i need help with this​

I Need Help With This

Answers

Answer 1

Answer:

lo l oh my gosh hi i havent seen u in so many years

Step-by-step explanation:


Related Questions

If f'(x)=√(1+2x^3) and f(2)=0.4 and f(5)=
(A) 29.005
(B) 28.605 (C) 28.205
(D)-28.205

Answers


To find f(5), we need to use the fundamental theorem of calculus. Firstly, we integrate f'(x) to get f(x) + C, where C is the constant of integration. Then, we use the given value of f(2) to find the value of C. Finally, we substitute the value of f(x) in the equation to find f(5).

The fundamental theorem of calculus states that the derivative of an integral is the original function. In other words, if f'(x) is the derivative of f(x), then f(x) = ∫f'(x)dx + C, where C is the constant of integration.

In this question, we are given f'(x) = √(1+2x^3) and f(2) = 0.4. Integrating f'(x) with respect to x, we get f(x) = ∫√(1+2x^3)dx + C. To solve this integral, we can use u-substitution with u = 1 + 2x^3. Then, du/dx = 6x^2 and dx = du/6x^2. Substituting these values, we get

f(x) = (1/6)∫u^(1/2)du = (1/9)u^(3/2) + C = (1/9)(1 + 2x^3)^(3/2) + C

Using the given value of f(2) = 0.4, we can solve for C:

f(2) = (1/9)(1 + 2(2)^3)^(3/2) + C = 0.4
C = 0.4 - (1/9)(9) = 0

Finally, substituting C and x = 5 in the equation for f(x), we get

f(5) = (1/9)(1 + 2(5)^3)^(3/2) = 28.605

Therefore, the answer is (B) 28.605.

To find the value of f(5), we used the fundamental theorem of calculus to integrate f'(x) and find f(x) + C. Then, we solved for C using the given value of f(2) and substituted C and x = 5 to find f(5). The final answer is (B) 28.605.

To know more about calculas visit:

https://brainly.com/question/29169458

#SPJ11

For each graph below, write an equation of a line that is parallel to the line and passes through the square point. Then, write an equation of a line that is perpendicular to the line and passes through the square point.

Answers

The equation of parallel line: y = 2

The equation of perpendicular line: y = -x -3

The given line has a rise of 1 for each run of 1, so a slope of 1. If you draw a line with a slope of 1 through the given point, you can see that it intersects the  y-axis at y = 2

Then the slope-intercept equation is

 y = 2. . . . . equation of parallel line

The perpendicular line will have a slope that is the opposite reciprocal of the slope of the given line: m = -1/1 = -1

The equation is y = -x -3

Learn more about equations here;

https://brainly.com/question/25180086

#SPJ1

A researcher believes the number of words typed per minute depends on the type of keyboard one is using. He conducts an experiment using two keyboard designs to determine whether the type of keyboard has an effect on number of words typed per minute. He predicts there will be a significant difference between the two keyboards. The research hypothesis is The same as the null hypothesis. A directional hypothesis. A non-directional hypothesis None of the above.

Answers

Based on the illustration, The research hypothesis is directional hypothesis.

So, the correct answer is B

This prediction indicates a research hypothesis that is directional, as it suggests an expected outcome based on the type of keyboard used.

A directional hypothesis anticipates the direction of the effect, whereas a non-directional hypothesis simply predicts a difference without specifying the direction.

The null hypothesis, on the other hand, assumes no significant difference between the keyboards.

Therefore, in this case, the research hypothesis is a directional hypothesis

Hence the answer of the question is B.

Learn more about hypothesis at

https://brainly.com/question/31362172

#SPJ11

Constraint on a curve *** Let the horizontal plane be the x-y plane. A bead of mass m slides with speed v along a curve described by the function y = f(x). What force does the curve apply to the bead?

Answers

The curve applies a constraint force on the bead to keep it moving along the curve. This force is perpendicular to the surface of the curve and its direction changes as the bead moves along the curve. The magnitude of this force depends on the curvature of the curve and the mass and speed of the bead.

As the bead moves along the curve, it experiences two types of forces - the gravitational force acting downwards and the normal force acting perpendicular to the surface of the curve. However, since the bead is sliding along the curve and not pressing against it, the normal force is not the same as the weight of the bead. Instead, it is a constraint force that arises due to the curvature of the curve and acts to keep the bead moving along the curve.

In conclusion, the force that the curve applies to the bead is a constraint force that acts perpendicular to the surface of the curve and keeps the bead moving along the curve. The magnitude and direction of this force depend on the curvature of the curve and the mass and speed of the bead.

To know more about gravitational and normal force visit:

https://brainly.com/question/18799790

#SPJ11

For these situations, state which measure of central tendency—mean, median, or mode—should be used.
a. The most typical case is desired. Mode
b. The distribution is open-ended Median
c. There is an extreme value in the data set. Median
d. The data are categorical. Mode
e. Further statistical computations will be needed. Mean
f. The values are to be divided into two approximately equal groups, one group containing the larger values and one containing the smaller values.

Answers

For the mentioned situations, the following measures of central tendency should be used :

a. Mode

b. Median

c. Median

d. Mode

e. Mean

f.  Median

When the values are to be divided into two approximately equal groups, the median should be used as the measure of central tendency.

This is because the median divides the dataset into two equal halves. Half of the data will be larger than the median, and half will be smaller than the median.

For example, if you have a dataset of 10 values: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the median is 5. This means that half of the values are larger than 5 and half are smaller than 5.

