Answer: 122.9 g
Explanation: Fe2O3 mw = 160 of which 112 is Fe
to get 86 g Fe, 86*160/112 g oxide
A gas produced as a by-product from the carbonization of coal has the following composition, mole %: carbon dioxide 4, carbon monoxide 15, hydrogen 50, methane 12, ethane 2, ethylene 4, benzene 2, balance nitrogen. Using the data given in Appendix C (available online at booksite .Elsevier/Towler), calculate the gross and net calorific values of the gas. Give your answer in MJ/m3, at standard temperature and pressure.
Answer:
6059.63 kcal/kg.
Explanation:
CH4 consist of Hydrogen and carbon. Therefore, Hydrogen in CH4 = 12 × 4 = 48 kg, carbon in CH4 = 12 × 12 = 144kg.
For ethane, the amount of hydrogen present = 2 × 6 = 12kg and that of carbon in ethane = 2 × 24 = 48kg.
The weight of carbon in CO = 15 × 12 = 18kg and the weight of Hydrogen in CO = 15 × 16 = 240kg.
For hydrogen, its weight in H2 = 50 × 2 = 100kg.
For CO2, carbon has = 4 × 12 = 48 kg and oxygen has = 4 × 32 = 128kg.
For C6H6, carbon has 2 × 72 = 144kg and hydrogen has 2 × 6 = 12kg.
For N2, the amount of nitrogen= 11 × 28 = 308 kg.
For CH2= CH2, carbon has 4 × 24 = 96kg and hydrogen = 4 × 4 = 16kg.
The gross calofiric value = 1/100 [ 8080 C + 34500 + ( H - O/8) + 22405].
Where the total weight = 128 + 180+ 48 + 240 + 100 + 144 + 48 + 12 + 48 + 16 + 96 + 308 + 12 + 144 = 1524 kg.
The percentage by weight of carbon = total weight of carbon/total weight × 100.
The total Weight of carbon= 48 + 180 + 144 + 48 +144 + 96 = 660kg.
The percentage weight of carbon = 660/1524 × 100 = 43.3 %.
The percentage weight of hydrogen = total weight of hydrogen/total weight × 100.
The total weight of hydrogen = 100 + 12 + 48 + 16 +12 = 188.
The percentage weight of Hydrogen = 188/ 1524 × 100 = 12.33%.
Percentage weight of oxygen = total weight of oxygen/total weight × 100.
Percentage weight of oxygen = ( 128 + 240) / 1524 × 100 = 24.15%.
The gross calorific value = 1/100 [ 8080 × 43.3 ,+ 34500 ( 13.33 - 24.15/8) ] = 6711.02 kcal/kg.
Net calorific value = 6711.02 - 0.09 × 12.3 × 587 = 6059.63kcal/kg.
can energy transfer even if the objects are in the same temprature
Answer:
Yes
Explanation:
What is true about the inertia of two cars, Car A of mass 1,500 kilograms and Car B of mass 2,000 kilograms?
OA.
Car A and Car Bhave the same inertia.
B.
Car A has more inertia than Car B.
Oc.
Car Bhas more inertia than Car A.
ОО
D.
Both the cars have negligible inertia.
I’m
Answer:
Car B has more inertia than Car A
Explanation:
Given that,
Mass of car A = 1500 kg
Mass of car B = 2000 kg
Inertia is directly proportional to the mass of an object. Inertia is the measure of the mass of an object.
In this case, the mass of car B is more than that of car A, it means the inertia of car B is more than that of car A.
Hence, the correct option is (c) "Car B has more inertia than Car A".
Volume is the independent or dependent variable
Answer:
Independent
Explanation:
Independent Variable is the volume of the object. Dependent Variable is the mass of the object. So it
is calcium hydroxide an ionic compound, covalent compound, or acid?
Answer:
Calcium Hydroxide is an ionic compound
Which of the following represent chemical processes? Which represent physical processes?
A). Calcium chloride dihydrate (CaCl2 * 2H2O) slowly heated in a crucible to become calcium chloride (anhydrous).
