i need help with this problem

I Need Help With This Problem

Answers

Answer 1

Step-by-step explanation:

Pythagoras theorem

16²=7²+a²

a²=16²-7²

a²= 256 -49

a²=207

a=√207

a=14.38

a≈14.4 in. (approx)

Answer 2

Answer:

Step-by-step explanation:

As it is a right angle triangle, we can use Pythagorean theorem to find a

base² + altitude² = hypotenuse²

7² + a² = 16²

49 + a² = 256

       a² = 256 - 49

       a² = 207

     a = √207

a = 14.4 in


Related Questions

. Gemma plans to run 5 miles her first week and increase the amount she runs each week by 20% Which of the following is closest to the total distance Genna has run after 10 weeks.

A: 115 miles. B: 130 miles

C: 138 miles. D: 145 miles​

Answers

the answer is obviously D because of the amout of miles ran each week

Find the area if the pentagon. I’ll mark the brainiest :)

Answers

Answer:

688.19 inches

Step-by-step explanation:

Sita saves Rs. 1 today, Rs. 2 the next day, Rs. 4 the succeeding day and so on (each saving being twice of the preceding one). What will be total saving in two weeks time?
a

Answers

Answer:

Rs. 32767

Step-by-step explanation:

Because the amount is doubling every day, we can use the expression 1*2^15-1 because there is 1 to start with. Also cool trick! if you need to do 2^1+2^2+2^3+....+2^x, it will be equal to 2^(x+1)-1. So:

2^15-1

32768-1

32767

The square root of 7^16 is equal to 7^n for some positive integer n. Find n.

Answers

[tex]\sqrt{7^{16}} = 7^n\\\\\implies \left(7^{16}\right)^{\tfrac 12} = 7^n\\\\\implies 7^{\left(\tfrac 12 \times 16\right)}=7^n\\\\\implies 7^8 = 7^n\\\\\implies \ln 7^8 = \ln 7^n\\\\\implies 8\ln 7 = n \ln 7\\\\\implies n =8[/tex]

A perfect score on a test with 25 questions is 100. Each question is worth the same number of points. How many points is each question on the test worth

Answers

Answer:

4

Step-by-step explanation:

100 divided by 25 equals 4.

find the value of x ​

Answers

Answer:

See below, please

Step-by-step explanation:

[tex](2x + 9) + (4x - 3) = 90[/tex]

[tex]6x + 6 = 90[/tex]

[tex]6x = 90 - 6 = 84[/tex]

Hence

[tex]x = 14[/tex]

The loudness (L) of sound in decibels is related to intensity (I)measured in watts per square centimeter by the equation: L = 10log( I 10-16 ). Find the loudness of a whisper at 10-12 W/cm2. A) 35 decibels B) 40 decibels C) 45 decibels D) 50 decibels

Answers

The function L= 10 log(I/10^-16) is a logarithmic equation

The loudness of the whisper is 40 decibels

How to determine the loudness?

The function of the loudness is given as:

L= 10 log(I/10^-16)

When the intensity is 10^-12, the equation becomes

L= 10 log(10^-12/10^-16)

Evaluate the quotient

L= 10 log(10^4)

Apply the rule of logarithm

L= 10 * 4

Evaluate the product

L = 40

Hence, the loudness of the whisper is 40 decibels

Read more about decibels at:

https://brainly.com/question/25480493

spherical water tank of radius R = 5m is emptied through a small circular hole of radius r = 0.03 m at the bottom. The top of the tank is open to the atmosphere. The instantaneous water level h in the tank (measured from the bottom of the tank, at the drain) can be determined from the solution of the following ODE:
dh /dt =r²(2gh)^0.5/ 2hR-h²
where g = 9.81 m/s². If the initial (t = 0) water level is h=6.5 m, compute the time required to drain the tank to a level of h= 0.5m. Use the fourth-order Runge-Kutta method.

Answers

Answer:

water level is h=6.5 m, compute the time required to drain the tank to a level of h= 0.5m. Use the fourth-order Runge-Kutta method.

Step-by-step explanation:

water level is h=6.5 m, compute the time required to drain the tank to a level of h= 0.5m. Use the fourth-order Runge-Kutta method.

Vocabulary


1. Volume: A measure of ________ occupied by a __________-________________ figure.


1. Base: The __________ on which an object _______.


1. Height: The ______ distance from top to bottom, creates a ___-degree angle with the base.


1. Inverse Operation: The ________ of a math operation; the opposite of addition is ________ and the opposite of multiplication is ________.

