is an increase in speed in a certain time .

a. Acceleration
b. ActionReaction Pairs
c. Force
d. Inertia

Answers

Answer 1

It's Acceleration

We can calculate the average speed by finding the total distance traveled divided by the elapsed time: Average speed=–s=Total distanceElapsed time. Average speed = s – = Total distance Elapsed time.


Related Questions

How fast must you be approaching a red traffic light (λ = 675 nm) for it to appear yellow (λ = 575 nm)? Express your answer in terms of the speed of light.u = 0.159 cIf you used this as a reason not to get a ticket for running a red light, how much of a fine would you get for speeding? Assume that the fine is $ 1.60 for each kilometer per hour that your speed exceeds the posted limit of 90 km/h.

Answers

The speed at which a red traffic light (λ = 675 nm) would appear yellow (λ = 575 nm), we can use the formula for the Doppler effect. The Doppler effect describes how the perceived wavelength of light changes due to the relative motion between the source (the traffic light) and the observer (the driver).

A. To perceive a red traffic light (λ = 675 nm) as yellow (λ = 575 nm), the observer must be moving at a certain speed. This speed can be determined using the concept of the Doppler effect, where the observed wavelength of light is shifted due to the relative motion between the source (traffic light) and the observer (driver).

B. According to the equation for the Doppler effect, the observed wavelength (λ') is related to the source wavelength (λ) and the relative velocity (v) by the equation:

[tex]\lambda' = \lambda \left(1 + \frac{v}{c}\right)[/tex]

where c is the speed of light and v is the relative velocity between the source and the observer. In this case, we want to find the velocity v at which the red light appears yellow. Thus, we can set up the equation as follows:

λ' = 575 nm

λ = 675 nm

v = ?

c = speed of light = 3.00 x 10⁸ m/s (approximate value)

Using the equation, we can rearrange it to solve for v:

[tex]v = \frac{{(\lambda' - \lambda) \cdot c}}{{\lambda}}[/tex]

Substituting the given values:

[tex]v = \frac{{(575 , \text{nm} - 675 , \text{nm}) \cdot (3.00 \times 10^8 , \text{m/s})}}{{675 , \text{nm}}}[/tex]

[tex]v = \frac{{-100 , \text{nm} \cdot (3.00 \times 10^8 , \text{m/s})}}{{675 , \text{nm}}}[/tex]

v ≈ -1.33 x 10⁸ m/s

The negative sign indicates that the observer is moving away from the traffic light.

Now, to determine the fine for speeding, we need to calculate the excess speed over the posted limit. The given speed of 0.159 c can be converted to km/h:

[tex]v = 0.159 \cdot c \cdot (3.00 \times 10^8 , \text{m/s}) \cdot (3600 , \text{s/h}) / (1000 , \text{m/km}) \approx 1.44 \times 10^7 , \text{km/h}[/tex]

The excess speed over the posted limit is:

Excess speed = (1.44 x 10⁷ km/h) - 90 km/h

The fine is calculated by multiplying the excess speed by the fine rate per km/h:

Fine = (Excess speed) * ($1.60/km/h)

To know more about the speed refer here :

https://brainly.com/question/17661499#

#SPJ11

A tugboat T having a mass of 19 Mg is tied to a barge B having a mass of 75 Mg. If the rope is "elastic" such that it has a stiffness k = 600 kN/m. Using the Conservation of Energy Equation determine the maximum stretch in the rope during the initial towing Originally both the tugboat and barge are moving in the same direction with speeds (v tau)i =15 km/h and (vb)t = 10 km/h. respectively. First use the Conservation of Momentum Equation to find final velocity of the tug & barge after stretching the rope fully. Neglect the resistance of the water.

Answers

The final velocity of the tugboat and barge after the rope has fully stretched is 11.2 km/h. We can start by using the conservation of momentum to find the final velocity of the tugboat and barge after the rope has fully stretched.

Assuming that the rope is the only force acting on the system, we have:

[tex](m_t+ m_b) * v_i[/tex]= [tex](m_t+ m_b)[/tex]) ×[tex]v_f[/tex]

where [tex]m_t[/tex] and [tex]m_b[/tex] are the masses of the tugboat and barge, respectively, [tex]v_i[/tex]is the initial velocity of the system, and[tex]v_f[/tex] is the final velocity of the system after the rope has fully stretched. Solving for [tex]v_f,[/tex] we get:

[tex]v_f = v_i[/tex] * [tex](m_t + m_b)/(m_t + m_b + k*x_m)[/tex]

where [tex]x_m[/tex]is the maximum stretch in the rope, and k is the stiffness of the rope.

Next, we can use the conservation of energy to find x_max. Initially, the system has kinetic energy:

[tex]KE_i = 1/2 * m_t* v_i^2 + 1/2 * m_b * v_i^2[/tex]

After the rope has fully stretched, the system has potential energy stored in the stretched rope:

[tex]PE_f = 1/2 * k * x_max^2[/tex]

Using the conservation of energy, we can equate the initial kinetic energy to the final potential energy:

[tex]KE_i = PE_f[/tex]

Substituting the expressions for [tex]KE_i and PE_f,[/tex] we get:

[tex]1/2 * m_t* v_i^2 + 1/2 * m_b * v_i^2 = 1/2 * k * x_max^2[/tex]

Solving for [tex]x_m[/tex] we get:

[tex]x_max = \sqrt{((m_t + m_b) } * v_i^2 / k)[/tex]

Substituting the given values, we get:

[tex]x_max = \sqrt{((19 Mg + 75 Mg) } * (15 km/h)^2 / (600 kN/m))[/tex]

[tex]x_m[/tex]= 0.460 m

Finally, we can substitute[tex]x_m[/tex] into the expression for[tex]v_f[/tex] to get:

[tex]v_f = (15 km/h) * (19 Mg + 75 Mg)/(19 Mg + 75 Mg + 600 kN/m * 0.460 m)[/tex]

[tex]v_f = 11.2 km/h[/tex]

To know more about final velocity

https://brainly.com/question/28608160

#SPJ4

3 kg of ice are placed in a 35cm × 35cm × 25cm (outside dimensions) styrofoam™ cooler with 3cm thick sides. approximately how long will its contents remain at 0°c if the outside is a sweltering 35°c?

Answers

The contents of 3 kg of ice are placed in a 35cm × 35cm × 25cm (outside dimensions) styrofoam™ cooler with 3cm thick sides remain at 0°c if the outside is a sweltering 35° will need 4.8 days.

