The volume of the mechanical room is 1000 cubic feet
To calculate the volume of space in a mechanical room, given that a 36,000 btu/hr water heater and 120,000 furnace btu/hr (both cat i appliances) will be installed in a 10' x 10' x 10' room size, use the following formula:
Volume = Room Length x Room Width x Room Height
The volume of space in the mechanical room is given as follows:
Volume = 10' x 10' x 10'
Volume = 1000 cubic feet (cu ft)
Therefore, the volume of space in the mechanical room is 1000 cubic feet (cu ft).
Learn more about the volume of space room at https://brainly.com/question/26491581
#SPJ11
a skater is rotating in place on an ice rink, holding their arms straight out. while still spinning, they pull their arms in to their chest. what effect does this have on their angular momentum?
When the skater pulls their arms in to their chest, their moment of inertia decreases, but their angular velocity remains constant.
What is the angular momentum?A skater is rotating in place on an ice rink, holding their arms straight out. while still spinning, they pull their arms in to their chest the effect does this have on their angular momentum is that the pulling the arms in to the chest will decrease the skater's angular momentum. arms are pulled in to the chest, the skater's rotational inertia decreases, which results in a decrease in their angular momentum.
Angular momentum is a measure of the amount of rotational motion an object has about an axis. The axis can be any point, but it is usually the center of mass of the object. In physics, angular momentum is denoted by the letter L.
As a result, their angular momentum decreases.
Read more about momentum here:
https://brainly.com/question/1042017
#SPJ11
in theory, a single earthquake should have only one magnitude. true or false?
True. Earthquakes should have only one magnitude, but in practice, different measurement methods and aftershocks can result in some level of uncertainty and multiple values.
The magnitude of an earthquake is a measure of the amount of energy released during a seismic event. Theoretically, a single earthquake should only have one magnitude, which is determined by analyzing the amplitude of the seismic waves recorded on seismographs. However, in practice, different methods of measurement or different seismic stations can yield slightly different magnitude values, resulting in some level of uncertainty in the reported magnitude. Furthermore, earthquakes can cause aftershocks, which are smaller seismic events that occur after the main earthquake. These aftershocks can have their own magnitudes, which are typically smaller than the main earthquake but can still cause damage and contribute to the overall seismic activity in the region.
learn more about aftershocks here:
https://brainly.com/question/6843834
#SPJ4
Solve the circuit shown in the figure above, also explain how you did it
Answer:
Explanation:
Using Kirchhoff's laws, we can solve for the current i:
At the node where the 2Ω and 4Ω resistors meet, the current is split into two branches, i and i1. Applying Kirchhoff's current law (KCL), we have:
i + i1 = 12/2 = 6 A
At the loop with the 2Ω, 4Ω, and 5Ω resistors, applying Kirchhoff's voltage law (KVL), we have:
-20 + 2i + 4i1 + 5i1 = 0
-20 + 6i1 + 2i = 0
6i1 + 2i = 20
3i1 + i = 10
We can solve this system of equations by substitution, which gives:
i = 2 A
Therefore, the current through the 2Ω resistor is 2 A. The answer is (A) 2 A.
C. Demonstrate the effect of simple machines on work.
Simple machines make work.
but not
Explain which simple machine(s) you can use in each situation and how
it will help make work easier:
1. Putting a motorcycle into the back of a trailer.
2. Lifting a flag to the top of the flagpole.
3. Moving dirt from the front yard to the backyard.
4. Attaching two boards together.
5. Splitting a log in half.
6. Cutting paper.
7. Lifting a car to change the tire.
8. Moving from the bottom floor of the house to the top floor.
9. Opening a can of peaches.
10. Cutting a piece of cheese.
Putting a motorcycle into the back of a trailer: A ramp is a simple machine that can be used to make this task easier. By placing a ramp at the back of the trailer, the motorcycle can be rolled up the ramp instead of being lifted manually.
The Explanation of the simple machines to be usedLifting a flag to the top of the flagpole: A pulley is a simple machine that can be used to make this task easier. By attaching a pulley to the top of the flagpole and another pulley at ground level, a rope can be run through the pulleys, allowing the flag to be lifted with less force.
Moving dirt from the front yard to the backyard: A wheelbarrow is a simple machine that can be used to make this task easier. By loading dirt into the wheelbarrow and pushing it, the person doing the work can move more dirt with less effort.
Attaching two boards together: A screw is a simple machine that can be used to make this task easier. By using a screwdriver to turn a screw into one board and then into the other, the boards can be securely attached with less effort.