1. Diameter: A ________ line going from one side of a ______ to the other through the _______.


1. Radius: The distance from the ______ to the ______ of a ______; _____ of the diameter.

Volume of a Cylinder
A ____________ is a _____________________ object with a _________________ base and top.

To find the ____________ of a ______________ we use the following formula:

Answers

Answer:

Step-by-step explanation:

. Volume: A measure of _space  occupied by a _three dimensional _ figure.

1. Base: The surface on which an object stands on.

1. Height: The _vertical distance from top to bottom, creates a _90° degree angle with the base.

1. Inverse Operation: The opposite of a math operation; the opposite of addition is subtraction and the opposite of multiplication is division.

1. Diameter: A straight line going from one side of a point on a circle to the other through the _center.

1. Radius: The distance from the center to the point of a circle;or half of the diameter.

Volume of a Cylinder

A cylinder is a three dimensional object with a circular base and top.

To find the volume of a cylinder we use the following formula:πr²h

Need help on number 10
If tan C is 3/4, find the sin C.

Answers

Answer:

sin C = 3/5

Step-by-step explanation:

see image.

It helps to draw a picture. Tan C is the ratio of the OPP/ADJ.

Pythagorean theorem or if you know Pythagorean triples are a shortcut to find the hypotenuse.

Once you know the hypotenuse, use the ratio for sine to solve the question. Sine is OPP/HYP.

see image.



You randomly draw twice from this deck of cards
0 с G|F. D C G
What is the probability of not drawing a C, then not drawing a C,
without replacing the first card? Write your answer as a decimal
rounded to the nearest hundredth.

Answers

The probability of not drawing C in neither draw is P = 0.5

How to get the probability?

All the cards have the same probability of being drawn, in this case, our set of cards is {F, D, C, G}

The probability of not drawing C is equal to the probability of drawing F, D or G. So we have 3 options out of 4, then the probability is:

p = 3/4.

Now we draw another, this time there are 3 cards, one of these is C, and the other two cards are not C. Then the probability of not drawing C again is equal to 2 over 3.

q = 2/3.

The joint probability (for both of these events to happen) is equal to the product of the individual probabilities:

P = p*q = (3/4)*(2/3) = 0.5

If you want to learn more about probability, you can read:

https://brainly.com/question/251701

Solve for x please :)

Answers

Answer:

see explanation

Step-by-step explanation:

look photo

[tex]\qquad\qquad\huge\underline{{\sf Answer}}♨[/tex]

The given pair of angles form linear pair, therefore their sum is equal to 180°

that is :

[tex]\qquad \sf  \dashrightarrow \:2(x - 26) + 3x + 2 = 180[/tex]

[tex]\qquad \sf  \dashrightarrow \:2x - 52 + 3x + 2 = 180[/tex]

[tex]\qquad \sf  \dashrightarrow \:5x - 50 = 180[/tex]

[tex]\qquad \sf  \dashrightarrow \:5x = 230[/tex]

[tex]\qquad \sf  \dashrightarrow \:x = 46 \degree[/tex]

Have a great day ~

Eva filled a bucket with 7 gallons of water. A few minutes later, she realizes only 1 3/5 of water remained. How much water had leaked out of the bucket?

Answers

Answer:

[tex]6 \frac{2}{5}[/tex]

Step-by-step explanation:

[tex]7 - 1 \frac{3}{5} = 6 \frac{2}{5}[/tex]

How can you tell that (496 + 77 + 189) x 10 is twice as large as (496 + 77 +189) x 5 without doing complicated calculations?​

Answers

Answer:

Because 10 is twice as large as 5.

Step-by-step explanation:

[tex]\large \rm \sum \limits_{n = 0}^ \infty \frac{( { - 1)}^{1 + 2 + 3 + \dots + n} }{(2n + 1 {)}^{2} }[/tex]​

Answers

The sum we want is

[tex]\displaystyle \sum_{n=0}^\infty \frac{(-1)^{T_n}}{(2n+1)^2} = 1 - \frac1{3^2} - \frac1{5^2} + \frac1{7^2} + \cdots[/tex]

where [tex]T_n=\frac{n(n+1)}2[/tex] is the n-th triangular number, with a repeating sign pattern (+, -, -, +). We can rewrite this sum as