B). A hydrocarbon such as propane (C3H8) undergoes combustion to power a grill
C). A rock climber’s rope becomes frayed and turns the color of the rocks
D). A dog urinates on an air conditioner coil and the coil becomes corroded
Answer:
A). Calcium chloride dihydrate (CaCl2 * 2H2O) slowly heated in a crucible to become calcium chloride (anhydrous).
Dehyration is a physical process
B). A hydrocarbon such as propane (C3H8) undergoes combustion to power a grill
Combustion is a chemical process.
C). A rock climber’s rope becomes frayed and turns the color of the rocks
This is physical process
D). A dog urinates on an air conditioner coil and the coil becomes corroded
Corrsion is a chemical process.
Explanation:
The chemical process is combustion and corrosion i.e. B and D. The physical change has been the heating of calcium chloride, and fraying of rock i.e. A and C.
A chemical process has been given as the reaction in which the composition of the sample changes. It has been an irreversible process.
A physical process has been described as a change in the physical properties of substances. It is a reversible process.
The following reaction can be given as:
A. The reaction between calcium chloride and water has been mediated by heating. It is a reversible process and does not change the chemical composition. It is a physical process.
B. The combustion results in the change in the chemical constituents of propane. It is a chemical process.
C. There has been no change in the chemical composition of materials. It has been a physical process.
D. The corrosion has resulted from the chemical change in the iron. It has been a chemical process
Thus, the chemical process is combustion and corrosion. The physical change has been the heating of calcium chloride, and fraying of rock.
For more information about the chemical process, refer to the link:
https://brainly.com/question/1286014
How many particles are in 67.9 grams of water (H2O)?
Answer:
3.769022740695677
Explanation:
Answer:We get 1.81×1024 water molecules... Explanation: We assess the molar quantity of water in the usual way... Number of moles=massmolar mass.
brainliest plz
Write the equilibrium expression of each chemical equation.
2H2S(g) 2H2(g) + S2(g)
Answer:
[H2]2[S2][H2S]2Kc=[H2]2[S2][H2S]2
Explanation:
2H2S(g)⇋2H2(g)+S2(g)2H2S(g)⇋2H2(g)+S2(g)
The equilibrium constant expression in terms of concentrations is:
Kc=[H2]2[S2][H2S]2Kc=[H2]2[S2][H2S]2.
The equilibrium expression for the given reaction can be written in terms of equilibrium constant which is the ratio of power of molar concentration of the product to the product of power of molar concentration of the reactants.
What is equilibrium?Equilibrium is a state for a reversible reaction where, the rate of forward reaction is equal to the rate of backward reaction. The rate of a reaction is the rate of decrease in the concentration of reactants or the rate of increase in the concentration of the products.
The given reaction at equilibrium state is written as:
[tex]\rm 2H_{2}S (g)\leftrightharpoons 2H_{2} (g)+ S_{2}(g)[/tex]
The equilibrium constant Kb is ratio of power of molar concentration of the product to the product of power of molar concentration of the reactants.
[tex]Kb = \rm \frac{[H_{2}S]^{2}}{[H_{2}]^{2} [S_{2}]}[/tex]
The rate of the reaction will be r = Kb [H₂]² [S₂].
To find more on equilibrium constant, refer here:
https://brainly.com/question/15118952
#SPJ2
What amount of heat (in kJ) is required to convert 14.0 g of an unknown liquid (MM = 67.44 g/mol) at 43.5 °C to a gas at 128.2 °C? (specific heat capacity of liquid = 1.18 J/g・°C; specific heat capacity of gas = 0.792 J/g・°C; ∆Hvap = 30.1 kJ/mol; normal boiling point, Tb = 97.4°C)
Answer:
1.24 kJ is required to convert 14 g of liquid from 43.5°C to 128.2°C
Explanation:
This is a typical calorimetry problem:
We have to assume, no heat is lost to sourrounding.
First of all, we need to go from 43.5°C to 97.4°C, the boiling point.