Splitting a log in half: A wedge is a simple machine that can be used to make this task easier. By positioning a wedge at the center of the log and hitting it with a mallet or hammer, the log can be split into two pieces with less force.
Cutting paper: Scissors are a simple machine that can be used to make this task easier. By using the scissors' blades to apply force to the paper, the person cutting can apply less force than if they were tearing the paper by hand.
Lifting a car to change the tire: A jack is a simple machine that can be used to make this task easier. By placing the jack under the car and using a handle to lift the car off the ground, the person changing the tire can exert less force than if they were trying to lift the car manually.
Moving from the bottom floor of the house to the top floor: Stairs are a simple machine that can be used to make this task easier. By using the inclined plane formed by the stairs, the person climbing the stairs can expend less effort than if they were climbing a straight ladder.
Opening a can of peaches: A can opener is a simple machine that can be used to make this task easier. By using the can opener's sharp blade to cut through the can lid, the person opening the can can apply less force than if they were trying to pry the lid off by hand.
Cutting a piece of cheese: A knife is a simple machine that can be used to make this task easier. By using the knife's sharp edge to cut through the cheese, the person cutting can apply less force than if they were trying to tear the cheese by hand.
Read more about simple machines here:
https://brainly.com/question/28750066
#SPJ1
A simple machine is an expression used to basically describe a tool that helps make work easier.
What are examples of simple machines?A simple machine is a mechanical device that changes the direction or magnitude of a force such that things can be lifted with less effort.
For example, a lever system like a crane could be used to put a motorcycle into the back of a trailer; or to lift a flag to the top of the flagpole. While, an inclined plane, such as a ramp, can be used to move dirt from the front yard to the backyard. And a screw can be used to attach two boards together.
A wedge, on the other hand, can be used to split a log in half. A pair of scissors, which is a type of lever, can be used for cutting paper. Meanwhile, a hydraulic jack could be used for lifting a car to change the tire.
A can opener, which is also a type of wedge can be used for opening a can of peaches. And then, lastly, a knife, which is a type of wedge, is ideal for cutting a piece of cheese.
You can learn more about simple machines here https://brainly.com/question/14696504
#SPJ1
Suppose two charges Q1 and Q2 are placed a distance R from a point P. If the magnitude of the net electric feld at P is twice the electric field due to charge 02, this means that the electric field due to charge Q1 is three times greater than the field by charge Q2 and charge Q1 and Q2 are of the same sign. Hint: This means R1=R2 True or False
The given statement is true. Because since the net electric field at point P is twice the electric field due to charge Q₂, this means that the electric field due to charge Q₁ must be three times greater than the field by charge Q₂. Therefore, R₁ = R₂.
The electric field, E is a vector quantity that exists in the vicinity of electric charges. The electric field, E exists in the region of space where an electric charge or a collection of charges is present. Electric charges have an effect on each other, which is accomplished via the electric field.
The electric field is a force field that surrounds the electric charges. If there are two charges Q₁ and Q₂ placed at a distance R from a point P, the electric field at P due to each charge is given by,
E₁ = (1/4πε₀) × (Q1/R²) and E2 = (1/4πε₀) × (Q2/R²)
The electric field, E, at point P due to both charges is given by,
E = E₁ + E₂
If the magnitude of the net electric field at P is twice the electric field due to charge Q₂, this means that the electric field due to charge Q₁ is three times greater than the field due to charge Q₂ and that charges Q₁ and Q₂ are of the same sign.
Therefore, R₁ = R₂ is true.
Leran more about electric field at https://brainly.com/question/14372859
#SPJ11
the drawing shows a 15.0-kg ball being whirled in a circular path on the end of a string. the motionoccurs on a frictionless, horizontal table. the angular speed of the ball is 12 rad/s. the string has amass of 0.0230 kg. how much time does it take for a wave on the string to travel from the center ofthe circle to the ball
The time it takes for the wave on the string to travel from the center of the circle to the ball is 5.64 m/12 m/s = 0.47 s.
The wave on the string will take a certain amount of time to travel from the center of the circle to the ball. To calculate this time, we will use the equation:
Time = Distance/Velocity
The distance is equal to the circumference of the circle, which is equal to 2πr. In this case, the radius is (15.0 kg/9.81 m/s2)/12 rad/s = 0.90 m. Therefore, the distance is 2π(0.90 m) = 5.64 m.
The velocity is equal to the speed of the wave along the string, which is equal to the angular speed of the ball, which is 12 rad/s. Therefore, the velocity is 12 m/s.