[tex]\displaystyle \sum_{k=0}^\infty \left(\frac1{(8k+1)^2} - \frac1{(8k+3)^2} - \frac1{(8k+7)^2} + \frac1{(8k+7)^2}\right)[/tex]

For convenience, I'll use the abbreviations

[tex]S_m = \displaystyle \sum_{k=0}^\infty \frac1{(8k+m)^2}[/tex]

[tex]{S_m}' = \displaystyle \sum_{k=0}^\infty \frac{(-1)^k}{(8k+m)^2}[/tex]

for m ∈ {1, 2, 3, …, 7}, as well as the well-known series

[tex]\displaystyle \sum_{k=1}^\infty \frac{(-1)^k}{k^2} = -\frac{\pi^2}{12}[/tex]

We want to find [tex]S_1-S_3-S_5+S_7[/tex].

Consider the periodic function [tex]f(x) = \left(x-\frac12\right)^2[/tex] on the interval [0, 1], which has the Fourier expansion

[tex]f(x) = \frac1{12} + \frac1{\pi^2} \sum_{n=1}^\infty \frac{\cos(2\pi nx)}{n^2}[/tex]

That is, since f(x) is even,

[tex]f(x) = a_0 + \displaystyle \sum_{n=1}^\infty a_n \cos(2\pi nx)[/tex]

where

[tex]a_0 = \displaystyle \int_0^1 f(x) \, dx = \frac1{12}[/tex]

[tex]a_n = \displaystyle 2 \int_0^1 f(x) \cos(2\pi nx) \, dx = \frac1{n^2\pi^2}[/tex]

(See attached for a plot of f(x) along with its Fourier expansion up to order n = 10.)

Expand the Fourier series to get sums resembling the [tex]S'[/tex]-s :

[tex]\displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \left(\sum_{k=0}^\infty \frac{\cos(2\pi(8k+1) x)}{(8k+1)^2} + \sum_{k=0}^\infty \frac{\cos(2\pi(8k+2) x)}{(8k+2)^2} + \cdots \right. \\ \,\,\,\, \left. + \sum_{k=0}^\infty \frac{\cos(2\pi(8k+7) x)}{(8k+7)^2} + \sum_{k=1}^\infty \frac{\cos(2\pi(8k) x)}{(8k)^2}\right)[/tex]

which reduces to the identity

[tex]\pi^2\left(\left(x-\dfrac12\right)^2-\dfrac{21}{256}\right) = \\\\ \cos(2\pi x) {S_1}' + \cos(4\pi x) {S_2}' + \cos(6\pi x) {S_3}' + \cos(8\pi x) {S_4}' \\\\ \,\,\,\, + \cos(10\pi x) {S_5}' + \cos(12\pi x) {S_6}' + \cos(14\pi x) {S_7}'[/tex]

Evaluating both sides at x for x ∈ {1/8, 3/8, 5/8, 7/8} and solving the system of equations yields the dependent solution

[tex]\begin{cases}{S_4}' = \dfrac{\pi^2}{256} \\\\ {S_1}' - {S_3}' - {S_5}' + {S_7}' = \dfrac{\pi^2}{8\sqrt 2}\end{cases}[/tex]

It turns out that

[tex]{S_1}' - {S_3}' - {S_5}' + {S_7}' = S_1 - S_3 - S_5 + S_7[/tex]

so we're done, and the sum's value is [tex]\boxed{\dfrac{\pi^2}{8\sqrt2}}[/tex].

i need help
Simplify the expression 63 + 5(4 − 2).

28
36
226
234

Answers

Answer:

226

Step-by-step explanation:

Given:

Simplify 6^3+5(4-2)

Note:

I think you meant 6^3 because if you solve 63+5(4-2):

63+5(4-2)

63+5 * 2

63 + 10

73
Solve:

6^3 + 5(4 - 2 )    

6^3 + 5 x 2

6 x 6 x 6 = 216

226 + 5 x 2

5 x 2 = 10

216 + 10 = 226

~Lenvy~

A card is picked from a standard deck of 52 cards. Determine the odds against and the odds in favor of selecting a red face card (king, queen, or jack).

Answers

6 red face cards

->in favour:

6/52

= 3/26

-> against:

52-6= 46

46/52

=23/26


An airplane flies with a constant speed
of 840 km/h. How far can it travel in
1 hour?

Answers

Answer:

  840 km

Step-by-step explanation:

The speed expression ...

  840 kilometers per hour

means the plane files 840 kilometers in each hour.

In 1 hour, it will travel 840 km.