To solve this problem, we need to calculate the rate at which heat is transferred from the outside environment to the inside of the cooler, and compare it to the rate at which the ice melts and absorbs heat.

First, let's calculate the volume of the cooler, which is (35cm × 35cm × 25cm) - [(33cm × 33cm × 23cm), since the sides are 3cm thick. This gives us a volume of 6,859 cubic centimeters.

Next, we need to calculate the surface area of the cooler that is in contact with the outside environment, which is (35cm × 35cm) × 5 (since there are 5 sides exposed). This gives us a surface area of 6,125 square centimeters.

Now, we can use the formula Q = kAΔT/t, where Q is the heat transferred, k is the thermal conductivity of the styrofoam, A is the surface area, ΔT is the temperature difference, and t is the time.

The thermal conductivity of styrofoam is about 0.033 W/mK, or 0.0033 W/cmK. We can assume that the temperature difference between the inside and outside of the cooler remains constant at 35°C - 0°C = 35°C.

Let's assume that the ice absorbs heat at a rate of 335 kJ/kg (the heat of fusion of water), and that the cooler starts with an initial internal temperature of -10°C (to account for the cooling effect of the ice).

Using these assumptions, we can solve for t:

335 kJ/kg × 3 kg = (0.0033 W/cmK × 6,125 cm² x 35°C)/t

t = 115 hours, or approximately 4.8 days

Therefore, the contents of the cooler should remain at 0°C for about 4.8 days, assuming the cooler is sealed and not opened frequently. However, this is just an estimate and actual results may vary depending on various factors.

Learn more about sweltering: https://brainly.com/question/30418436

#SPJ11

A 5. 0 kg mass and a 3. 0 kg mass are placed on top of a seesaw. The 3. 0 kg mass is 2. 00 m from the fulcrum as showa. Where should the 5. 0 kg mass be placed to keep the system from rotating?



Show work

Answers

A 5. 0 kg mass and a 3. 0 kg mass are placed on top of a seesaw. The 3. 0 kg mass is 2. 00 m from the fulcrum. The 5.0 kg mass should be placed 1.2 meters from the fulcrum to keep the system from rotating.

To keep the system from rotating, the torques on both sides of the fulcrum need to be balanced. Torque is calculated by multiplying the force applied by the distance from the fulcrum.

Let's denote the unknown distance from the fulcrum to the 5.0 kg mass as x.

The torque exerted by the 3.0 kg mass is given by:

[tex]Torque_3_k_g = (3.0 kg) * (9.8 m/s^2) * (2.0 m)[/tex]

The torque exerted by the 5.0 kg mass is given by:

[tex]Torque_5kg = (5.0 kg) * (9.8 m/s^2) * (x m)[/tex]

To keep the system in balance, the torques on both sides must be equal:

[tex]Torque_3kg = Torque_5kg[/tex]

Simplifying the equation:

[tex](3.0 kg) * (9.8 m/s^2) * (2.0 m) = (5.0 kg) * (9.8 m/s^2) * (x m)[/tex]

Solving for x:

(3.0 kg) * (2.0 m) = (5.0 kg) * (x m)

6.0 kg·m = 5.0 kg·x

Dividing both sides by 5.0 kg:

x = (6.0 kg·m) / (5.0 kg)

x = 1.2 m.

        Fulcrum

         |

         |

   5.0 kg | 3.0 kg

   -------|---------    

        1.2 m   2.0 m

In the diagram, the fulcrum is represented by "|". The 5.0 kg mass is placed 1.2 m from the fulcrum, while the 3.0 kg mass is placed 2.0 m from the fulcrum. This configuration ensures that the torques on both sides are balanced, preventing rotation of the system.

For more such information on: mass

https://brainly.com/question/86444

#SPJ8

The capacitors are connected in parallel. We have C1 = 120µF, C2 = 30µF, R = 50Ω, and E = 40V. The capacitors are
initially uncharged and at t = 0 the switch is closed, allowing current to flow.
a) What is the time constant of the system?
b) How is the voltage of C1 related to the voltage of C2?
c) How is the charge stored by C1 related to the charge stored by C2? How is the current through C1 related to the
current through C2? What fraction of the current through the battery flows through C1? What fraction flows through
C2?
d) What is the voltage of C1 and the voltage of C2 as t → [infinity]?
e) What is the energy stored by each capacitor as t → [infinity]? What is the total energy supplied by the battery and the total
energy dissipated by the resistor as t → [infinity]?

Answers

a) The time constant is 7.5 ms.

b) The voltage of C₁ is equal to the voltage of C₂.

c) The charge stored by C₁ is equal to the charge stored by C₂, and the current through C₁ is equal to the current through C₂. Half of the current flows through C₁, and half flows through C₂.

d) The voltage of C₁ and C₂ both approach 40V as t → [infinity].

e) The energy stored by each capacitor approaches 48 mJ as t → [infinity]. The total energy supplied by the battery is 1.92 J or 192 mJ, and the total energy dissipated by the resistor is 1.92 J or 192 mJ as t → [infinity].

a) The time constant of the system can be calculated using the formula τ = RC, where R is the resistance of the resistor and C is the equivalent capacitance of the capacitors in parallel.

C_eq = C₁ + C₂

C_eq  = 150 µF

τ = (50 Ω) × (150 µF)

τ = 7.5 ms

b) Since the capacitors are connected in parallel, they have the same voltage across them. Thus, V(C₁) = V(C₂).

c) Since the capacitors are connected in parallel, they have the same voltage across them, and the charge stored by each capacitor is proportional to its capacitance.

Thus, Q(C₁) = C₁ × V(C₁) and

Q(C₂) = C₂ × V(C₂).

Similarly, the current through each capacitor is proportional to its capacitance,

so I(C₁) = C₁ × dV/dt and

I(C₂) = C₂ × dV/dt.

The current through the resistor is equal to the total current supplied by the battery, which is also equal to the current through the capacitors. Thus,

I(R) = I(C₁) + I(C₂).

Since the capacitors have different capacitances, the current through them is different, but they add up to the total current supplied by the battery.

The fraction of the current flowing through C₁ is given by

I(C₁) / I(R) = C₁ / C_eq

I(C₁) / I(R) = 0.8 or 80%,

and the fraction flowing through C₂ is given by

I(C₂) / I(R) = C₂ / C_eq

I(C₂) / I(R) = 0.2 or 20%.

d) As t → ∞, the capacitors become fully charged and no current flows through them. Thus, the voltage across each capacitor approaches the voltage of the battery, which is 40V.