If you were to divide this dataset into two groups, one group containing the larger values and one containing the smaller values, you would put {1, 2, 3, 4, 5} in one group and {6, 7, 8, 9, 10} in the other group. Both groups would have five values and would be approximately equal.

Using the mean in this situation would not be appropriate, because the mean is sensitive to extreme values and would be pulled in the direction of any outliers.

Using the mode would not be useful either because the mode only tells us which value appears most frequently and does not give any information about the distribution of the data.

In summary, when dividing a dataset into two equal groups, the median should be used as the measure of central tendency because it gives a more accurate representation of the midpoint of the dataset, and is not influenced by extreme values or outliers.

To know more about central tendency refer here :

https://brainly.com/question/30218735#

#SPJ11




Jaden cut a square sheet of paper in half along a diagonal to make two equal


triangles. Each triangle has an area of 0. 08 square units. What is the length,


in units, of one side of the square?

Answers

Jaden cut a square sheet of paper in half along a diagonal to make two equal triangles. The length of one side of the square is approximately 0.56 units.

Let's assume that the length of one side of the square is "x" units. When the square sheet of paper is cut along the diagonal, it forms two congruent right triangles. The area of a right triangle is given by the formula: area = (1/2) * base * height.

In this case, each triangle has an area of 0.08 square units. Since the triangles are congruent, their areas are equal. Therefore, we can set up the equation: (1/2) * x * x = 0.08.

Simplifying the equation, we have: (1/2) *[tex]x^2[/tex] = 0.08. Multiplying both sides by 2, we get: [tex]x^2[/tex] = 0.16. Taking the square root of both sides, we find: x = √0.16 ≈ 0.4.

Therefore, the length of one side of the square is approximately 0.4 units, which corresponds to option A) 0.4 units.

Learn more about square root here:

https://brainly.com/question/29286039

#SPJ11

proposition. suppose n ∈ z. if n 2 is not divisible by 4, then n is not even

Answers

Proposition: Suppose n ∈ Z (n is an integer). If n^2 is not divisible by 4, then n is not even.

To prove this proposition, let's consider the two possible cases for an integer n: even or odd.

1. If n is even, then n = 2k, where k is an integer. In this case, n^2 = (2k)^2 = 4k^2. Since 4k^2 is a multiple of 4, n^2 is divisible by 4.

2. If n is odd, then n = 2k + 1, where k is an integer. In this case, n^2 = (2k + 1)^2 = 4k^2 + 4k + 1. This expression can be rewritten as 4(k^2 + k) + 1, which is not divisible by 4 because it has a remainder of 1 when divided by 4.

Based on these cases, we can conclude that if n^2 is not divisible by 4, then n must be an odd integer, and therefore, n is not even.

know more about proposition here

https://brainly.com/question/30895311

#SPJ11

how many 5-permutations are there of 11 distinct objects?

Answers

There are 55,440 possible 5-permutations of 11 distinct objects.

There are 55 5-permutations of 11 distinct objects.

To find the number of 5-permutations of 11 distinct objects, you need to use the formula for permutations, which is n!/(n-r)!, where n represents the total number of objects and r represents the number of objects to be arranged.

In this case, n = 11 (total number of distinct objects) and r = 5 (number of objects to be arranged).

Calculate (n-r)!
(11-5)! = 6!

Calculate 6!
6! = 6 × 5 × 4 × 3 × 2 × 1 = 720

Calculate n!
11! = 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 39,916,800

Divide n! by (n-r)!
39,916,800 ÷ 720 = 55,440

So, there are 55,440 possible 5-permutations of 11 distinct objects.

Learn more about permutations

brainly.com/question/30649574

#SPJ11

5. two wooden bridges with the lengths of 12 m 60 cm and 18 m 63 cm were made. what is the
difference in the length of both bridges?

Answers

The difference in length between the two bridges with the lengths of 12 m 60 cm and 18 m 63 cm is 6.03 meters.

To find the difference in length between the two bridges, we need to subtract the length of one bridge from the length of the other bridge.

Let's convert both lengths to the same unit, meters, for ease of calculation.

Length of the first bridge = 12 m 60 cm = 12.60 m

Length of the second bridge = 18 m 63 cm = 18.63 m

Now we can subtract the length of the first bridge from the length of the second bridge:

18.63 m - 12.60 m = 6.03 m

Therefore, the difference in length between the two bridges is 6.03 meters.

Learn more about length here:

https://brainly.com/question/31896631

#SPJ11

QUESTION 6


A professor has 125 students in her classes at the beginning of the semester, but 16 students withdraw from her


classes before Test #3. If she has 1 classes in total and each class has an equal number of students, how many


students are in each class? Round your answer to the nearest ones (i. E. , one student).

Answers

Given that a student takes 6 classes before Test #3. If she has 1 class in total and each class has an equal number of students, we need to find out how many students are there in each class?

Let's assume that the number of students in each class is 'x'. Since the student has only one class, the total number of students in that class is equal to x. So, we can represent it as: Total students = x We can also represent the total number of classes as:

Total classes = 1 We are also given that a student takes 6 classes before Test #3.So, Total classes before test #3 = 6 + 1= 7Since the classes have an equal number of students, we can represent it as: Total students = Number of students in each class × Total number of classes x = (Total students) / (Total classes)On substituting the above values, we get:x = Total students / 1x = Total students Therefore, Total students = x = (Total students) / (Total classes)Total students = (x / 1)Total students = (Total students) / (7)Total students = (x / 7)Therefore, the total number of students in each class is x / 7.Round off the answer to the nearest whole number (i.e., one student), we get: Number of students in each class ≈ x / 7

Know  more about find out how many students here:

https://brainly.com/question/21295513

#SPJ11

The matrix A is given below, followed by a sequence {x_k} produced by the power method. Use these data to estimate the largest eigenvalue of A, and given a corresponding eigenvector. A = [6 3 1 2]; [1 0], [1 0.2051], [1 0.2132, [1.0.2148] Choose the best estimate for the dominant eigenvalue below.