Can somebody help me pls!

Answers

Answer: C

Step-by-step explanation:

Just look at a z-score table and multiply by 100.

-> (0.308538)(100) is about 30.85%

Please the answer ... Integral

Answers

Answer:

[tex]\frac{dx^{2} (x+1)S^{2} }{2(x^{2} +6x+3)^{2} }+ C[/tex]

Step-by-step explanation:

What is the total height of the plants that measured 1
1/8 and
1/4?

Answers

It is 1 and 3/8 because 1 and 1/8 plus 1/4 which is equal to 2/8 is 1 3/8.

What is the approximate volume of a cone with a height of 9 ft and radius of 3 ft? Use 3.14 to approximate pi, and express your final answer to the nearest hundredth Enter your answer as a decimal in the box. ft3​

Answers

Answer:
84.78 ft3

Steps:
Take note.
V = Volume
r = radius
h = height

V = (Pi) * (r^2 ) * (h/3)

V = (3.14) * (3^2) * (9/3)
V = (3.14) * (9) * (3)
V = 84.78

Determine the values of k for which the function f(x) = 4x^2-3x + 2kx + 1 has two zeros. Check these values in the original equation. ​

Answers

k must be greater than or equal to 22.75 to have two different zeros.

How to determine the value of missing coefficient in second order polynomials

Second order polynomials are algebraic expressions that observe the following form:

[tex]p(x) = a\cdot x^2 + b\cdot x + c[/tex]   (1)

Where:

a, b, c - Coefficientsx - Independent variable

For polynomials of the form p(x) = 0, we can infer the nature of their roots by applying the following discriminant:

d = b² - 4 · a · c   (2)

According to (2), there are three cases:

If d < 0, then there are two conjugated complex roots.If d = 0, then the two roots are the same real number.If d > 0, then the two roots are two distinct real numbers.

Now we have the following discriminant case:

-(3 + 2 · k)² - 4 · (1) · (4) ≠ 0

-(9 + 6 · k + 4 · k²) - 16 ≠ 0

-9 - 6 · k - 4 · k² - 16 ≠ 0

4 · k²+ 6 · k +25 ≠ 0

This characteristic polynomial has two conjugated complex roots, then we conclude that all values of k must positive or negative, but never zero. By graphng tools we find that k must be greater than or equal to 22.75 to have two different zeros.

To learn more on polynomials, we kindly invite to check this verified question: https://brainly.com/question/11536910

Question 2:
If the following frequency distribution shows the average number of students per teacher in the 50 major cities of Pakistan
Class Limits Frequency
9-11 3
12 – 14 5
15 – 17 12
18 – 20 18
21 – 23 8
24 – 26 4
Table 1
Determine
• Range
• Mean
• Median
• Mode
• Standard Deviation
• Relative Dispersion
• Variance
• Kurtosis

Answers

With the frequecy distribution shown in the 50 cities of pakistan,

range = 18mean = 18.1median = 19.8333mode = 19.125kurtosis = 2.7508Standard deviation = 3.75

How to find the Range

= highest value - lowest value

= 26.5 - 8.5

= 18

How to find the mean

= ∑ f x / ∑ f

= ∑ f x / N

= 905 / 50

= 18.1

median

= lower limit + ( N/2 - C ) * h / ( frequency of the class interval )

C = cumulative frequency preceeding to the median class frequency

h = class interval

= 18.5 + ( 50 / 2 - ( 5 + 12 ) ) * 3 / 18

= 18.5 + 1.3333

= 19.8333

How to find the mode

The mode is the value with the highest frequency occurence. This is under class 18 - 20

mode = lower limit + ( ( f1 - f0 ) / (2*f1 - f0 - f2 ) ) * h

f1 = fequency of the modal class

f0 = freqency of the preceeding modal class

f2 = frequency of the next modal class

h = class interval

= 18.5 + ( ( 18 - 12 ) / (2 * 18 - 12 - 8 )  ) * 3

= 18 + ( 0.375 ) * 3

= 19.125

How to find the standard deviation

= sqrt ( 1 / N ∑ f ( x - x' )^2 )

= sqrt (1  / 50 * 706.5

= 3.7589

How to solve for relative dispersion

=  standard deviation / mean

= 3.7589 / 3

= 1.2530

What is the variance?