Hence, V(C₁) → 40V and V(C₂) → 40V.

e) As t → ∞, the energy stored by each capacitor can be calculated using the formula

E = (1/2) × C × V²,

where E is the energy, C is the capacitance, and V is the voltage across the capacitor.

Thus, E(C₁) = (1/2) × (120 µF) ×(40V)²

E(C₁) = 96 mJ and

E(C₂) = (1/2) × (30 µF) × (40V)²

E(C₂) = 96 mJ.

The total energy supplied by the battery is given by

E_total = E(C₁) + E(C₂) = 192 mJ.

The energy dissipated by the resistor can be calculated using the formula

P = V² / R,

where P is the power and V is the voltage across the resistor.

Thus, P = (40V)² / 50 Ω

= 32 mW.

As t → ∞, the energy dissipated by the resistor is equal to the total energy supplied by the battery, since no energy is stored in the capacitors.

Thus, E_resistor = E_total = 192 mJ.

To learn more about capacitors, here

https://brainly.com/question/17176550

#SPJ4

A hockey goalie is standing on ice. Another player fires a puck (m = 0.14 kg) at the goalie with a velocity of +69 m/s.
a) If the goalie catches the puck with his glove in a time of 4.0
×
10

3
s, what is the average force (magnitude and direction) exerted on the goalie by the puck?
b) Instead of catching the puck, the goalie slaps it with his stick and returns the puck straight back to the player with a velocity of -69 m/s. The puck and stick are in contact for a time of 4.0
×
10

3
s. Now, what is the average force exerted on the goalie by the puck?

Answers

a) By using the impulse-momentum theorem the average force exerted on the goalie by the puck is approximately -2415 N.

b) The average force exerted on the goalie is approximately -4830 N in the direction of the goalie's stick.

How we calculate the give statement?

(a) The average force exerted on the goalie by the puck can be found using the impulse-momentum theorem.

Which states that the impulse (J) of a force acting on an object is equal to the change in momentum (Δp) of the object. Mathematically, this can be written as:

J = Δp = m(vf - vi)

where m is the mass of the object, vf is the final velocity of the object, and vi is the initial velocity of the object.

In this case, the initial velocity of the puck is +69 m/s and the final velocity of the puck is 0 m/s (since the goalie catches the puck), so the change in velocity is -69 m/s.

Therefore, the impulse on the puck is:

J = m(vf - vi) = (0.14 kg)(0 m/s - 69 m/s) = -9.66 Ns

Since the impulse is equal to the average force multiplied by the time over which the force acts, we can solve for the average force:

F = J / Δt = -9.66 Ns / (4.0 × 10[tex]^(-3)[/tex] s) ≈ -2415 N

The negative sign indicates that the force is in the opposite direction of the initial velocity of the puck, which means it is in the direction of the goalie's glove.

(b) When the goalie slaps the puck with his stick, the impulse on the puck is again given by J = Δp = m(vf - vi), but this time vf is -69 m/s (since the puck is traveling in the opposite direction) and vi is 69 m/s. Therefore, the impulse on the puck is:

J = m(vf - vi) = (0.14 kg)(-69 m/s - 69 m/s) = -19.32 Ns

Since the impulse is equal to the average force multiplied by the time over which the force acts, we can solve for the average force:

F = J / Δt = -19.32 Ns / (4.0 × 10[tex]^(-3)[/tex] s) ≈ -4830 N

Again, the negative sign indicates that the force is in the opposite direction of the initial velocity of the puck, which means it is in the direction of the goalie's stick.

Learn more about impulse-momentum theorem

brainly.com/question/14121529

#SPJ11

consider how we might estimate energy flow in a food web. the data in table 1 show the dietary composition of

Answers

Energy flow in a food web can be estimated by analyzing the dietary composition and using data from Table 1.

How can we estimate energy flow in a food web using dietary composition data?

Estimating energy flow in a food web involves understanding the transfer of energy from one trophic level to another. By examining the dietary composition of organisms in the food web, we can gain insights into the flow of energy.

Table 1 provides data on the dietary composition, which outlines the organisms' feeding relationships and their respective energy sources. By analyzing this data, we can determine the energy transfer pathways, identify the primary producers, consumers, and decomposers, and estimate the amount of energy transferred between trophic levels.

This estimation helps us understand the energy dynamics and ecological relationships within the food web.

Learn more about Energy flow in a food web

brainly.com/question/31251641

#SPJ11

if you do work to increase the potential energy of a system consisting of two charged objects by pushing them together, what can you conclude about the signs of the charges?

Answers

If work is done to increase the potential energy of a system consisting of two charged objects by pushing them together, we can conclude that the charges on the objects are opposite in sign.

When two charged objects have the same sign (either positive or negative), they repel each other due to the electrostatic force. In order to bring them closer together, external work must be done against this repulsive force. This work increases the potential energy of the system. However, if the charges on the objects are opposite in sign (one positive and one negative), they attract each other. In this case, no external work is required to bring them closer together, as the attractive force assists in their movement. Therefore, when work is done to increase the potential energy by pushing the objects together, it implies that the charges are of opposite sign.

Learn more about potential energy here:

https://brainly.com/question/24284560

#SPJ11

Final answer:

In a system of two charged objects, if work done to push them closer together results in increased potential energy, then it's concluded that the charges carry the same sign (either both are positive or both negative). This is because work needs to be expended to overcome the repulsive force between like charges.

Explanation:

The question you've asked involves understanding the behaviour of charges and potential energy in a system. Well, if work is done to push two charged objects closer together, and the potential energy of the system increases, one can conclude that the two charges must carry the same sign. This is because like charges (two negatives or two positives) repel each other, and so pushing them closer together requires work, which consequently increases the potential energy of the system.

In contrast, if the charges were opposite (one positive and one negative), they would naturally attract each other by virtue of Coulomb's law. In such situations, separating these oppositely charged objects would require work and would increase the system's potential energy. Therefore, if potential energy increases by bringing two charges closer, those charges must carry the same sign.

Learn more about Charges and Potential Energy here:

https://brainly.com/question/33717510

#SPJ12

an ideal capacitor looks like an open circuit to dc current once it has charged to its final value.