Q = Ce . m . ΔT
We replace data, 1.18° J/g . 14 g . (97.4°C - 43.5°C)
Heat for the first stage is: 890.4 Joules
Now we have to change the state, and we need the ΔH. As we do not have latent heat, we can proceed like this:
1 mol release 30.1 kJ at vaporization.
We convert the mass to moles → 14 g. 1mol/ 67.44g = 0.207 mol
0.207 mol will release (0.207 . 30.1 kJ) = 6.25 kJ
Now, we are at gaseous phase.
Q = Ce . m . ΔT → 0.792 J/g°C . 14g . (128.2°C - 97.4°C)
Q = 341.5 Joules
To determine the amount of heat, we sum all the obtained values:
890.4 Joules + 6250 Joules + 341.5 Joules = 1238.2 J
We convert to kJ → 1238.2 J . 1kJ / 1000J = 1.24 kJ
The heat required to convert 14.0 g of an unknown liquid at 43.5 °C to gas at 128.2 °C is 7.48 kJ.
We want to calculate the heat required to convert 14.0 g of an unknown liquid at 43.5 °C to gas at 128.2 °C.
We can divide this process in 3 steps.
Heating of the liquid from 43.5 °C to 97.4 °C (normal boiling point).Vaporization of the liquid at 97.4 °C.Heating of the gas from 97.4 °C to 128.2 °C.1. Heating of the liquid from 43.5 °C to 97.4 °CWe will calculate the heat for this step (Q₁) using the following expression.
Q₁ = c(l) × m × ΔT
Q₁ = (1.18 J/g・°C) × 14.0 g × (97.4 °C - 43.5 °C) = 890 J = 0.890 kJ
where,
c(l) is the specific heat capacity of the liquid.m is the mass of the substance.ΔT is the change in the temperature.2. Vaporization of the liquid at 97.4 °C.We will calculate the heat for this step (Q₂) using the following expression.
Q₂ = (m/M) × ΔHvap
Q₂ = [14.0 g/(67.44 g/mol)] × 30.1 kJ/mol = 6.25 kJ
where,
m is the mass of the substance.M is the molar mass of the substance.ΔHvap is the enthalpy of vaporization of the substance.3. Heating of the gas from 97.4 °C to 128.2 °C.We will calculate the heat for this step (Q₃) using the following expression.
Q₃ = c(g) × m × ΔT
Q₃ = (0.792 J/g・°C) × 14.0 g × (128.2 °C - 97.4 °C) = 342 J = 0.342 kJ
where,
c(g) is the specific heat capacity of the gas.m is the mass of the substance.ΔT is the change in the temperature.4. Total amount of heat required (Q)Q = Q₁ + Q₂ + Q₃ = 0.890 kJ + 6.25 kJ + 0.342 kJ = 7.48 kJ
The heat required to convert 14.0 g of an unknown liquid at 43.5 °C to gas at 128.2 °C is 7.48 kJ.
Learn more about heating curves here: https://brainly.com/question/10481356
The Lewis dot notation for two atoms is shown.
Mg is written with two dots on its right. O is written on the right of Mg. There are six dots around O. Two arrows point from the dots near Mg to O.
What is represented by this notation?
Mg gains two protons from O.
Mg donates two protons to O.
Mg gains two electrons from O.
Mg donates two electrons to O.
Answer:
Mg donates two electrons to O
Explanation:
Lewis dot notation uses dots and crosses to represent valence electrons on atoms.
Magnesium is a metal and would donate or lose electrons during bonding.
Oxygen is a non metal and would gain electrons during bonding.
The correct option is;
Mg donates two electrons to O
issues guidelines for financial system operated by all commerical banks in India
What is a property of a moving object that makes it hard to stop?
In order to use a pipet, place a at the top of the pipet. Use this object to fill the pipet such that the of the liquid is even with the volume line. Release the liquid, touching the tip of the pipet to the side of the container if necessary to release the last drop the pipet tip.