= ( standard deviation )^2

= ( 3.7589 )^2

= 14.1293

How to solve for kurtosis

=  ∑ f ( x - x' )^4 / ( N * ( standard deviation )^4 )

= 27459.405 / ( 50 * 3.7589^4 )

= 2.7509

Read more on frequency distribution here: https://brainly.com/question/1094036

Which function has a maximum with the same maximum value as
f(x) = – |x + 3| – 2? f(x) = (x + 3)2 – 2 f(x) = –(x – 6)2 – 3

Answers

Answer:

The answer is c on edge or f(x) = 1 sqt x + 6 -2

Step-by-step explanation:

From the given two options, none of them has a function that has the same maximum value as f(x) = -|x+3|-2.

What is a function?

A function is a correspondence between input numbers (x-values) and output numbers (y-values). It is used to describe an equation.

Given that:

f(x) = -|x + 3| - 2

Suppose that x = c is a critical point of (x) then,

If f'(x) > 0 to the left of x = c and f'(x) < 0 to the right of x = c;

then x = c is a local maximum.

If f'(x) < 0 to the left of x = c and f'(x) > 0 to the right of x = c;

then x = c is a local minimum.

If f'(x) is the same sign on both sides of x = c;

then x = c and is neither a local maximum nor a local minimum.

From the given equation, the critical points: x = -3

The intervals is: Increasing at -∞ < x < -3 and decreasing at -3<x<∞

If we put the point x = -3 into - |x+3|-2

Then, y = -2 and it is Maximum at (-3, -2)

Only f(x) = (x+3)^2 - 2 has a  minimum at (-3,-2)

We can therefore conclude that none of them has a function that has the same maximum value as f(x) = -|x+3|-2.

Learn more about the maximum and minimum of a function here:

https://brainly.com/question/6787214

#SPJ9

How can i prove this property to be true for all values of n, using mathematical induction.

ps: spam/wrong answers will be reported and blocked.​

Answers

Proof -

So, in the first part we'll verify by taking n = 1.

[tex] \implies \: 1 = {1}^{2} = \frac{1(1 + 1)(2 + 1)}{6} [/tex]

[tex] \implies{ \frac{1(2)(3)}{6} }[/tex]

[tex]\implies{ 1}[/tex]

Therefore, it is true for the first part.

In the second part we will assume that,

[tex] \: { {1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} = \frac{k(k + 1)(2k + 1)}{6} }[/tex]

and we will prove that,

[tex]\sf{ \: { {1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k + 1)(k + 1 + 1) \{2(k + 1) + 1\}}{6}}}[/tex]

[tex] \: {{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k + 1)(k + 2) (2k + 3)}{6}}[/tex]

[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{k (k + 1) (2k + 1) }{6} + \frac{(k + 1) ^{2} }{6} [/tex]

[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{k(k+1)(2k+1)+6(k+1)^ 2 }{6} [/tex]

[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)\{k(2k+1)+6(k+1)\} }{6}[/tex]

[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)(2k^2 +k+6k+6) }{6} [/tex]

[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)(2k^2+7k+6) }{6} [/tex]

[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)(k+2)(2k+3) }{6} [/tex]

Henceforth, by using the principle of mathematical induction 1²+2² +3²+....+n² = n(n+1)(2n+1)/ 6 for all positive integers n.

_______________________________

Please scroll left - right to view the full solution.

According to the line plot how many apples weigh 5/8 of a pound

Answers

Answer:

Answer:4 apples weigh 5/8 pound.

Step-by-step explanation:

Answer:

2(−5) − 10 = 2(0)

Step-by-step explanation:

If you substitute the values x = 0 and y = −5 into the second equation, you get a false statement

Find the area of sector RST Enter your answer in terms of a fraction of it and rounded to the nearest
hundredth.

Answers

Fort nite battle pass is 8 dollars

Find the missing information for the triangle.
*not drawn to scale
• Make sure to find the missing angle measure and the 2 missing side
lengths.