Answers

The capacitor charges and discharges in time with the AC signal, not the dc signal.

An ideal capacitor is a passive electronic component that stores electrical energy in an electric field. When a capacitor is connected to a DC voltage source, current initially flows into the capacitor to charge it up to its maximum capacity. Once the capacitor has reached its maximum charge, it behaves like an open circuit to DC current and stops conducting current. This is because an ideal capacitor has no resistance and cannot dissipate energy as heat. However, if an AC voltage source is connected to a capacitor, the capacitor will continue to conduct current as the voltage changes polarity, causing the capacitor to charge and discharge in time with the AC signal.

To learn more about capacitors visit: https://brainly.com/question/21851402

#SPJ11

An ideal capacitor looks like an open circuit to dc current once it has charged to its final value as no current can flow through the capacitor when a DC voltage is applied to it. Instead, when an AC voltage is applied to the capacitor, the charge on the plates alternates in direction with the AC voltage, causing current to flow back and forth through the capacitor.

An ideal capacitor is a basic component of electrical circuits that stores electric charge and energy.

It consists of two conductive plates separated by an insulating material, or dielectric.

When a voltage is applied across the plates, charge begins to accumulate on the plates and an electric field is formed between them.

The amount of charge that can be stored by the capacitor is determined by its capacitance, which is a measure of the ability of the capacitor to store charge for a given voltage.

Once the capacitor has charged up to its final value, it behaves like an open circuit to DC current.

This means that no current can flow through the capacitor when a DC voltage is applied to it.

This behavior is a consequence of the fact that the dielectric material between the plates is an insulator and does not conduct DC current.

In contrast, when an AC voltage is applied to the capacitor, the charge on the plates alternates in direction with the AC voltage, causing current to flow back and forth through the capacitor.

The ability of the capacitor to block DC current while allowing AC current to pass through it makes it useful in many electronic applications.

Capacitors are used in power supplies to smooth out fluctuations in the DC voltage, in filters to remove unwanted AC signals, and in timing circuits to control the rate of charging and discharging.

Learn more about AC voltage at: https://brainly.com/question/17150974

#SPJ11

Select the quantities needed to calculate the gravitational potential energy of some object Needed to calculate gravitational potential energy Answer Bank the conteftimet tutus ed the B eration due to gravity in the vicinity of the object the velocity of the object the volume V of the object the best distance of the object from me reference point the mass of the object the vertical height of the object have some reference point Using the symbols defined in the first part, complete the equation for the gravitational potential energy of the object. gravitational potential energy = e - AP

Answers

To calculate the gravitational potential energy of an object, we need to select the quantities that are involved in the calculation. These quantities include the acceleration due to gravity in the vicinity of the object, the mass of the object, and the vertical height of the object from some reference point. Additionally, we need to know the distance of the object from the reference point and the velocity of the object. Lastly, the volume of the object may also be needed in some cases.

Using the symbols defined in the problem, we can write the equation for the gravitational potential energy of the object as follows: gravitational potential energy (e) = mass (m) x acceleration due to gravity (g) x height (h) + kinetic energy (K). Here, the kinetic energy term (K) accounts for the velocity of the object, which may need to be included in the calculation depending on the situation.

In conclusion, the quantities needed to calculate the gravitational potential energy of an object are the mass, acceleration due to gravity, vertical height, distance from the reference point, and velocity. Using these quantities and the defined symbols, we can complete the equation for the gravitational potential energy of the object.

To know more about gravitational potential energy, click here;

https://brainly.com/question/23134321

#SPJ11

Which of the following are properties are constant for an ideal battery?Select all that applya) The power outputb) The number of electrons coming outc) The potential difference between the terminalsd) The current through

Answers

For an ideal battery, the potential difference between the terminals is constant. Therefore, option (c) is correct.

What is power?

Power can be defined as the amount of work completed in a given amount of time. Watt (W), which is derived from joules per second (J/s), is the SI unit of power.

The power output, number of electrons coming out, and current through the battery depend on the external load and the internal resistance of the battery. Therefore, options (a), (b), and (d) are not necessarily constant for an ideal battery.

The potential difference between the terminals of a perfect battery is constant. As a result, option (c) is right.

Learn more about potential difference on:

https://brainly.com/question/14306881

#SPJ11

(a) The Hubble Space Telescope (HTS) was launched in 1990 into an orbit of radius 6920 km. The satellite makes 15 complete orbits of the Earth every 24 hours. Calculate the centripetal acceleration of HTS. (4 marks)

Answers

The centripetal acceleration of the Hubble Space Telescope (HTS) is approximately 1,183 m/s^2.

To calculate the centripetal acceleration of the Hubble Space Telescope (HTS), we can use the formula:

a = v^2 / r

Where "a" is the centripetal acceleration, "v" is the velocity of the satellite, and "r" is the radius of its orbit.

We know that the HTS makes 15 complete orbits of the Earth every 24 hours. This means that its period (T) is:

T = 24 hours / 15 = 1.6 hours

We can use this to calculate the velocity (v) of the HTS:

v = 2πr / T

Where "π" is pi (3.14).

Plugging in the values we know, we get:

v = 2π(6920 km) / 1.6 hours
v ≈ 28,641 km/h

Now we can plug this velocity and the radius of the HTS's orbit into the centripetal acceleration formula:

a = (28,641 km/h)^2 / 6920 km
a ≈ 1,183 m/s^2

To know more about the Hubble Space Telescope, click here;

https://brainly.com/question/30246219

#SPJ11

light of wavelength 700nm passes through a slit 1.00x10 -3 mm wide onto a screen 20.0 cm away. a. how wide is the central maximum in degrees? b. how wide is the central maximum in cm?

Answers

The width of the central maximum in degrees is approximately 0.04°. The width of the central maximum in cm is approximately 0.028 cm.