Answer:
bulb or pump, meniscus, outside
Explanation:
In order to use a pipet, place a BULB OR PUMP at the top of the pipet. Use this object to fill the pipet such that the MENISCUS of the liquid is even with the volume line. Release the liquid, touching the tip of the pipet to the side of the container if necessary to release the last drop OUTSIDE the pipet tip.
SOMEONE PLEASE HELP MEEE!!!!
What is the mass in grams of 6.25 mol of copper (II) nitrate ,Cu(NO3)2?
Answer:
lol
Explanation:
lol
how many moles of aluminum are needed to produce 0.418 mol of Al2(SO4)3? 2 Al(s) + 3 H2SO4(aq) → Al2(SO4)3(aq) + 3 H2(g)
0.836 mol Al
General Formulas and Concepts:Math
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightChemistry
Stoichiometry
Using Dimensional AnalysisReactions RxNExplanation:Step 1: Define
[RxN - Balanced] 2Al (s) + 3H₂SO₄ (aq) → Al₂(SO₄)₃ (aq) + 3H₂ (g)
[Given] 0.418 mol Al₂(SO₄)₃
[Solve] x mol Al
Step 2: Identify Conversions
[RxN] 2 mol Al (s) → 1 mol Al₂(SO₄)₃ (aq)
Step 3: Stoich
[DA] Set up: [tex]\displaystyle 0.418 \ mol \ Al_2(SO_4)_3(\frac{2 \ mol \ Al}{1 \ mol \ Al_2(SO_4)_3})[/tex][DA] Multiply/Divide [Cancel out units]: [tex]\displaystyle 0.836 \ mol \ Al[/tex]Step 4: Check
Follow sig fig rules and round. We are given 3 sig figs.
Since our final answer already has 3 sig figs, there is no need to round.
A formula unit made with Na and unknown nonmetal "Z" has the formula, NaZ. Which element does "Z" represent?
What do you call the new material that are created in chemical
PLEASE HELPPPPPPPPPP
Answer:
Explanation
I am sorry but please give detailed question
A beaker in your laboratory drawer has an inside diameter of 6.8 cm and a height of 8.9 cm. Using the equation V= arh, calculate the volume of the beaker, expressed in milliliters.
Answer:
323.22 ml
Explanation:
Given that :
Diameter, d = 6.8cm
Height, h = 8.9cm
V = arh
Recall :
Volume, V = πr²h
Radius, r = diameter / 2 = 6.8 / 2 = 3.4cm
V = π * 3.4^2 * 8.9
V = 323.21961 cm³
Recall:
1ml = 1cm³
Hence,
323.21961 cm³ = 323.21961 ml
Volume = 323.22 ml
In an experiment, a student places a small piece of pure Mg(s) into a beaker containing 250.mL of 6.44MHCl(aq) . A reaction occurs, as represented by the equation above.
The student collects the H2(g) produced by the reaction and measures its volume over water at 298 K after carefully equalizing the water levels inside and outside the gas-collection tube. The volume is measured to be 45.6mL . The atmospheric pressure in the lab is measured as 765 torr , and the equilibrium vapor pressure of water at 298 K is 24 torr
(ii) The number of moles of H2(g) produced in the reaction
Answer:
0.81 moles H2
Explanation:
The equation of the reaction is;
Mg(s) + 2HCl(aq) ------>MgCl2(aq) + H2(g)
Number of moles of HCl reacted = concentration * volume
Number of moles of HCl reacted = 6.44 * 250/1000
Number of moles of HCl reacted = 1.61 moles of HCl
If 2 moles of HCl produces 1 mole of H2
1.61 moles of HCl produces 1.61 * 1/2 = 0.81 moles H2
How many mL of 0.774 M HBr are needed to dissolve 6.73 g of CaCO3?
2HBr(aq) + CaCO3(s) -> CaBr2(aq) + H2O(1) + CO2(g)
____mL
Answer:
173.9 mL of HBr
Explanation:
We'll begin by calculating the number of mole in 6.73 g of CaCO₃. This can be obtained as follow:
Mass of CaCO₃ = 6.73 g
Molar mass of CaCO₃ = 40 + 12 + (16×3)
= 40 + 12 + 48
= 100 g/mol
Mole of CaCO₃ =?