Answers

missing angle:

180° - 90° - 30°

180° - 120°

60°

missing sides:

(a)

[tex]\rightarrow \sf tan(x)= \dfrac{opposite}{adjacent}[/tex]

[tex]\rightarrow \sf tan(30)= \dfrac{4}{adjacent}[/tex]

[tex]\rightarrow \sf adjacent= \dfrac{4}{tan(30)}[/tex]

[tex]\rightarrow \sf adjacent= 4\sqrt{3}[/tex]

[tex]\rightarrow \sf adjacent= 6.93 \ cm[/tex]

(b)

[tex]\sf \rightarrow sin(x)= \dfrac{opposite}{hypotensue}[/tex]

[tex]\sf \rightarrow sin(30)= \dfrac{4}{hypotensue}[/tex]

[tex]\sf \rightarrow hypotensue= \dfrac{4}{ sin(30)}[/tex]

[tex]\sf \rightarrow hypotensue= 8 \ cm[/tex]

Answer:

m∠X = 60°

BX = 8 cm

BM = 4√3 cm

Step-by-step explanation:

The sum of the interior angles of a triangle is 180°

Given:

m∠B = 30°m∠M = 90°

⇒ m∠B + m∠M + m∠X = 180°

⇒ 30° + 90° + m∠X = 180°

⇒ 120° + m∠X = 180°

⇒  m∠X = 180° - 120°

⇒  m∠X = 60°

Using the sine rule to find the side lengths:

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

(where A, B and C are the angles, and a, b and c are the sides opposites the angles)

Given:

m∠X = 60°m∠B = 30°m∠M = 90°MX = 4 cm

[tex]\implies \dfrac{4}{\sin 30\textdegree}=\dfrac{BX}{\sin 90\textdegree}=\dfrac{BM}{\sin 60\textdegree}[/tex]

[tex]\implies BX=\sin 90\textdegree \cdot\dfrac{4}{\sin 30\textdegree}[/tex]

              [tex]=1 \cdot \dfrac{4}{\frac12}[/tex]

              [tex]=1 \cdot 4 \cdot 2[/tex]

              [tex]=8 \textsf{ cm}[/tex]

[tex]\implies BM=\sin 60\textdegree \cdot\dfrac{4}{\sin 30\textdegree}[/tex]

              [tex]=\dfrac{\sqrt{3}}{2}\cdot \dfrac{4}{\frac12}[/tex]

              [tex]=\dfrac{\sqrt{3}}{2}\cdot 4 \cdot 2[/tex]

              [tex]=4\sqrt{3} \textsf{ cm}[/tex]

How do you know that the Pythagorean Theorem is true?

Answers

The fact that the angles in a triangle add up to 180 indicates that it is actually a square). There are also four right triangles, each with a base and a height. The Pythagorean Theorem is reached when a2 + b2 = c2.

Other Questions
why is an iceberg more dense than a ship? To what policy was John F Kennedy referring when he used the term, "our past," and suggested that the United States might have been unfair and rigid in its approach? The mean on a statewide biology test was 76 with a standard deviation of 11. Harris county sampled the scores of some of its students and reported a mean of 80 with a margin of error of 2.3.What is the range of reasonable means for Harris County's sample?Range: ____ to ____ Juan and Matthew each have gardens. Juan's garden is 16 feet long and 12 feet wide. Matthew's garden is 18 feet long and 21 feet wide. Area is found by multiplying length and width. What is the total area of the two gardens? What was Napolean Bonepart's biggest war victory? Which plant structures are common to all angiosperms? Help!!! 8. Determine whether each pair of functions f and g are inverses. Explain your reasoning. The Gothic style of art began in the early 12th century, with the rebuilding of the Abbey Church of St. Denis between 1137 and 1144. This happened in what country?A. ItalyB. FranceC. EnglandD. Ireland During light detection in a photoreceptor, light directly causes what molecular change?. During an argument with a coworker, analiese became increasingly hostile and profane. this would best be described as ______ communication. multiple choice question. Which product most likely has a demand that is inelastic?. What time will it take to obtain double of the interest on Rs. 2000 for 3 years at the rate of 15% per annum? The author's purpose describes? (1 point) A.the reason the author is writing the story. B.the reason an author organizes a story. C.the way in which an author develops a story. D.the way in which an author identifies his or her audience. What is the difference between j&j vaccine and pfizer A High Schools football Stadium holds a total of 7,000 fans. A survey shows that of the total number of fans, 68% root for the home team. How many fans attending a football game are rooting for the home team?A. 4,760B.2,240C. 47,600D. 5,512 Which of the following is NOT one of the causes of ocean currents? A. wind patterns B. the planet's rotationC. unequal heating of surface waters D. the different seasonspls help Please help me with this A boy of mass 50kg runs a set of steps of total height of 10cm. Calculate the work done (g =10) which sentence uses the underlined word incorrectly? the rectangle below initially has dimensions of 10 inches and 14 inches as shown. after both dimensions have been increased by a length of x, the total area of the resulting rectangle is 320 square inches. algebraically determine the value of x.