Therefore, the time it takes for the wave on the string to travel from the center of the circle to the ball is 5.64 m/12 m/s = 0.47 s.
Learn more about speed of the wave: brainly.com/question/3148541
#SPJ11
A converging lens of focal length 20cm Forms a real Image of 4cm high of an object which is 5cm high. If the Image is 36cm away from the lens, determine by graphical method the position of the object.
Answer:
in image
Explanation:
I don't think so it helped but through this you can do the question exactly like this ( in this way) ...
Studying a spectrum from a star can tell us a lot. All of the following statements are true except one. Which statement is not true?The total amount of light in the spectrum tells us the star's radius.We can identify chemical elements present in the star by recognizing patterns of spectral lines that correspond to particular chemicals.Shifts in the wavelengths of spectral lines compared to the wavelengths of those same lines measured in a laboratory on Earth can tell us the star's speed toward or away from us.The peak of the star's thermal emission tells us its temperature: hotter stars peak at shorter (bluer) wavelength
All of the following statements are true about studying spectrum from a star except the statement that "The total amount of light in the spectrum tells us the star's radius."
It is possible to identify chemical elements present in the star by recognizing patterns of spectral lines that correspond to particular chemicals. In other words, we can determine which elements are present in a star by analyzing the spectrum of the light it emits. This is because every chemical element has a unique spectrum of energy that it emits.
The wavelength shifts of spectral lines compared to the wavelengths of those same lines measured in a laboratory on Earth can tell us the star's speed toward or away from us. This is known as the Doppler effect, and it enables astronomers to calculate how fast a star is moving relative to Earth. For example, if the spectral lines are shifted towards the blue end of the spectrum, it means that the star is moving towards us.
On the other hand, if the spectral lines are shifted towards the red end of the spectrum, it means that the star is moving away from us.The peak of the star's thermal emission tells us its temperature: hotter stars peak at shorter (bluer) wavelengths. This is because the hotter an object is, the more energy it radiates, and the shorter the wavelength of that radiation. Therefore, the peak of the thermal emission spectrum provides an indication of the star's temperature.
More on spectrum: https://brainly.com/question/14965583
#SPJ11
true or false if the whole picture plane is affected by aerial diffusion, it stops being an effective indicator of depth.
If the whole picture plane is affected by aerial diffusion, it stops being an effective indicator of depth - this statement is true.
Aerial diffusion is the scattering of light by particles in the air. These particles cause distant objects to appear fainter and bluer than closer objects, leading to a decrease in visual clarity and the ability to perceive depth. Aerial diffusion can be utilized in painting and drawing to create an atmospheric perspective, which produces a sense of depth by making objects are that further away appear hazier and less distinct than those that are closer. However, if the entire picture plane is affected by aerial diffusion, this can make it difficult to distinguish between objects at different depths, which can result in a lack of clarity and depth perception in the painting or drawing.
A picture plane is a theoretical plane that corresponds to the surface of a painting or drawing. The picture plane is where the artist organizes and arranges the various elements of the composition to create a visual representation of a scene. The picture plane is where the viewer's eye interacts with the artwork, and where the illusion of depth and space is created. In this context, the picture plane is an important factor in the creation of depth and atmosphere in a painting or drawing.
Learn more about aerial diffusion:
https://brainly.com/question/1381101
#SPJ11
electromagnetic induction click the links to open the resources below. these resources will help you complete the assignment. once you have created your file(s) and are ready to upload your assignment, click the add files button below and select each file from your desktop or network folder. upload each file separately.
As a question-answering bot, I cannot provide the links to open the resources as they have not been mentioned in the question. However, I can provide an explanation for the concept of electromagnetic induction.
What is electromagnetic induction?Electromagnetic induction is the method of producing an electromotive force (EMF) in an electrical conductor by modifying the magnetic flux surrounding the conductor. This happens when there is relative movement between the conductor and the magnetic field.
When a magnetic field fluctuates, an electric current is generated in a circuit. The magnetic field produced by the current generates a magnetic field that interacts with the magnetic field that produces it, causing an increase in the magnetic flux in the conductor, according to Lenz's law.
The magnitude of the induced EMF is proportional to the rate at which the magnetic field changes. This is the fundamental concept behind the design of transformers, generators, and other electromagnetic devices. Faraday's Law of Electromagnetic Induction and Lenz's Law are the two essential laws of electromagnetic induction.
Leran more about electromagnetic induction at https://brainly.com/question/22385657
#SPJ11
once you have pulled hard enough to start the box moving upward, what is the magnitude f of the upward force you must apply to the rope to start raising the box with constant velocity? express the magnitude of the force in terms of m and g .
