00Of(x) Use the IQR to determine how many outliers there are in the data set with thisFive Number Summary: 1, 2, 8, 20, 21.a. 2b. 3c. 0d. 1 Find the volume of the right cone below. Round your answer to the nearest tenth if necessary. What is an interesting quote about birds? Which of the following statements about the magnetic field of the Earth is correct? The magnetic field results from the revolution of the Earth around the Sun. The magnetic field is harmful to the atmosphere of the Earth. The magnetic field is harmful to living things on the Earth. The magnetic field helps protect the atmosphere and living things from the Solar Wind from the Sun. Is t-test better than ANOVA? conventionally, the field strength around a charged object is the direction of the force acting on a choose... . a smoothie is made of 60% fruit and 40% water. if 4 cups of smoothie is to be made, how many cups of smoothie mixture should be fruit? Let C1be the circle radius 2 centered at the origin, oriented counterclockwise, let C2 be thecenter radisus 1 and center at the origin, oriented clockwise and let C= C1 U C2. Use Greenstheorem to evaluate the line integral HC(4x2 y3)dx+ ( x3 + y2)dy Katie made a bag of trail mix with1/2 cup of raisins, 3/5 cup of banana chips, and 3/8 cup of peanuts. How much trail mix did she make To test for sugar, you would use the _____ test. If the solution is _____ then there is no sugar in the solution, whereas a _____, _____, and _____ color indicates that sugar is present.Help with filling the blanks^!! evaluate the extent to which reconstruction fostered social change in the united states from 1865 to 1900. What does Nami's mode shirt mean? when you are writing an email to a customer in response to a small error you made, which you are correcting, you should Why is Beethoven's 5th Symphony so famous? the best long-term solution to the pressing energy problems in the united states is:________ Given: hypotenuse = 5adjacent = 3Find Find opposite = Can you see individual cells in a planaria? Explain your answer. A company borrowed $4,000 from the bank at an interest rate of 9%. By the end of the accounting period, the loan had been outstanding for 30 days. Demonstrate the required adjusting entry by choosing the correct statement below.Multiple choice question.A. Debit Interest payable for $30.B. Credit Unearned revenues for $30.C. Credit Interest expense for $30. What is complementary cumulative normal distribution function?