Answers

The best estimate is 6.0316, with eigenvector of [0.0063 0.0002 0.0025 0.9999].

How to find the best estimate for the dominant eigenvalue?

From the given sequence {[tex]x_k[/tex]}, we can estimate the largest eigenvalue of A using the power method.

Starting with an initial vector [tex]x_0 = [1 0][/tex], we can iteratively apply A to it, normalize the result, and use the resulting vector as the input for the next iteration.

The largest eigenvalue of A is estimated as the limit of the ratio of the norms of consecutive iterates, i.e.,

[tex]\lambda _{est} = lim ||x_k+1|| / ||x_k||[/tex]

Using this approach, we can compute the following estimates for λ_est:

k=0: [tex]x_0 = [1 0][/tex]

[tex]k=1: x_1 = [6 1], ||x_1|| = 6.0828\\k=2: x_2 = [37 6], ||x_2|| = 37.1214\\k=3: x_3 = [223 37], ||x_3|| = 223.1899\\k=4: x_4 = [1345 223], ||x_4|| = 1345.1404\\k=5: x_5 = [8101 1345], ||x_5|| = 8100.9334[/tex]

Therefore, we have:

[tex]\lambda_{est} \approx ||x_5|| / ||x_4|| \approx 6.0316[/tex]

The corresponding eigenvector can be taken as the final normalized iterate, i.e.,

[tex]v_{est} = x_5 / ||x_5|| \approx[/tex]  [0.0063 0.0002 0.0025 0.9999]

Therefore, the best estimate for the dominant eigenvalue of A is approximately 6.0316, with a corresponding eigenvector of [0.0063 0.0002 0.0025 0.9999].

Learn more about eigenvalue

brainly.com/question/31650198

#SPJ11

Suppose that Kira is measuring the amount of sleep that the residents of Decatur County get per night. She does not know the standard deviation, nor does she know the distribution of the amount of sleep all Decatur residents get. Therefore, she prefers to obtain a large sample.Kira thus enlists the help of her friend, Jadzia, who works for OkHarmony. This popular dating service finds matches for its clients by how they respond to numerous survey questions. Jadzia slips Kira's question into the mix, and from the member database of over a thousand male and female singles, she is able to obtain a sample of 101 responses. The sample mean is 8.78 hours a night with a sample standard deviation of 1.12 hours. There are no outliers in the sample.Kira plans to perform a t-test with an alpha level of α = 0.05 on the hypothesis that Decatur residents get an average of less than 8 hours of sleep per night. Evaluate all of the following five statements as true or false.The sample is a simple random sample. The population standard deviation is not known. There are no outliers in the sample.The population is normally distributed, or the sample size is large enough The requirements for a t-test are met.

Answers

True statements are: (1) The sample mean is 8.78 hours a night with a sample standard deviation of 1.12 hours. (2)There are no outliers in the sample. (3) The population standard deviation is not known.

False statements:

It is not stated explicitly in the problem that the sample is a simple random sample. We can assume that it is a random sample since Jadzia obtained the sample from the member database of OkHarmony, but we cannot confirm that it is simple random sample.

It is not stated in the problem that the population is normally distributed, nor is it stated that the sample size is large enough. Therefore, we cannot assume that the population is normally distributed, or that the sample size is large enough to satisfy the central limit theorem.

We cannot confirm that the requirements for a t-test are met because we do not know whether the population is normally distributed, or whether the sample size is large enough to satisfy the central limit theorem.

Therefore, we cannot assume that the distribution of the sample means is approximately normal, which is required for a t-test.


To know more about Sample mean refer here:

https://brainly.com/question/31101410

#SPJ11

Problem 2. Consider the following recurrences and solve them using the unrolling method (i.e. find a suitable function f(n) such that T(n) € O(f(n))). (a) T(n) = {2161-2 :n < 2, 2T(n − 2) +1 :n > 2. : Answer. (b) <3, T(n) = m) {T(n − 3) + on instag = Answer.

Answers

The solution of the function is 3, 3, 7, 15, 15 and 31.

Let's look at the recurrence relation you mentioned: T(n) = { 3 : n< 2 , 2T(n-2) + 1 : n≥ 2. This formula defines the function T(n) recursively, in terms of its previous values. To solve it using the unrolling method, we need to start with the base case T(0) and T(1), which are given by the initial condition T(n) = 3 when n < 2.

T(0) = 3

T(1) = 3

Next, we can use the recurrence relation to calculate T(2) in terms of T(0) and T(1):

T(2) = 2T(0) + 1 = 2*3 + 1 = 7

We can continue this process to compute T(3), T(4), and so on, by using the recurrence relation to "unroll" the formula and express each term in terms of the previous ones:

T(3) = 2T(1) + 1 = 23 + 1 = 7

T(4) = 2T(2) + 1 = 27 + 1 = 15

T(5) = 2T(3) + 1 = 27 + 1 = 15

T(6) = 2T(4) + 1 = 215 + 1 = 31

To know more about recurrences here

https://brainly.com/question/30887126

#SPJ4

Complete Question:

Consider the following recurrences and solve them using the unrolling method

a) T(n) = { 3 : n< 2 , 2T(n-2) + 1 : n≥ 2

If event E and F form the whole sample space, S, Pr(E)=0.7, and Pr(F)=0.5, then pick the correct options from below. Pr(EF) = 0.2 Pr(EIF)=2/5. Pr(En F) = 0.3 Pr(E|F)=3/5 Pr(E' UF') = 0.8 Pr(FE) = 4/7

Answers

In summary, the correct options for the probability are "Pr(EF) = 0.2", "Pr(E' UF') = 0.8", and "Pr(FE) = 4/7", while the incorrect options are "Pr(EIF) = 2/5", "Pr(E n F) = 0.3", and "Pr(E|F) = 3/5".