When we pull the rope hard enough to start the box moving upward, the magnitude f of the upward force you must apply to the rope to start raising the box with constant velocity is given by the equation:
f = mgInitially, the box was at rest, meaning it had no velocity. This means that the acceleration experienced by the box is constant, and hence the velocity is constant when it moves upwards.
Therefore, the force required to raise the box with a constant velocity is equal to the force of gravity acting downwards on the box (its weight).This force of gravity is given by the formula:
Weight = m x g
Where:
m is the mass of the box.g is the acceleration due to gravity, which is constant at approximately 9.81 m/s2.Hence the upward force f required to raise the box with constant velocity is:
f = Weightf = m x gLearn more about velocity: https://brainly.com/question/25749514
#SPJ11
what maximum speed can the car have without flying off the road at the top of the hill? express your answer to two significant figures and include the appropriate units.
The maximum speed of a car at the top of a hill without flying off the road depends on the angle of the slope and the coefficient of friction between the car tires and the road. Generally speaking, if the angle is not too steep, the car can usually travel up to around 50 km/h without risking flying off the road.
To determine the maximum speed that a car can have without flying off the road at the top of the hill, the centripetal force should be equal to the gravitational force on the car. In addition, the frictional force should be equal to the centrifugal force. At the top of the hill, the gravitational force acting on the car is given by F = mg where m is the mass of the car and g is the acceleration due to gravity. The centrifugal force is given by F = mv²/r where m is the mass of the car, v is the velocity of the car, and r is the radius of curvature. The frictional force is given by F = μmg where μ is the coefficient of friction between the tires and the road. Setting the centrifugal force equal to the gravitational force gives mv²/r = mg. Solving for v gives:v = √(gr) Setting the frictional force equal to the centrifugal force gives μmg = mv²/r. Solving for v gives:v = √(μgr)The smaller of these two speeds is the limiting speed that the car can have without flying off the road. Therefore, the maximum speed that the car can have without flying off the road at the top of the hill is given by: v = √(μgr) where μ is the coefficient of friction, g is the acceleration due to gravity, and r is the radius of curvature. The speed should be expressed in units of meters per second.
For more details follow the link: https://brainly.com/question/22610586
#SPJ11
Based on what we know about our own solar system, the discovery of hot Jupiters came as a surprise to scientists because these planets are_______View Available Hint(s) O so close to their stars O made of different materials than either the terrestrial or jovian planets in our solar system O so largeO so small
Hot Jupiters came as a surprise to scientists because these planets are so close to their stars. Hot Jupiters orbit much closer to their stars than the terrestrial and jovian planets in our solar system. Despite their close proximity to their stars, these planets are still relatively large compared to the other planets in their systems.
Based on what we know about our own solar system, the discovery of hot Jupiter came as a surprise to scientists because these planets are so close to their stars.
What are Hot Jupiters?Hot Jupiters, also known as roaster planets or bloated gas giants, are gas giant planets with a mass similar to Jupiter, but they orbit much closer to their parent stars. They have orbital periods of fewer than ten days and an average distance of fewer than 0.1 astronomical units (AU).
Hot Jupiters are a strange type of planet because, according to the latest models of solar system development, planets with such high masses could not have developed so close to their host star. As a result, Hot Jupiters were an unexpected discovery. They are so close to their parent star that their atmospheric temperature is around 1,500 degrees Celsius. Hot Jupiters are also known for their extreme temperature fluctuations since one side is always facing its host star while the other is in perpetual darkness.
Hot Jupiters are only one of the many types of exoplanets discovered in recent years that differ significantly from the ones in our solar system. The existence of such planets has expanded our knowledge of the universe and of the various solar systems present in the universe.
To learn more about hot Jupiters follow
https://brainly.com/question/29988610
#SPJ11
What is the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b?
1.
8. 42 eV
2.
5. 74 eV
3
3. 06 eV
4.
2. 68 eV
The energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is calculated to be 3.06 eV. Correct option is C.
Photons emit energy when they transition from one energy state to another.
The energy corresponding to an orbital is calculated as,
E = -E₀/n²
The electrons' altered energy level is computed as,
ΔE = Eb - Ef
ΔE = -2.68 eV - (-5.74 eV)
ΔE = 3.06 eV
As a result, a mercury atom's electron emits a particle with a 3.06 eV energy when it transitions from energy level f to energy level b. The best choice is C.
To know more about energy level:
https://brainly.com/question/14287666
#SPJ4
how do the summer and winter monsoon affect climate in the region?