We can use the formula for single-slit diffraction to find the width of the central maximum:

θ = (λ / a) * m

Where:
θ = angle of the central maximum in radians
λ = wavelength of light (700 nm = 700 x 10⁻⁹ m)
a = width of the slit (1.00 x 10⁻³ mm = 1.00 x 10⁻⁶ m)
m = order of the maximum (for central maximum, m = 1)

a. To find the width of the central maximum in degrees, first calculate θ:

θ = (700 x 10⁻⁹ m) / (1.00 x 10⁻⁶ m) * 1
θ ≈ 0.0007 radians

Now convert θ to degrees:

θ_degrees = θ * (180 / π)
θ_degrees ≈ 0.04°

The width of the central maximum in degrees is approximately 0.04°.

b. To find the width of the central maximum in cm, we need to calculate the distance from the center to the first minimum on the screen:

Y = L * tan(θ)

Where:
Y = distance from the center to the first minimum
L = distance from the slit to the screen (20.0 cm)

Y = 20.0 cm * tan(0.0007)
Y ≈ 0.014 cm

The width of the central maximum is twice this value, so:

Width ≈ 2 * 0.014 cm
Width ≈ 0.028 cm

The width of the central maximum in cm is approximately 0.028 cm.

Learn more about width of the central maximum here:-

https://brainly.com/question/28555914?referrer=searchResults

#SPJ11

The tennis ball hits the racket at a speed of 52m/s. The average force on the ball during the
time that it is in contact with the racket is 350 N. The speed of the ball after it leaves the racket is
26 m/s in the opposite direction to the initial speed of the ball. The mass of the ball is 58g. N
Y
(a) (i) Calculate the change in momentum of the ball while it is in contact with the racket

Answers

The change in momentum of the ball is 4.56 kg*m/s.

What is Momentum?

Momentum is a property of an object that is moving and is equal to the product of its mass and velocity. Mathematically, momentum (p) is given by the equation p = m * v, where m is the mass of the object and v is its velocity. Momentum is a vector quantity, meaning it has both magnitude and direction, and its unit is kilogram-meter per second (kg⋅m/s) in the SI system.

The tennis ball hits the racket at a speed of 52m/s. The average force on the ball during the

time that it is in contact with the racket is 350 N. The speed of the ball after it leaves the racket is

26 m/s in the opposite direction to the initial speed of the ball. The mass of the ball is 58g. N

Y

(a) (i) Calculate the change in momentum of the ball while it is in contact with the racket

The change in momentum of the ball can be calculated using the formula:

Δp = p₂ - p₁

where Δp is the change in momentum, p₂ is the final momentum of the ball, and p₁ is the initial momentum of the ball.

We can calculate the initial momentum of the ball using:

p₁ = m₁v₁

where m₁ is the mass of the ball and v₁ is the initial velocity of the ball.

Given that the mass of the ball is 58g, which is 0.058 kg, and the initial velocity of the ball is 52 m/s, we get:

p₁ = m₁v₁

p₁ = 0.058 kg × 52 m/s

p₁ = 3.016 kg⋅m/s

We can calculate the final momentum of the ball using:

p₂ = m₁v₂

where v₂ is the final velocity of the ball.

Given that the final velocity of the ball is 26 m/s in the opposite direction to the initial velocity, we get:

v₂ = -26 m/s

p₂ = m₁v₂

p₂ = 0.058 kg × (-26 m/s)

p₂ = -1.508 kg⋅m/s

Therefore, the change in momentum of the ball is:

Δp = p₂ - p₁

Δp = (-1.508 kg⋅m/s) - (3.016 kg⋅m/s)

Δp = -4.524 kg⋅m/s

The negative sign indicates that the momentum of the ball has decreased.

To know more about Momentum visit:

https://brainly.com/question/1042017

#SPJ4

an organ pipe is 80.0 cm long and is open at one end and closed at the other. the frequency of the third mode is 200 hz higher than the frequency of the second mode. what is the speed of sound?

Answers


The speed of sound in the organ pipe is 320 m/s.

To find the speed of sound, we will first determine the frequencies of the second and third modes for a closed pipe organ.

For a closed pipe, the formula for the fundamental frequency (first mode) is:

f1 = v / 4L

where f1 is the fundamental frequency, v is the speed of sound, and L is the length of the pipe.

The second mode (n=3, because only odd harmonics are allowed in a closed pipe) and third mode (n=5) frequencies are:

f2 = 3 * f1
f3 = 5 * f1

We know that f3 - f2 = 200 Hz. Substituting the expressions above, we get:

5 * f1 - 3 * f1 = 200 Hz
2 * f1 = 200 Hz

Now, we can find the fundamental frequency:

f1 = 200 Hz / 2 = 100 Hz

Now we will use the formula for the fundamental frequency of the closed pipe to find the speed of sound:

f1 = v / 4L
100 Hz = v / (4 * 0.8 m)

Solving for v:

v = 100 Hz * (4 * 0.8 m)
v = 320 m/s

Learn more about speed  here:-

https://brainly.com/question/17661499

#SPJ11

What is the peak wavelength of light coming from a star with a temperature of 7,750 K?(Submit your answer in nanometers. Remember 1nm = 10-9 m)

Answers

Therefore, the peak wavelength of light coming from a star with a temperature of 7,750 K is approximately 373.8 nanometers.

To calculate the peak wavelength of light emitted by a star with a given temperature, we can use Wien's displacement law, which states that the peak wavelength (λmax) is inversely proportional to the temperature (T) of the object. The formula for Wien's displacement law is:

λmax = b / T

Where λmax is the peak wavelength, b is Wien's displacement constant (approximately equal to 2.898 × 10^-3 m·K), and T is the temperature in Kelvin.

Plugging in the values:

λmax = (2.898 × 10^-3 m·K) / (7,750 K)

Calculating this expression:

λmax ≈ 3.738 × 10^-7 m

Converting meters to nanometers (1 nm = 10^-9 m):

λmax ≈ 373.8 nm

Learn more about  peak wavelength of light here:

https://brainly.com/question/20038918

#SPJ11

An AM radio station operating at a frequency of 880 kHz radiates 270 kW of power from its antenna. How many photons are emitted by the antenna every second?

Answers

The power radiated by an AM radio station can be calculated using the formula P = E/t, where P is the power, E is the energy, and t is the time. In this case, the power of the station is given as 270 kW, The antenna emits approximately 4.63 x 10^33 photons per second.

The energy of a single photon can be calculated using the formula E = hf, where h is Planck's constant and f is the frequency of the photon. For a radio wave with a frequency of 880 kHz, the energy of a single photon can be calculated as:-

E = hf = (6.626 x 10^-34 J s) x (880,000 Hz) = 5.84 x 10⁻²⁶ J

To calculate the number of photons emitted by the antenna every second, we can divide the power by the energy of a single photon:

270,000 W / (5.84 x 10^-26 J/photon) = 4.63 x 10⁻³³ photons/s

It is worth noting that this calculation assumes that all of the energy radiated by the antenna is in the form of photons, which may not be entirely accurate in real-world situations.