Given that event E and F form the whole sample space, S, and Pr(E)=0.7, and Pr(F)=0.5, we can use the following formulas to calculate the probabilities:

Pr(EF) = Pr(E) + Pr(F) - Pr(EuF) (the inclusion-exclusion principle)

Pr(E'F') = 1 - Pr(EuF) (the complement rule)

Pr(E|F) = Pr(EF) / Pr(F) (Bayes' theorem)

Using these formulas, we can evaluate the options provided:

Pr(EF) = Pr(E) + Pr(F) - Pr(EuF) = 0.7 + 0.5 - 1 = 0.2. Therefore, the option "Pr(EF) = 0.2" is correct.

Pr(EIF) = Pr(E' n F') = 1 - Pr(EuF) = 1 - 0.2 = 0.8. Therefore, the option "Pr(EIF) = 2/5" is incorrect.

Pr(E n F) = Pr(EF) = 0.2. Therefore, the option "Pr(E n F) = 0.3" is incorrect.

Pr(E|F) = Pr(EF) / Pr(F) = 0.2 / 0.5 = 2/5. Therefore, the option "Pr(E|F) = 3/5" is incorrect.

Pr(E' U F') = 1 - Pr(EuF) = 0.8. Therefore, the option "Pr(E' UF') = 0.8" is correct.

Pr(FE) = Pr(EF) / Pr(E) = 0.2 / 0.7 = 4/7. Therefore, the option "Pr(FE) = 4/7" is correct.

To know more about probability,

https://brainly.com/question/30034780

#SPJ11

True/False: size dimensions on a drawing control the tolerance on 90° angles.

Answers

False . The FCF would include a symbol, such as perpendicularity or angularity, that defines the tolerance zone and a value that specifies the allowable deviation within that zone. The size dimensions on a drawing, on the other hand, would only control the overall size of the part, such as its length, width, and height.

False. Size dimensions on a drawing indicate the allowable variation in the size of a part, while tolerance dimensions control the allowable variation in the location of features on the part.

Tolerances are typically specified using geometric dimensioning and tolerancing (GD&T) symbols and can control a variety of aspects of a part, such as orientation, location, form, and profile.

For 90° angles, the tolerance would typically be controlled by a feature control frame (FCF) that specifies the allowable deviation from a perfect 90° angle.

The FCF would include a symbol, such as perpendicularity or angularity, that defines the tolerance zone and a value that specifies the allowable deviation within that zone. The size dimensions on a drawing, on the other hand, would only control the overall size of the part, such as its length, width, and height.

Learn more about tolerance here:

https://brainly.com/question/30478622

#SPJ11

If the results of each game are decided by fair coin flip, what is the probability that a given team i is a k-winner?

Answers

Assuming that the results of each game are determined by a fair coin flip, the probability that a given team i will win exactly k games out of n total games can be calculated using the binomial distribution.

The binomial distribution is a probability distribution that describes the number of successes in a fixed number of independent trials, where each trial has the same probability of success. In this case, each game is an independent trial, with a probability of 0.5 for the team to win or lose.

The probability of a given team i winning exactly k games out of n total games is calculated using the formula P(k wins for team i) =[tex](n choose k) * p^k * (1-p)^(n-k)[/tex], where p is the probability of winning a single game (in this case, 0.5), and (n choose k) represents the number of ways to choose k games out of n total games.

The result will be a value between 0 and 1, representing the probability of the team winning exactly k games out of n total games.

To know more about probability refer to-

https://brainly.com/question/30034780

#SPJ11

A pair of vertical angles has measures (2y 5)° and (4y)°. What is the value of y? −52 −25 ​ 25 ​ 52.

Answers

Vertical angles are a pair of non-adjacent angles formed by the intersection of two lines. They are equal in measure. The value of y is 25.

In this case, we are given two vertical angles with measures (2y + 5)° and (4y)°. Since they are equal, we can set up an equation to find the value of y.

(2y + 5)° = (4y)°

To solve for y, we can start by subtracting (2y)° from both sides of the equation:

5° = 2y°

Next, divide both sides of the equation by 2 to isolate y:

2.5° = y°

Therefore, the value of y is 2.5° or 25.

Learn more about angles here:

https://brainly.com/question/31818999

#SPJ11

The population, P, of a city is changing at a rate dP/dt = 0.012P, in people per year. Approximately how many years will it take for the population to double? 57.762 58.108 83.333 166.667

Answers

The population, P, of a city is changing at a rate dP/dt = 0.012P, in people per year, and you want to know approximately how many years it will take for the population to double. To solve this problem, we can use the formula for exponential growth:P(t) = P₀ * e^(kt)


Here, P₀ is the initial population, P(t) is the population at time t, k is the growth rate, and e is the base of the natural logarithm (approximately 2.718).Since we want to find the time it takes for the population to double, we can set P(t) = 2 * P₀:
2 * P₀ = P₀ * e^(kt)
Divide both sides by P₀:
2 = e^(kt)
Take the natural logarithm of both sides:
ln(2) = ln(e^(kt))
ln(2) = kt
Now, we need to find the value of k. The given rate equation, dP/dt = 0.012P, tells us that k = 0.012. Plug this value into the equation:
ln(2) = 0.012t
To find t, divide both sides by 0.012:
t = ln(2) / 0.012 ≈ 57.762 years
So, it will take approximately 57.762 years for the population to double.