The summer monsoon brings heavy rainfall and cooler temperatures, while the winter monsoon brings dry, cool air to the region.
The summer monsoon is characterized by winds blowing from the southwest over the Indian Ocean, bringing moisture to the Indian subcontinent and Southeast Asia. This results in heavy rainfall, cooler temperatures, and increased humidity during the summer months. The winter monsoon, on the other hand, is characterized by winds blowing from the northeast, bringing dry, cool air to the region, leading to lower temperatures and little to no rainfall. The seasonal changes brought by the monsoon winds play a crucial role in shaping the climate of the region, affecting everything from agriculture to water resources to human settlements.
To know more about monsoons, here
brainly.com/question/22831604
#SPJ4
Below are eight crates of different mass.(Figure 1) The crates are attached to massless ropes, as indicated in the picture, where the ropes are marked by letters. Each crate is being pulled to the right at the same constant speed. The coefficient of kinetic friction between each crate and the surface on which it slides is the same for all eight crates. Rank the ropes on the basis of the force each exerts on the crate immediately to its left. Rank from largest to smallest. To rank items as equivalent, overlap them
The ranking of the ropes on the basis of the force each exerts on the crate immediately to its left, from largest to smallest, is as follows:
F > A > D > B > E > H > G > C
Rope F exerts the largest force on the crate immediately to its left because it is attached to the crate with the largest mass. The force exerted by each subsequent rope on the crate immediately to its left decreases because the mass of the crates to their left decreases. Therefore, rope A exerts the second-largest force, followed by D, B, E, H, G, and C.
What is force?
Force is a physical quantity that describes the interaction between two objects or systems. It is defined as any influence that can cause an object to undergo a change in motion or shape.
Force can be represented as a vector, which means that it has both magnitude and direction. The standard unit of force is the newton (N) in the International System of Units (SI).
To know more about force, visit:
https://brainly.com/question/13191643
#SPJ1
the closest approach distance between mars and earth is about 56 million km. assume you can travel in a spaceship at 58,000 km/h, which is the speed achieved by the new horizons space probe that went to pluto and is the fastest speed so far of any space vehicle launched from earth. how long would it take to get to mars at the time of closest approach? note: for simplicity, this assumes that mars doesn't move relative to earth during the entire trip (which is of course not true, so this estimate is way too optimistic). pick the closest answer.
To travel 56 million km distance between Earth and Mars at the time of closest approach,Assuming a constant speed of 58,000 km/h, it would take approximately 97 hours, or 4.04 days.
We can use the formula:
time = distance / speed
where distance is the distance between Earth and Mars during closest approach, and speed is the speed of the spaceship.
substituting in the given values, we get:
time = 56,000,000 km / 58,000 km/h
time = 965.5 hours
So it would take approximately 965.5 hours to travel from Earth to Mars at the time of closest approach. This is equivalent to about 40 days. However, this estimate is only for the ideal scenario in which Mars does not move relative to Earth during the entire trip.
To learn more about distance:
https://brainly.com/question/4931057
#SPJ11
a rock is thrown upward with a velocity of 12 meters per second from the top of a 42 meter high cliff, and it misses the cliff on the way back down. when will the rock be 12 meters from ground level?
The rock will be 12 meters from the ground level after it has been thrown upward with a velocity of 12 meters per second from the top of the 42 meter high cliff for a total of 3.5 seconds.
What is the cliff?The cliff is the height that generally has the highest height and it can be mountains, stones, buildings.
This is because the total time taken for the rock to fall back down will be the same as the total time taken for the rock to reach the top of the cliff. The equation used to calculate this is: time = distance / velocity. Therefore:
Time = 42 meters (cliff height) / 12 meters per second (velocity) = 3.5 seconds.
So, the rock will be 12 meters from the ground level after 3.5 seconds.
Read more about cliff here:
https://brainly.com/question/22789028
#SPJ11
Please order the following as they are arranged in the path of blood through the heart. Begin at the return of blood to the heart from the systemic circulation. Not all locations in the pathway are listed. 2nd in order 4th in order
1st in order
last in order
3rd in order
The path of blood through the heart and its order blood is returned to the heart from the systemic circulation through the Superior and inferior vena cavae, and the next event is that it enters the right atrium.
After that, it passes through the tricuspid valve and into the right ventricle, which is the 3rd in order, following the first and second events. After that, it passes through the pulmonic valve and enters the pulmonary artery, which is the 4th in the order. In the lungs, the blood becomes oxygenated, and then it returns to the heart through the pulmonary veins, which is the 2nd in the order. Finally, the oxygen-rich blood enters the left atrium and passes through the bicuspid (mitral) valve to the left ventricle, which is the 1st in order.