Mole = mass / Molar mass
Mole of CaCO₃ = 6.73 / 100
Mole of CaCO₃ = 0.0673 mole
Next, we shall determine the number of mole of HBr that will react with 6.73 g (i.e 0.0673 mole) of CaCO₃. This can be obtained as follow:
2HBr + CaCO₃ —> CaBr₂ + H₂O + CO₂
From the balanced equation above,
2 moles of HBr reacted with 1 mole of CaCO₃.
Therefore, Xmol of HBr will react with 0.0673 mole of CaCO₃ i.e
Xmol of HBr = 2 × 0.0673
Xmol of HBr = 0.1346 mole
Thus, 0.1346 mole of HBr reacted.
Next, we shall determine the volume of HBr needed for the reaction. This can be obtained as follow:
Mole of HBr = 0.1346 mole
Molarity of HBr = 0.774 M
Volume =?
Molarity = mole / Volume
0.774 = 0.1346 / volume
Cross multiply
0.774 × volume = 0.1346
Divide both side by 0.774
Volume = 0.1346 / 0.774
Volume = 0.1739 L
Finally, we shall convert 0.1739 L to mL. This can be obtained as follow:
1 L = 1000 mL
Therefore,
0.1739 L = 0.1739 L × 1000 mL / 1 L
0.1739 L = 173.9 mL
Thus, 173.9 mL of HBr is needed for the reaction.
All of the following are characteristics of matter except
A.matter can disappear and reappear
B.matter has mass
C.matter occupies space
D.all things are composed of matter
i am having trouble solving it pls help
Answer:
1. 0.097 s
2. 0.420 M
Explanation:
To solve both questions we'll use the formula:
[A]ₓ = [A]₀ - kt
Where [A]ₓ is the concentration of A at a given time; and [A]₀ is the initial concentration.
1) We input the data given by the problem:
0.167 M = 0.700 M - 5.48 M/s * t
And solve for t:
t = 0.097 s
2) We input the new data:
[A]ₓ = 0.500 M - 0.361 M/s * 0.220 s
and solve for [A]ₓ:
[A]ₓ = 0.420 M
Glycerol (C3H8O3), also called glycerine, is widely used in the food and pharmaceutical industries. Glycerol is polar and dissolves readily in water and polar organic solvents like ethanol. Calculate the mole fraction of the solvent in a solution that contains 2.51 g glycerol dissolved in 21.10 mL ethanol (CH3CH2OH; density
Answer: The mole fraction of the solvent in a solution that contains 2.51 g glycerol dissolved in 21.10 mL ethanol is 0.93
Explanation:
Given : Volume of ethanol (solvent) = 21.10 ml
density of ethanol (solvent)= 0.789 g/ml
Mass of ethanol (solvent) = [tex]0.789g/ml\times 21.10ml=16.6g[/tex]
Mass of glycerol (solute) = 2.51 g
Mole fraction of a component is the ratio of moles of that component to the total moles present.
moles of ethanol =[tex]\frac{\text {given mass}}{\text {molar mass}}=\frac{16.6g}{46g/mol}=0.36mol[/tex]
moles of glycerol =[tex]\frac{\text {given mass}}{\text {molar mass}}=\frac{2.51g}{92g/mol}=0.027mol[/tex]
mole fraction of ethanol (solvent) = [tex]\frac{\text {moles of ethanol}}{\text {moles of ethanol + moles of glycerol}}=\frac{0.36}{0.36+0.027}=0.93[/tex]
The mole fraction of the solvent in a solution that contains 2.51 g glycerol dissolved in 21.10 mL ethanol is 0.93
what does GCAT help us remember?
Final volume of Argon gas:
6. Volume-Volume Problem: If water vapor is added to Magnesium Nitride, ammonia gas is produced
when the mixture is heated, according to the following reaction:
Mg3N2 (s) +
H2O (g)—->
Mgo (s) +
NH3 (g)
If 10.2 mL of water reacts with magnesium nitride, what volume (in Liters) of Ammonia gas will form at
STP?