To know more about photons refer here :-

https://brainly.com/question/23180082#

#SPJ11

The block shown in (Figure 1) has mass m = 7.0 kg and lies on a fixed smooth frictionless plane tilted at an angle θ = 24.5 ∘ to the horizontal.a. Determine the acceleration of the block as it slides down the plane.Express your answer to three significant figures and include the appropriate units.b. If the block starts from rest 19.0 m up the plane from its base, what will be the block's speed when it reaches the bottom of the incline?Express your answer to three significant figures and include the appropriate units.

Answers

The acceleration of the block as it slides down the plane is approximately 4.58 m/s². b. The speed of the block when it reaches the bottom of the incline is approximately 9.15 m/s.

a. The acceleration of the block can be determined using Newton's second law. The force acting on the block is the component of the gravitational force parallel to the incline, which is given by F = m * g * sin(θ), where m is the mass of the block, g is the acceleration due to gravity, and θ is the angle of the incline.

Substituting the known values, we have F = 7.0 kg * 9.8 m/s² * sin(24.5°). Calculating this, we find F ≈ 28.26 N.

According to Newton's second law, F = m * a, where a is the acceleration of the block. Rearranging the equation, we find a = F / m. Substituting the values, we have a ≈ 28.26 N / 7.0 kg ≈ 4.58 m/s².

b. To find the speed of the block when it reaches the bottom of the incline, we can use the principle of conservation of energy. The potential energy at the top of the incline is converted into kinetic energy at the bottom, neglecting any losses due to friction.

The potential energy of the block at the top is given by PE = m * g * h, where h is the height of the incline. Substituting the values, we have PE = 7.0 kg * 9.8 m/s² * 19.0 m ≈ 1286.6 J.

At the bottom, the potential energy is zero, and the kinetic energy is given by KE = (1/2) * m * v², where v is the speed of the block. Equating the initial potential energy to the final kinetic energy, we can solve for v:

1286.6 J = (1/2) * 7.0 kg * v²

Solving this equation, we find v ≈ √(2 * 1286.6 J / 7.0 kg) ≈ 9.15 m/s.

Learn more about Newton's second law here :

https://brainly.com/question/29775827

#SPJ11

what frequency is perceived by the occupant of a car traveling towards the factory at 25.0 m/s? express your answer in hertz.

Answers

The perceived frequency by the occupant of the car is 1.073 times the actual frequency emitted by the factory.

The Doppler effect describes the change in frequency of a wave perceived by an observer when there is relative motion between the observer and the source of the wave.

The formula to calculate the perceived frequency is given by:

f' = (v + v₀) / (v - v_s) * f

Given that the car is traveling towards the factory at 25.0 m/s, we can substitute the values into the formula:

f' = (343 m/s + 25.0 m/s) / (343 m/s - 0 m/s) * f

Simplifying the equation:

f' = (368 m/s) / (343 m/s) * f

f' = 1.073 * f

To know more about Doppler effect, here

brainly.com/question/28106478

#SPJ4

if you could see stars during the day, at noon on a given day, the sun is near the stars of the constellation gemini. where would you expect the sun to be located at sunset two months into the future?

Answers

If you could see stars during the day and the sun is near the stars of the constellation Gemini at noon on a given day, it means that the Earth is currently in a position where Gemini is visible during the daytime. However, as the Earth revolves around the sun, its position in the sky changes over time.

Two months into the future, the Earth would have moved along its orbit, causing the sun to appear in a different position relative to the stars. Specifically, the sun's position would have shifted towards the east by approximately 30 degrees due to the Earth's revolution around the sun.

Assuming that the Earth's orbit is roughly circular, the sun's new position at sunset two months into the future would be roughly 30 degrees east of its current position. This means that if the sun was originally near the stars of Gemini at noon, it would likely be closer to the stars of the constellation Taurus or Aries at sunset two months later.

Overall, the sun's position in the sky changes over time due to the Earth's revolution around the sun, causing it to appear in different positions relative to the stars over time.

To know more about Earth's revolution  click this link-

https://brainly.com/question/17773408

#SPJ11

if an electron of mass 9.1x10-31 kg is fired under applied voltage of 300 v between two plates separated by 20 mm, reaches to positive plate in 3.9 ns what is the charge of the electron?

Answers

Therefore, the charge of the electron is 5.85 x 10^-5 Coulombs.

To calculate the charge of an electron, we need to use the equation Q=I*t, where Q is the charge, I is the current, and t is the time taken.
First, we need to calculate the current. We can use the equation I = V/d, where V is the applied voltage and d is the distance between the plates.
I = 300/0.02

= 15000 A
Next, we need to convert the time taken from nanoseconds to seconds:
t = 3.9 x 10^-9 s
Now we can calculate the charge:
Q = I*t

= 15000 x 3.9 x 10^-9

= 5.85 x 10^-5 C  
In this question, we were given the mass of an electron and the voltage and distance between two plates. Using this information, we were able to calculate the current and time taken for the electron to reach the positive plate. We then used the equation Q=I*t to calculate the charge of the electron.
The charge of an electron is a fundamental constant in physics and plays a crucial role in understanding the behavior of matter and energy. It is a fundamental unit of electric charge and is denoted by the symbol "e". The charge of an electron is negative, and its absolute value is 1.602 x 10^-19 C.
Electrons are negatively charged subatomic particles that are found in the outer shell of atoms. They are responsible for the flow of electricity in conductors and play a vital role in chemical bonding.
In summary, the charge of an electron is an essential concept in physics and has significant implications for our understanding of the natural world. Through the use of equations such as Q=I*t, we can determine the charge of electrons in a given scenario, allowing us to further explore the behavior of matter and energy.

To know more about positive plate visit:

https://brainly.com/question/31832856

#SPJ11

how many 600 nm photons would have to be emitted each second to account for all the light froma 100 watt light bulb

Answers

It's worth noting that this is a rough estimate and the actual number of 600 nm photons emitted by a 100 watt light bulb could be different depending on the specific characteristics of the light bulb and the conditions under which it is used is 45 photons per second.  

The amount of light emitted by a 100 watt light bulb is typically measured in lumens. One lumen is the amount of light that would travel through a one-square-foot area if that area were one foot away from the source of light.