So the order of events in the path of blood through the heart is as follows:1st in order: Oxygen-rich blood enters the left atrium and passes through the bicuspid (mitral) valve to the left ventricle.2nd in order: Oxygen-rich blood returns to the heart through the pulmonary veins.3rd in order: Blood passes through the tricuspid valve and enters the right ventricle.4th in order: Blood passes through the pulmonic valve and enters the pulmonary artery. Not all locations in the pathway are listed.
Learn more about systemic circulation at brainly.com/question/1819058
#SPJ11
Two particles of different masses are projected with the same angle of projection and same initial velocity which is true
The following assertions are accurate when two particles of different masses are projected at the same projection angle and beginning velocity:
Different particle trajectories will be followed by the particles: A projectile's trajectory is determined by its beginning velocity, projection angle, and gravitational acceleration. Due to the various masses of the two particles, their gravitational forces and accelerations will be different, and as a result, so will their trajectories.
Several heights will be attained by the particles: A projectile's maximum height is influenced by its starting velocity and projection angle. The two particles will ascend to different heights since they have different masses but the same beginning velocity.
learn more about same projection angle here:
https://brainly.com/question/13016030
#SPJ4
a particular type of tennis racquet comes in a midsize version and an oversize version. 77% percent of all customers at a certain store want the oversize version. consider the next 5 customers to buy this type of racquet. let x
The probability that exactly 5 customers will buy the oversize racquet is 0.041, 0.185, 0.360, 0.304 and 0.171.
In this case, we have two possible outcomes (midsize and oversize versions) with a probability of 77% for the oversize version. The probability mass function (pmf) of a binomial distribution is:
[tex]P(x) = _nC^x (p)^x (1-p)^n^-^x[/tex],
where,
n is the number of trials (5 customers) and
p is the probability of the event occurring (77% for the oversize version).
Therefore, the probability that the next 5 customers buy the oversize version is:
[tex]P(x) = _5C^x (0.77)^x (0.23)^5^-^x[/tex]
where x is the number of customers who purchase the oversize racquet.
Using this formula, we can calculate the probabilities of different scenarios:
[tex]P(X = 0) = _5C^0 (0.77)^0 (0.23)^5 = 0.002 \\P(X = 1) = _5C^1 (0.77)^1 (0.23)^4 = 0.041 \\P(X = 2) = _5C^2 (0.77)^2 (0.23)^3 = 0.185 \\P(X = 3) = _5C^3 (0.77)^3 (0.23)^2 = 0.360 \\P(X = 4) = _5C^4 (0.77)^4 (0.23)^1 = 0.304 \\P(X = 5) = _5C^5 (0.77)^5 (0.23)^0 = 0.171[/tex]
So, for example, the probability that exactly 3 customers will buy the oversize racquet is 0.360.
Learn more about probability: https://brainly.com/question/24756209
#SPJ11
an arrow leaves a bow with a speed of 42 m/s. its velocity is reduced to 34 m/s by the time it hits its target. how much distance did the arrow travel over if it were in the air for 2.4 seconds?
The distance did the arrow travel over if it were in the air for 2.4 seconds is 100.8 meters.
What is the distance?An arrow leaves a bow with a speed of 42 m/s. Its velocity is reduced to 34 m/s by the time it hits its target. And the arrow traveled in the air for 2.4 seconds.
To find the distance traveled by the arrow, we can use the following formula:
S = v₀t + 1/2at²
where, S = distance traveled v₀ = initial velocity = 42 m/s, t = time taken = 2.4 s, a = acceleration = ? u = final velocity = 34 m/s.
As per the question, the arrow is traveling through the air, so the acceleration is due to gravity, which is equal to 9.8 m/s².So, a = 9.8 m/s². Now, we can substitute the given values in the above formula:
S = 42 m/s × 2.4 s + 1/2 × 9.8 m/s² × (2.4 s)²
S = 100.8 m.
The arrow traveled approximately 100.8 meters in the air.
Read more about the distance :
https://brainly.com/question/28551043
#SPJ11
X-ray pulses from Cygnus X-1, a celestial x-ray source, have been recorded during high-altitude rocket flights. The signals can be interpreted as originating when a blob of ionized matter orbits a black hole with a period of 7.84 ms. If the blob were in a circular orbit about a black hole whose mass is 13.5 times the mass of the Sun, what is the orbit radius? The value of the gravitational constant is 6.67259×10−11N⋅m2/kg2 and the mass of the Sun is 1.991×1030 kg. Answer in units of km.