Learn more about population here

https://brainly.com/question/29885712

#SPJ11

Do men and women participate in sports for the same reasons? One goal for sports participants is social comparison - the desire to win or to do better than other people. Another is mastery - the desire to improve one's skills or to try one's best. A study on why students participate in sports collected data from independent random samples of 70 male and 70 female undergraduates at a large university. Each student was classified into one of four categories based on his or her responses to a questionnaire about sports goals. The four categories were high social comparison-high mastery (HSC-HM), high social comparison - low mastery (HSM-LM), low social comparison-high mastery (LSC-HM), and low social comparison - low mastery (LSC-LM). One purpose of the study was to compare the goals of male and female students. Here are the datadisplayed in a two-way table:Observed Counts for Sports GoalsGoalHSC-HMHSC LMLSC-HMLSC LMFemale 16 6 23 25Male 33 19 4 14a) Calculate the conditional distribution (in proportions) of the reported sports goals for each gender.b) Make an appropriate graph for comparing the conditional distributions in part (a).c) Write a few sentences comparing the distributions of sports goals for male and female undergraduates. d) Find the expected counts and display them in a two-way table similar to the table of observed countse) Do the data provide convincing evidence of a difference in the distributions of sports goals for male and female undergraduates at the university? Carry out an appropriate test at the a=0.05 significance level

Answers

Comparing the distributions of sports goals for male and female undergraduates, we can see that a higher proportion of male students reported high social comparison goals (HSC-HM and HSC-LM) compared to female students, while a higher proportion of female students reported low social comparison goals (LSC-HM and LSC-LM) compared to male students.

The conditional distribution (in proportions) of the reported sports goals for each gender are:

Female:

HSC-HM: 16/70 = 0.229

HSC-LM: 6/70 = 0.086

LSC-HM: 23/70 = 0.329

LSC-LM: 25/70 = 0.357

Male:

HSC-HM: 33/70 = 0.471

HSC-LM: 19/70 = 0.271

LSC-HM: 4/70 = 0.057

LSC-LM: 14/70 = 0.2

A stacked bar chart would be an appropriate graph for comparing the conditional distributions.

The chart would have two bars, one for each gender, with each bar split into four segments representing the four categories of sports goals.

Comparing the distributions of sports goals for male and female undergraduates, we can see that a higher proportion of male students reported high social comparison goals (HSC-HM and HSC-LM) compared to female students, while a higher proportion of female students reported low social comparison goals (LSC-HM and LSC-LM) compared to male students.

In terms of mastery goals, the proportions are relatively similar between male and female students.

To find the expected counts, we need to calculate the marginal totals for each row and column, and then use these to calculate the expected counts based on the assumption of independence.

The results are displayed in the table below:

Observed Counts and Expected Counts for Sports Goals

Goal HSC-HM HSC-LM LSC-HM LSC-LM Total

Female (Observed) 16 6 23 25 70

Expected 19.1 10.9 23.9 16.1 70

Male (Observed) 33 19 4 14 70

Expected 29.9 17.1 3.1 19.9 70

Total 49 25 27 39 140

To test whether there is a difference in the distributions of sports goals for male and female undergraduates at the university, we can use a chi-squared test of independence.

The null hypothesis is that the distributions are the same for male and female students, and the alternative hypothesis is that they are different. The test statistic is calculated as:

chi-squared = sum((observed - expected)² / expected)

Using the values from the table above, we get:

chi-squared = (16-19.1)²/19.1 + (6-10.9)²/10.9 + (23-23.9)²/23.9 + (25-16.1)²/16.1 + (33-29.9)²/29.9 + (19-17.1)²/17.1 + (4-3.1)²/3.1 + (14-19.9)²/19.9

= 10.32

The degrees of freedom for the test are (number of rows - 1) x (number of columns - 1) = 3 x 3 = 6 (since we have 2 rows and 4 columns).

Using a chi-squared distribution table with 6 degrees of freedom and a significance level of 0.05, the critical value to be 12.59.

For similar questions on sports goals

https://brainly.com/question/28293697

#SPJ11

What volume (in L) will 50.0 g of nitrogen gas occupy at 2.0 atm of pressure and at 65 °C? Item equation/constant PV = nRT R=0.0821 (L-atm)/(mol-K) A. 4.8 L B. 9.5 L C. 50L D. 25 L

Answers

Nitrogen gas with a mass of 50.0 g at 2.0 atm and 65 °C will occupy a volume of approximately 25 L.

What is the volume of the nitrogen gas?

The Ideal gas law or general gas equation is expressed as:

PV = nRT

Where P is pressure, V is volume, n is the amount of substance, T is temperature and R is the ideal gas constant ( 0.0821 Latm/molK )

Given that:

Mass of the Nitrogen gas m = 50.0 g

Pressure P = 2.0 atm

Temperature T = 65 °C = (65 + 273.15) = 338.15K

Amount of gas n = ?

Volume of gas V = ?

First, we determine the amount of nitrogen gas.

Note: Molar mass of Nitrogen = 28 g/mol

Hence

Number of moles of nitrogen gas (n) = mass / molar mass

n = 50.0g / 28g/mol

n = 25/14 mol

Substituting the values into the ideal gas law equation:

PV = nRT

V = nRT/P

V = ( 25/14 × 0.0821 × 338.15 ) / 2.0

V = 24.78 L

V = 25 L

Therefore, the volume of the gas is 25 L.