The wavelength of light is an important factor in determining how much light is emitted. Light with shorter wavelengths, such as blue or violet light, has more energy than light with longer wavelengths, such as red or orange light.

The number of 600 nm photons emitted by a 100 watt light bulb, we need to know the intensity of the light in terms of lumens per steradian. The lumens per steradian can be calculated by dividing the total lumens by the area of the light source.

For a 100 watt light bulb, the lumens per steradian can be estimated to be around 1200 lumens per steradian.

We can then calculate the number of 600 nm photons emitted by multiplying the lumens per steradian by the fraction of the electromagnetic spectrum that is made up of 600 nm light. According to the CIE standard, the spectral luminous efficiency of a 100 watt incandescent light bulb is around 15 lumens per watt for light in the visible range, and 0.3% of the light is in the 600 nm range.

Therefore, the number of 600 nm photons emitted by a 100 watt light bulb can be calculated as follows:

Number of 600 nm photons = Intensity of light in lumens per steradian x Fraction of electromagnetic spectrum made up of 600 nm light x Lumens per watt for light in the visible range

Number of 600 nm photons ≈ 1200 lumens per steradian x 0.003 x 15 lumens per watt

Number of 600 nm photons ≈ 45 photons per second

Learn more about photons visit: brainly.com/question/30820906

#SPJ4

According to Bernoulli's equation, when a gas speeds up its ______ decreases.
potential energy
thermal energy
viscosity
pressure
entropy

Answers

According to Bernoulli's equation, when a gas speeds up, its pressure decreases.

This is due to the principle of conservation of energy, which states that the total energy of a system remains constant. As the gas speeds up, it gains kinetic energy, which comes at the expense of its potential energy and pressure. This decrease in pressure is a manifestation of Bernoulli's principle, which states that the pressure of a fluid (or gas) decreases as its speed increases.

The decrease in pressure is directly proportional to the increase in speed, and this relationship is a fundamental principle in fluid dynamics. So, in long answer, the decrease in pressure is the direct result of the increase in speed of the gas, according to Bernoulli's equation.

To know more about Bernoulli's equation visit:-

https://brainly.com/question/30509621

#SPJ11

What is enkratea and overcoming our desires according to urmson?

Answers

Enkrateia (sometimes spelled "enkratia") is a term used in philosophy to refer to the ability to overcome one's desires or passions in pursuit of a greater goal or ideal.

It involves self-control and the ability to resist temptation, even when it is difficult or uncomfortable to do so.

According to the philosopher J.O. Urmson, enkrateia involves two key elements: rationality and self-mastery. Rationality refers to the ability to use reason to guide one's actions, rather than being ruled by one's desires or emotions.

Self-mastery involves being able to exert control over one's own behavior and desires, even in the face of temptation or difficulty.

Urmson argued that enkrateia is an important aspect of human flourishing, as it allows us to pursue long-term goals and ideals that may require us to resist short-term pleasures or temptations.

He also noted that enkrateia is closely related to other virtues such as courage and justice, as they all involve the ability to overcome our own weaknesses and limitations in order to achieve something greater.

Know more about resist temptation here

https://brainly.com/question/1450940#

#SPJ11

A solid disk of radius 8.10 cm and mass 1.55 kg, which is rolling at a speed of 2.40 m/s, begins rolling without slipping up a 15.0 degree slope. How long will it take for the disk to come to a stop?

Answers

It takes approximately 4.96 seconds for the disk to come to a stop.

When the disk starts rolling up the slope, the force of gravity pulls it downward, while the normal force pushes it upwards.

The force of friction between the disk and the slope opposes the motion and causes the disk to slow down.

As the disk slows down, the force of friction decreases and eventually becomes zero, causing the disk to stop. The time it takes for the disk to stop can be calculated using the equations of motion.

The final velocity of the disk when it stops is zero, and the initial velocity is 2.40 m/s.

Using the equation v = u + at, where a is the acceleration due to gravity and t is the time taken, we can find that it takes approximately 4.96 seconds for the disk to come to a stop.

Learn more about velocity at

https://brainly.com/question/15839363

#SPJ11

Light is sent through a single slit of width w = 0.42 mm. On a screen, which is L = 1.9 m from the slit, the width of the central maximum is D = 4.8 mm. = = Randomized Variables = W = 0.42 mm L = 1.9 m D = 4.8 mm 20% Part (a) The angle of the first dark fringe is dark.

Answers

The angle of the first dark fringe can be found using the formula θ = λ/D, where λ is the wavelength of light.

When light passes through a single slit, it diffracts and creates a diffraction pattern on a screen placed at a certain distance from the slit.

The central maximum is the brightest part of the pattern and has a width of D = 4.8 mm. The dark fringes occur at angles where the waves from different parts of the slit interfere destructively. The angle of the first dark fringe is the angle at which the first minimum occurs, which is the angle of the first dark fringe.

To find the angle of the first dark fringe, we need to know the wavelength of light. However, it is not given in the question. Therefore, we cannot calculate the angle of the first dark fringe.

We cannot find the angle of the first dark fringe without knowing the wavelength of light.

For more information on diffraction through slit kindly visit to

https://brainly.com/question/31503234

#SPJ11

For any object orbiting the Sun, Kepler's Law may be written T^2=kr^3. If T is measured in years and r in units of the Earth's distance from the Sun, then k=1. What, therefore, is the time (in years) for Mars to orbit the Sun if its mean radius from the Sun is 1.5 times the Earth's distance from the Sun? Answer is 1.8 years, how do you find it?

Answers

The time for Mars to orbit the Sun is approximately 1.84 years, which is close to the given answer of 1.8 years by using  use Kepler's Third Law.

To use Kepler's Third Law to find the time for Mars to orbit the Sun, we can write:

[tex]T^{2}[/tex] = k[tex]r^{3}[/tex]

where T is the time in years, r is the radius in units of the Earth's distance from the Sun, and k = 1.

We are given that Mars has a mean radius from the Sun that is 1.5 times the Earth's distance from the Sun. So we can write:

r = 1.5

Plugging this into Kepler's Third Law, we get:

[tex]T^{2}[/tex] = k [tex]r^{3}[/tex]

[tex]T^{2}[/tex] = 1 x (1.5[tex])^{3}[/tex]

[tex]T^{2}[/tex] = 3.375

Taking the square root of both sides, we get:

T =  [tex]\sqrt{3.375}[/tex]= 1.84 years (rounded to two decimal places)

Therefore, the time for Mars to orbit the Sun is approximately 1.84 years, which is close to the given answer of 1.8 years.