The orbit radius is 6.225 × 10^5 km.
The x-ray pulses from Cygnus X-1, a celestial x-ray source, have been recorded during high-altitude rocket flights. The signals can be interpreted as originating when a blob of ionized matter orbits a black hole with a period of 7.84 ms. And also, it is given that the blob were in a circular orbit about a black hole whose mass is 13.5 times the mass of the Sun. We need to determine the orbit radius.
The formula to be used to find the orbit radius is given by:
G(M+m)T2/4π2= r3
Where,
G = Gravitational constant = 6.67259×10−11 N⋅m2/kg2
M = Mass of the black hole
m = Mass of the blob
T = Time period of the orbit = 7.84 ms = 7.84 × 10^-3 s
r = Orbit radius
Substitute the given values in the above formula, we get:
r3 = G(M+m)T2/4π2
r3 = 6.67259×10−11 * [13.5(1.991×10^30) + m] * (7.84×10−3)2 / 4π2
r3 = 5.7919 × 10^15 m^3
Taking cube root on both sides, we get:
r = [5.7919 × 10^15 m^3] 1/3
r = 6.225 × 10^8 m
1 km = 1000 m
Therefore, the orbit radius in km is:
r = 6.225 × 10^8 m * 1 km / 1000 m
r = 6.225 × 10^5 km
Hence, the orbit radius is 6.225 × 10^5 km.
To know more about Cygnus X-1, refer here:
https://brainly.com/question/15705839#
#SPJ11
When a company is readily able to switch to another company in order to get the raw materials it needs to make products, Porter would say that the bargaining power of ______ goes down.
competitors
buyers
investors
suppliers
Porter would say that the bargaining power of suppliers goes down when a company is readily able to switch to another company in order to get the raw materials it needs to make products.
What is the bargaining power of suppliers?It is referred to as the ability of suppliers to control the cost, quality, and availability of raw materials or components required by businesses to manufacture their products.
It is determined by a number of factors, including
Switching costs: When switching to another supplier is expensive or difficult, suppliers' bargaining power is increased.
Cost of inputs: When the cost of raw materials is high, suppliers' bargaining power is increased and vice versa.
The number of suppliers: When there are a limited number of suppliers, each supplier has more bargaining power. Suppliers' strength: When suppliers are large and well-established, they have more bargaining power.
Product differentiation: When suppliers offer unique and high-quality inputs, their bargaining power is increased.
Thus, Porter would say that the bargaining power of suppliers goes down when a company is readily able to switch to another company in order to get the raw materials it needs to make products.
Learn more about bargaining power here:
brainly.com/question/29511419
#SPJ11
the potential difference across the ion channel is 70 mv . what is the power dissipation in the channel?
The power dissipation in the ion channel is 4.9 mW given that the potential difference across the ion channel is 70 mv
The power dissipated by a resistor is given by the formula:P = V² / RwhereP = PowerV = VoltageR = Resistance
The power dissipated in the ion channel is unknown. However, we can consider the ion channel to have a resistance of 1 Ω. This is because the resistance of an ion channel is very small and close to zero. So, we can assume the resistance of the ion channel as 1 Ω.As we know the potential difference across the ion channel, we can use the above formula to find the power dissipated in the ion channel.P = (70 mV)² / 1 ΩP = 0.0049 W = 4.9 mW
Therefore, the power dissipation in the ion channel is 4.9 mW.
More on power: https://brainly.com/question/29347465
#SPJ11
if you stand next to a wall on a frictionless skateboard and push the wall with a force of 30 n, how hard does the wall push on you? if your mass is 60 kg, show that your acceleration is 0.5m/s^2.
If you stand next to a wall on a frictionless skateboard and push the wall with a force of 30 N, the wall will push you with a force of 30 N. Here's how you can show that your acceleration is 0.5 m/s² if your mass is 60 kg:Solution:The formula for force is:
F = ma
Where:
F is the force,
m is the mass,
a is the acceleration
Rearrange the equation for acceleration:
a = F/m
Substitute the given values:
F = 30 Nm = 60 kg
Then, solve for acceleration:
a = 30 N/60 kga = 0.5 m/s²
Therefore, your acceleration is 0.5 m/s² if your mass is 60 kg.
Learn more about acceleration: https://brainly.com/question/460763
#SPJ11
suppose the roller coaster had had an initial speed of 5 m/s uphill instead, and it coasted uphill, stopped, and then rolled back down to a final point 20 m below the start. we would find in that case that its final speed is the same as its initial. explain in terms of conservation of energy.