Option D) 25 L is the correct answer.

Learn more about Ideal Gas Law here: brainly.com/question/4147359

#SPJ1

help!
question below

Answers

Answer:

a) 2

b) 199

Step-by-step explanation:

Part A:

100*2 - 100 = 100

(You'd multiply 100x2 first, which is 200, then subtract 100, and get 100.)

Part B:

There's parentheses in part B, so these get calculated first.

(200-199) = 1.

1 x 200 = 200

C=(E/m)^(1/2)Part B Using the properties of exponents, apply the rational exponent to the numerator and the denominator, and then rationalize the denominator

Answers

The expression is rationalize to give C  [tex]= \frac{\sqrt{Em} }{m}[/tex]

How to rationalize the forms

From the information given, we have that the surd form is expressed as;

C=[tex](\frac{E}m} )^(^1^/^2^)[/tex]

This is represented as;

C =[tex]= \frac{\sqrt{E} }{\sqrt{m} }[/tex]

We need to know that the process of simplifying a fraction by removing surds (such as square roots or cube roots) from its denominator is known as rationalization of surds. A common approach involves selecting a conjugate expression that can remove the irrational surd by multiplying both the numerator and the denominator.

Then, we have;

C = [tex]= \frac{\sqrt{E} * \sqrt{m} }{\sqrt{m} * \sqrt{m} }[/tex]

multiply the values, we have;

C = [tex]\frac{\sqrt{Em} }{m}[/tex]

Learn more about surds at: https://brainly.com/question/840021

#SPJ4

at time t = 2, a particle is located at position (1, 2). if the particle moves in the vector field f(x, y) = hx 2 y 2 , 2xyi, find its approximate location at time t = 3.

Answers

The particle's approximate location at time t = 3 is (5, 6), (6, 8).

Find the location of the particle at time t = 3, given that it starts at (1, 2) and moves in the vector field f(x, y) =[tex]hx^2y^2[/tex], 2xyi.

We can use the formula for Euler's Method to approximate the particle's location at time t = 3:

x(3) = x(2) + f(x(2), y(2))(t(3) - t(2))

y(3) = y(2) + g(x(2), y(2))(t(3) - t(2))

where f(x, y) and g(x, y) are the x- and y-components of the vector field f(x, y) = hx2y2, 2xyi, respectively.

At time t = 2, the particle is located at (1, 2), so we have:

x(2) = 1

y(2) = 2

We can then calculate the x- and y-components of the vector field at (1, 2):

f(1, 2) = h(1)2(2)2, 2(1)(2)i = h4, 4i = (4, 4)

g(1, 2) = h(1)2(2)2, 2(1)(2)i = h4, 4i = (4, 4)

Plugging these values into the Euler's Method formula, we get:

x(3) = 1 + (4, 4)(1) = (5, 6)

y(3) = 2 + (4, 4)(1) = (6, 8)

Learn more about  location

brainly.com/question/14134437

#SPJ11

Solve the differential equation xy' = y + xe^8y/x by making the change of variable v = y/x.

Answers

This is the general solution to the given differential equation in terms of the variable v = y/x.

To solve the differential equation xy' = y + xe^(8y/x) by making the change of variable v = y/x, we first need to express y' in terms of v and x.

Using the product rule for differentiation, we have:

y' = (dv/dx)x + v

Substituting this expression for y' into the given differential equation, we get:

x((dv/dx)x + v) = y + xe^(8y/x)

Substituting v = y/x, we get:

x(dv/dx + v) = v + e^(8v)

Simplifying, we get:

xdv/dx = e^(8v)

Separating the variables and integrating, we get:

∫e^(8v)/v dv = ∫1/x dx

Using integration by substitution (u = 8v, du/dv = 8), we get:

(1/8)∫e^u/u du = ln|x| + C

Substituting back v = y/x, we get:

(1/8)∫e^(8y/x)/(y/x) dy = ln|x| + C

Simplifying and multiplying both sides by 8, we get:

∫e^(8y/x) dy/y = 8ln|x| + C

To learn more about variable visit:

brainly.com/question/17344045

#SPJ11

Calculate the given quantity if
u = i + j − 2k v = 3i − 2j + k w = j − 5k
(a) 2u + 3v
(b) | u |
(c) u · v
(d) u × v
(e) | v × w |
(f) u · (v × w)
(g) The angle between u and v (rounded to the nearest degree)

Answers

The solutions for given vectors are: (a) 7i - 5j - 5k, (b) sqrt(6), (c) -1, (d) 7i - 7j - 7k, (e) 17, (f) -7i - 13j + 7k, (g) 91 degrees.

(a) 2u + 3v = 2(i + j - 2k) + 3(3i - 2j + k) = (2+9)i + (2-6)j + (-4+3)k = 11i - 4j - k

(b) |u| = sqrt(i^2 + j^2 + (-2k)^2) = sqrt(1+1+4) = sqrt(6)

(c) u · v = (i + j - 2k) · (3i - 2j + k) = 3i^2 - 2ij + ik + 3ij - 2j^2 - jk - 6k = 3 - 2j - 2k

(d) u × v = det(i j k; 1 1 -2; 3 -2 1) = i(2-5) - j(1+6) + k(-2+9) = -3i - 7j + 7k

(e) |v × w| = |(-2i - 16j - 13k)| = sqrt((-2)^2 + (-16)^2 + (-13)^2) = sqrt(484) = 22

(f) u · (v × w) = (i + j - 2k) · (-2i - 16j - 13k) = -2i^2 - 16ij - 13ik + 2ij + 16j^2 - 26jk - 4k = -2 - 10k

(g) The angle between u and v can be found using the dot product formula: cos(theta) = (u · v) / (|u||v|). Plugging in the values from parts (c) and (b), we get cos(theta) = (-1/3) / (sqrt(6) * sqrt(14)). Using a calculator, we find that theta is approximately 110 degrees.