Answer:
6.78 × 10⁻³ L
Explanation:
Step 1: Write the balanced equation
Mg₃N₂(s) + 3 H₂O(g) ⇒ 3 MgO(s) + 2 NH₃(g)
Step 2: Calculate the moles corresponding to 10.2 mL (0.0102 L) of H₂O(g)
At STP, 1 mole of H₂O(g) has a volume of 22.4 L.
0.0102 L × 1 mol/22.4 L = 4.55 × 10⁻⁴ mol
Step 3: Calculate the moles of NH₃(g) formed from 4.55 × 10⁻⁴ moles of H₂O(g)
The molar ratio of H₂O to NH₃ is 3:2. The moles of NH₃ produced are 2/3 × 4.55 × 10⁻⁴ mol = 3.03 × 10⁻⁴ mol.
Step 4: Calculate the volume corresponding to 3.03 × 10⁻⁴ moles of NH₃
At STP, 1 mole of NH₃(g) has a volume of 22.4 L.
3.03 × 10⁻⁴ mol × 22.4 L/mol = 6.78 × 10⁻³ L
Why was d-day and the battle of France so important to American and the allies
Answer:
The Importance of D-Day
The D-Day invasion is significant in history for the role it played in World War II. It marked the turn of the tide for the control maintained by Nazi Germany; less than a year after the invasion, the Allies formally accepted Nazi Germany's surrender.
Aqueous hydrogen fluoride (hydrofluoric acid) is used to etch glass and to analyze minerals for their silicon content. Hydrogen fluoride will also react with sand (silicon dioxide). (a) Write an equation for the reaction of solid silicon dioxide with hydrofluoric acid to yield gaseous silicon tetrafluoride and liquid water. (b) The mineral fluorite (calcium fluoride) occurs extensively in Illinois. Solid calcium fluoride can also be prepared by the reaction of aqueous solutions of calcium chloride and sodium fluoride, yielding aqueous sodium chloride as the other product. Write complete and net ionic equations for this reaction.
Answer:
See explanation
Explanation:
The balanced reaction equation of the reaction between SiO2 and HF is shown below;
SiO2(s) + 4HF(aq) = SiF4(g) + 2H2O(l)
b)
2NaF(aq) + CaCl2(aq) --------> 2NaCl(aq) + CaF2(s)
The complete ionic equation is;
2 Na^+(aq) + 2F^-(aq) + Ca^+(aq) + 2 Cl^-(aq)------> 2 Na^+(aq) + 2 Cl^-(aq) + CaF2(s)
The net ionic equation;
Ca^+(aq) + 2F^-(aq) -------> CaF2(s)
The figure shows different possible transitions of electrons as they move from higher energy states to lower energy states. Which transition will produce the spectrum line with the lowest wavelength in this element’s atomic spectrum?
A. A
B. B
C. C
D. D
Answer:
It is D !!
Explanation:
Just did test
Predict the missing product of this equation
1 MgF2 + 1 Li2CO3 -> 1 ______ +2LiF
Answer:
MgCO₃
Explanation:
From the question given above, we obtained:
MgF₂ + Li₂CO₃ —> __ + 2LiF
The missing part of the equation can be obtained by writing the ionic equation for the reaction between MgF₂ and Li₂CO₃. This is illustrated below:
MgF₂ (aq) —> Mg²⁺ + 2F¯
Li₂CO₃ (aq) —> 2Li⁺ + CO₃²¯
MgF₂ + Li₂CO₃ —>
Mg²⁺ + 2F¯ + 2Li⁺ + CO₃²¯ —> Mg²⁺CO₃²¯ + 2Li⁺F¯
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Now, we share compare the above equation with the one given in the question above to obtain the missing part. This is illustrated below:
MgF₂ + Li₂CO₃ —> __ + 2LiF
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Therefore, the missing part of the equation is MgCO₃