In this case, the roller coaster starts with kinetic energy because it has an initial speed of 5 m/s.
Since the roller coaster's total energy is conserved throughout the ride, its final speed when it reaches the bottom will be the same as its initial speed of 5 m/s.
As it goes uphill, the kinetic energy is gradually converted into potential energy, so its speed decreases until it reaches the top, where it has only potential energy. When it stops, all the kinetic energy has been converted to potential energy. As the roller coaster rolls back down, the potential energy is converted back to kinetic energy, and its speed increases until it reaches the bottom, where all the potential energy has been converted back to kinetic energy.
This is because the roller coaster's potential energy at the top is equal to the sum of its initial kinetic energy and the work done by gravity as it went uphill. The roller coaster then converts all of its potential energy back into kinetic energy as it rolls back down the hill.
For more similar questions on conservation of energy and physics:
brainly.com/question/381281
#SPJ11
what is the weight of a 225-kg space probe on the moon? the acceleration of gravity on the moon is 1.62 m/s2.
Answer:
The weight of the 225-kg space probe on the moon is 364.5 N (newtons).
Explanation:
To calculate the weight of the space probe on the moon, we can use the formula:
weight = mass x acceleration due to gravity
where mass is given as 225 kg and acceleration due to gravity on the moon is 1.62 m/s^2.
weight = 225 kg x 1.62 m/s^2
weight = 364.5 N
Therefore, the weight of the 225-kg space probe on the moon is 364.5 N (newtons).
A charge, q1 = +4. 00 MC, is at the origin, and a second charge, 92 =
-6. 00 MC, is on the x-axis 0. 300 m from the origin. Find the electric field at a point "+P" on the y-axis 0. 800 m from the origin. What is the net force on "p" (magnitude and direction)
The electric field at a point "+P" on the y-axis 0. 800 m from the origin is 53.3 N/C. The net force on "p" (magnitude and direction) is 5.33 x 10^-5 N.
To find the electric field at point "p" on the y-axis, we can use Coulomb's law and the principle of superposition.
First, let's find the electric field contribution at point "p" due to the charge q1 at the origin. We can use Coulomb's law for point charges to find the electric field contribution:
E = k * q / r²
where k is Coulomb's constant, q is the charge, and r is the distance from q to point "p". In this case, r is simply the distance from the origin to point "p", which is 0.8 m. Plugging in the values:
E1 = (9.0 x 10⁹ N*m²/C²) * (+4.00 x 10-⁶ C) / (0.8 m)²
E1 = 18.0 N/C (upwards on the y-axis)
Similarly, the electric field contribution at point "p" due to the charge q2 on the x-axis and at a distance r2 can be calculated Using the Pythagorean theorem, we can find this distance:
r2 = √[(0.3 m)² + (0.8 m)²] = 0.854 m
Plugging in the values:
E2 = (9.0 x 10⁹ N*m²/C²) * (-6.00 x 10-⁶ C) / (0.854 m)²
E2 = 50.6 N/C (at an angle of arctan(0.8/0.3) = 69.4 degrees below the negative x-axis)
To find the total electric field at point "p", we add the contributions from q1 and q2 using vector addition:
Etotal = E1 + E2
Using the component method, we can find the magnitude and direction of the total electric field:
|Etotal| = √[(E_total,x)² + (E_total,y)²]
= √[(-18.0 N/C)² + (50.6 N/C)²]
= 53.3 N/C
θ = arctan[(E_total,y) / (E_total,x)]
= arctan[(50.6 N/C) / (-18.0 N/C)]
= -69.2 degrees
Therefore, the magnitude of the net force on a +1.00 C test charge placed at point "p" is,
Fnet = qtest * |E_total| = (+1.00 x 10^-6 C) * (53.3 N/C) = 5.33 x 10^-5 N
Learn more about electric fields on
https://brainly.com/question/15800304?referrer=searchResults
#SPJ4
a density bottle has a mass of 0.04kg when empty a mass of 0.20kg when some quality of steel ball bearing is added to it and a mass of 0.24kg when the remainder of the bottle is filled with water. if the density bottle weight 0.1kg when filled with water. calculate the relative density of the steel ball bearing.
Answer:
Bottle = .04
Bottle + Bearing = .20
Bottle + Bearing + Water = .24
Bottle + Water = .1
Full bottle of water weighs = .06
Weight of bearing = .16
What volume of water does the bearing replace????
It takes .14 of bottle to replace bearing leaving .06 of water
Density = 16 / 6 = 2.67
Check: probably should use volumes