To know more about vectors,

https://brainly.com/question/31737683

#SPJ11

What is the end behavior of the function f(x)=−14x2?.

Answers

The end behavior of function f(x) = −14x² is that the graph approaches negative infinity as x approaches positive or negative infinity. We determine the end behavior of a polynomial function by examining the degree of the polynomial and the sign of the leading coefficient.

The given function is f(x) = −14x². Let's find out the end behavior of this function. End behavior is a term used to describe how a function behaves as x approaches positive infinity or negative infinity. For this, we use the leading coefficient and the degree of the polynomial function.

The degree of the given function is 2, and the leading coefficient is -14. Therefore, as x approaches positive infinity, the function f(x) approaches negative infinity, and as x approaches negative infinity, the function f(x) approaches negative infinity. The polynomial degree is even (2), and the leading coefficient is negative (-14).

In algebra, end behavior refers to the behavior of the graph of a polynomial function at its extremes. It may appear to rise without bounds (asymptotic behavior), approach a horizontal line, or drop without bounds on either side. It's a term used to describe how a function behaves as the input values approach the extremes. It is determined by examining the degree of the polynomial function and the sign of the leading coefficient.

The degree of the polynomial function is the highest exponent in the polynomial. In contrast, the leading coefficient is attached to the highest degree of the polynomial function. When determining the end behavior of a polynomial function, only the leading coefficient and the degree of the polynomial are considered.

The end behavior of a function is determined by the degree of the polynomial function and the sign of the leading coefficient. When the leading coefficient is positive, the polynomial rises without bounds as x approaches positive or negative infinity. When the leading coefficient is negative, the polynomial drops without bounds as x approaches positive or negative infinity.

Therefore, the end behavior of the given function f(x) = −14x² is that the graph approaches negative infinity as x approaches positive or negative infinity. We determine the end behavior of a polynomial function by examining the degree of the polynomial and the sign of the leading coefficient. In this case, the degree of the polynomial function is 2, and the leading coefficient is -14, which means that the graph will drop without bounds as x approaches positive or negative infinity.

To know more about the polynomial function, visit:

brainly.com/question/11298461

#SPJ11

If p varies jointly as q and r, find p when q = –4 and r = 7.


p = –45 when q = 3 and r = 14

Answers

When a variable varies jointly as two other variables, it means that the relationship between the variables can be expressed as a direct proportion.

Mathematically, we can write this as:

p = k * q * r

Where p is the variable that varies jointly, q and r are the other variables, and k is the constant of variation.

To find the value of p, we need to determine the value of the constant of variation, k. We can do this by substituting the given values of q, r, and p into the equation and solving for k.

Using the first set of values: q = -4, r = 7, and p = -45:

-45 = k * (-4) * 7

Simplifying further:

-45 = -28k

Dividing both sides by -28:

k = -45 / -28 = 45/28

Now that we have the value of k, we can use it to find p when q = 3 and r = 14.

p = (45/28) * 3 * 14

Simplifying:

p = 45 * 3 * 2

p = 270

when q = 3 and r = 14, p = 270.

To know more about equation visit:

brainly.com/question/29538993

#SPJ11

Please help


To determine whether 2126.5 and 58158 are in a proportional relationship, write each ratio as a fraction in simplest form.


What is 2 1/2/6.5 as a fraction in simplest form?


What is 5/8/1 5/8 as a fraction in simplest form?

Answers

[tex]\frac{2 \frac{1}{2} }{6.5}[/tex] as a fraction in simplest form is 5/13.

[tex]\frac{ \frac{5}{8} }{1 \frac{5}{8} }[/tex] as a fraction in simplest form is 5/13.

What is a proportional relationship?

In Mathematics, a proportional relationship is a type of relationship that produces equivalent ratios and it can be modeled or represented by the following mathematical equation:

y = kx

Where:

x and y represent the variables or data points.k represent the constant of proportionality.

Additionally, equivalent fractions can be determined by multiplying the numerator and denominator by the same numerical value as follows;

(2 1/2)/(6.5) = 2 × (2 1/2)/(2 × 6.5)

(2 1/2)/(6.5) = 5/13

(5/8)/(1 5/8) = 8 × (5/8)/(8 × (1 5/8))

(5/8)/(1 5/8) = 5/(8+5)

(5/8)/(1 5/8) = 5/13

In conclusion, there is a proportional relationship between the expression because the fractions are equivalent.

Read more on fraction here: brainly.com/question/29367657

#SPJ4

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

what is the value of e when sn2 and fe3

Answers

The value of e when Sn²⁺ and Fe³⁺ is 1.602 x 10⁻¹⁹ coulombs.

Your question involves Sn²⁺ and Fe³⁺, which represent tin(II) and iron(III) ions, respectively. The term "e" refers to the elementary charge, which is the absolute value of the charge carried by a single proton or the charge of an electron. In chemistry, this value is crucial for calculating the charge of ions in various chemical reactions.

The elementary charge, denoted as "e," is a fundamental constant with a value of approximately 1.602 x 10⁻¹⁹ coulombs.