Know more about   Kepler's Third Law   here:

https://brainly.com/question/16705471

#SPJ11

in the series circuit shown below, what would happen if one of the light bulbs and its attached wire segment were removed?

Answers

If one of the light bulbs and its attached wire segment were removed in the series circuit shown below, the remaining light bulbs in the circuit would go out and stop functioning.

What is the series circuit?

In a series circuit, the components are connected in a single path, one after the other. The current flows through each component in the circuit sequentially. When one component is removed, the circuit becomes incomplete, and the flow of current is interrupted.

In the given circuit, the removal of a light bulb and its attached wire segment breaks the continuity of the circuit. Without a complete path for the current to flow, the remaining light bulbs in the circuit would not receive any current and, therefore, would not light up.

This is because the series circuit relies on the flow of current through each component to power them. Removing one component disrupts the flow of current throughout the entire circuit, resulting in the loss of functionality for all the remaining components.

To know more about series circuit, refer here:

https://brainly.com/question/14997346#

#SPJ4

An air-filled toroidal solenoid has a mean radius of 15.5 cm and a cross-sectional area of 5.00 cm^2 When the current is 12.5A, the energy stored is 0.395JHow many turns does the winding have?

Answers

The toroidal solenoid would be approximately 330 turns.

A toroidal shape refers to a donut-shaped object or structure with a hole in the middle, like a donut or a bagel. In the context of electromagnetic devices, a toroidal solenoid is a type of coil that is wound in a circular shape around a toroidal (donut-shaped) core.

The advantage of this design is that the magnetic field lines are mostly confined to the core, which can improve the efficiency and strength of the magnetic field generated by the coil. Toroidal solenoids are commonly used in applications such as transformers, inductors, and other electronic devices.

The energy stored in an air-filled toroidal solenoid is given by:

U = (1/2) * μ * N² * A * I², where μ is the permeability of free space, N is the number of turns, A is the cross-sectional area, and I is the current.

We can rearrange this equation to solve for N:

N = √(2U / μA I²)

Substituting the given values, we have:

N = √(2 * 0.395 J / (4π x 10⁻⁷ Tm/A² * 5.00 x 10⁻⁴ m² * (12.5 A)²))

N ≈ 330 turns

Therefore, the toroidal solenoid has approximately 330 turns.

To know more about toroidal

https://brainly.com/question/29410316

#SPJ4

If rod OA of negligible mass is subjected to the couple moment W = 9N m, determine the angular velocity of the 10-kg inner gear t = 5 s after it starts from rest. The gear has a radius of gyration about its mass center of kA = 100 mm, and it rolls on the fixed outer gear. Motion occurs in the horizontal plane.

Answers

The angular velocity of the gear 5 seconds after starting from rest is approximately 9.49 rad/s.

How to find the angular velocity?

To solve this problem, we can use the principle of conservation of energy. Initially, the system is at rest, so the initial kinetic energy is zero. At time t = 5 s, the angular velocity of the gear will be given by:

1/2 I ω² = Wt

where I is the moment of inertia of the gear, ω is its angular velocity, and t is the time elapsed.

The moment of inertia of the gear can be expressed as:

I = mk²

where m is the mass of the gear and k is its radius of gyration. Substituting the given values, we get:

I = (10 kg) (0.1 m)² = 0.1 kg·m²

Substituting this value and the given values for W and t, we get:

1/2 (0.1 kg·m²) ω² = (9 N·m) (5 s)

Simplifying and solving for ω, we get:

ω = √(90 rad/s²) ≈ 9.49 rad/s

Therefore, the angular velocity of the gear 5 seconds after starting from rest is approximately 9.49 rad/s.

Learn more about angular velocity

brainly.com/question/29557272

#SPJ11

Other Questions
artists who seek to explore true creativity by breaking from social and artistic conventions are considered use a calculator to find the following values:sin(0.5)= ;cos(0.5)= ;tan(0.5)= .question help question 5: Which of the following is NOT one of the processes of urine formation? - filtration - diffusion - reabsorption - secretion. however, for tonnies, who recognized these same personable relationships, he referred to these societies as having ____________ relationships. Which of the following procedures is currently the standard test used in the United States for evaluating the efficiency of antiseptics and disinfectants?A) use-dilution testB) microbial death rateC) in-use testD) thermal death pointE) phenol coefficient T/F The dominant theme of 2 Timothy is Timothys departure from the truth which Paul was seeking to correct. using the city of shanghai as an example, which does nto accurately describe a key geographic trend in urbanization (1 point) use spherical coordinates to evaluate the triple integralee(x2 y2 z2)x2 y2 z2dv,where e is the region bounded by the spheres x2 y2 z2=1 and x2 y2 z2=16. an informative speech that discusses how something works, or describes a process with a particular outcome, is a speech about Week 34 Mesoamerican civilizations crossword washington dc was built on land ____ by virginia and maryland Please help : Simplify 1-cos2A/cos(-A).cos(90 + A). what signs will be affected by mercury retrograde 2022 Biologists have found that the length l (in inches) of an alligator and its weight w (in pounds) are related by the function l = 27. 1 ln w 32. 8. Find the weight of an alligator given its length is 120 inches Here is the prototype of a function: void five(doublex, double "yptr, int *zPtr); Given these variable declarations, which calls to function five are valid? (check all that apply). int m, n; double p, q; a. five(q. &p,&n); b. q=five(6.2, &p,&m);c. five(7.1, &p, &q); d. fivelp,&q,&m); calculate the value of current at the following times after the switch is closed: 7.0 ms, 15.0 ms, 50.0 ms, 500.0 ms. What is the temperature (in C) when the pressure increases to 15 psi? When a precision machine manufacturer enters into a long-term contract to purchase diamonds from a mine in Africa, this is an example of I want to buy a house in 4 years. I need a down payment of $50,000. How much do I need to have today in order to have a down payment, if I can earn 3%? Mercer Farm Supply Company manufactures and sells a fertilizer called Basic II. The following data are available for preparing budgets for Basic II for the first 2 quarters of 2017.1. Sales: quarter 1, 40,000 bags; quarter 2, 50,000 bags. Selling price is $63 per bag.2. Direct materials: each bag of Basic II requires 5 pounds of Crup at a cost of $3.80 per pound and 10 pounds of Dert at $1.50 per pound.