This charge is applicable to any single proton or electron, regardless of the type of ion (Sn²⁺, Fe³⁺, or others) in question. It is important to note that the total charge of an ion will be the product of the elementary charge (e) and the ion's charge number (e.g., 2 for Sn²⁺ and 3 for Fe³⁺).

To know more about chemical reactions click on below link:

https://brainly.com/question/29762834#

#SPJ11

PLEASE EXPLAIN AND SHOW YOUR WORK

Answers

(a) The events "winning" and "playing at home" are not independent, because the probability of both the events are different;

(b) The events "losing" and "playing away" are also not independent, because both the events have different probability.

(a) To determine whether "winning" and "playing at home" are independent events, we need to check if the probability of winning is the same when team is playing at home or away.

From the table, we see that the probability of winning when playing at home is 0.2,

While the probability of winning when playing away is 0.05.

Since these probabilities are different, we can conclude that "winning" and "playing at home" are dependent events.

(b) To determine whether "losing" and "playing away" are independent events, we need to check if the probability of losing is the same whether the team is playing at home or away.

From the table, we see that the probability of losing when playing at home is 0.6,

While the probability of losing when playing away is 0.15.

Since these probabilities are different, we can conclude that "losing" and "playing away" are also dependent events.

Learn more about Probability here

https://brainly.com/question/30635387

#SPJ1

Other Questions
heavy metal developed out of the harder, more aggressive aspects of rock from the 1960s and 1970s. T/F? What must be provided for in all working spaces above service equipment?a. A water faucet to flush operator's eyesb. A drinking fountainc. Illuminationd. A wash basin Describe a method to determine the extension of the spring If 0. 25 L of H2(g) are collected at 25 C and 1. 1 atm. What will the pressure of the gas be if the temperature of the gas is increased to 30 C at a constant volume? The dimensions of a triangle with a base of 1. 5 m and a height of 6 m are multiplied by 2. How is the area affected? +Work a nurse teaching a 57-year-old client about the factors that must be considered around the use of hormone replacement therapy (hrt) should discuss what increased risk associated with the therapy? express the given quantity as a single logarithm. 1 5 ln (x 2)5 1 2 ln(x) ln (x2 3x 2)2 : A sample of size n = 57 has sample mean x = 58.5 and sample standard deviation s=9.5. Part 1 of 2 Construct a 99.8% confidence interval for the population mean L. Round the answers to one decimal place. A 99.8% confidence interval for the population mean is 54.4 Private not-for-profits must follow all applicable ____ standards in recording transactions.A) AICPA.B) GASB.C) FASB.D) SEC. what hot-button issue(s) raised by alabama governor george c. wallace in the 1968 presidential campaign became hallmarks of mainstream conservatism? The projectile is again launched from the same position, but with the cart traveling to the right with a speed v1 relative to the ground, as shown below (third image). The projectile again leaves the cart with speed vo relative to the cart at an angle above the horizontal, and the projectile lands at point Q, which is a horizontal distance D from the launching point. Express your answer in terms of vo, , and physical constants, as appropriate.(3) Give a physical reason why the projectile lands at point Q, which is not as far from the launch position as point P is, andexplain how that physical reason affects the flight of the projectile.(4) Derive an expression for v1. Express your answer in terms of vo, , D, and physical constants, as appropriate.After the launch, the carts speed is v2. Beginning at time t = 0, the cart experiences a braking force of F = -bv, where b is a positive constant with units of kg/s and v is the speed of the cart. Express your answers to the following in terms of m, b, v2, and physical constants, as appropriate. according to the textbook, the tendency of very young children to believe that television images are as real as real-life people and objects is referred to as: what are the crucial issues that emerge when we consider how racial and ethnic differences have been portrayed in the media? The price of a cell phone case was lowered from $5 to $3. By what percentage was the price lowered? Find the length of AC when given 2 angles and 1 side. Given what you know about how axon anatomy influences its physiology, determine which of the following sensations is more quickly perceived by the central nervous system.A. All of the sensations are perceived by the central nervous system at the same time and the only way the axons differ is the sensory information that they trasmit.B. Dull pain because C axons have the smallest diameter and no myelin, both of which increase conduction speed of action potentials.C. Sharp pain because A-delta axons have the smallest diameter and are thinly myelinated, both of which increase conduction speed of action potentials.D. Proprioception because A-alpha axons have the widest diameter and greatest degree of myelination, both of which increase conduction speed of action potentials. The most important consequence of segmentation in animals, from an evolutionary perspective, is that it A. allows organisms to grow much larger than would be possible without segmentation OB. allows body parts to be eaten by predators without killing the organism. o C has allowed organisms to alter their body forms in complex ways since evolution can alter the easily duplicated segments D. increases the mobility of an organism. E. reduces the surface area to volume ratio. according to research on group decision-making, groups are not particularly effective at: Patrick is writing a letter to persuade his parents to give him a weekly allowance. His parents occasionally give him money to buy a snack after school. But Patrick would like to receive a set amount of money each week. Which sentence best supports the purpose of Patrick's letter?1. I know you will carefully consider my request for a weekly allowance. 2. A weekly allowance would allow me to purchase a snack after school. 3. A weekly allowance would help me learn how to manage money myself. 4. I know some kids my age who get a weekly allowance from their parents. What is the best way to describe the evolutionary changes that occurred among the whales whilethe species evolved thick skulls?a.Mutations increased the skull thickness of more and more whales each year.b.The skull of each whale got a little thicker during its lifetime.c.The population changed randomly each year.d.Whales with thick skulls reproduced and became more common.