IS THIS RIGHT? PLS HELP

IS THIS RIGHT? PLS HELP

Answers

Answer 1

Step-by-step explanation:

yes your answer is absolutely correct ..the value of x comes out to be -1 and 7 ..


Related Questions

Suppose we make a number by taking a product of prime numbers and then adding the number 1- for example, (2×5×17) + 1. Compute the remainder when any of the primes used is divided into the number. Show that none of the primes used can divide evenly into the number. What can you conclude about the primes that divide evenly into the number? Can you use this line of reasoning to give another proof that there are infinitely many prime numbers?

Answers

There cannot be a finite number of prime numbers, and hence, there must be infinitely many prime numbers.

Given data ,

Let's consider a number formed by taking the product of prime numbers and adding 1, denoted as N = (p1 * p2 * p3 * ... * pn) + 1, where p1, p2, p3, ..., pn are prime numbers.

We want to show that none of the primes used (p1, p2, p3, ..., pn) can divide evenly into the number N.

N = (p1 * p2 * p3 * ... * pk * ... * pn) + 1

Since pk divides evenly into N, it must also divide evenly into the first term of the sum, which is (p1 * p2 * p3 * ... * pk * ... * pn). However, if pk divides evenly into this term, it should divide evenly into each of the primes p1, p2, p3, ..., pn.

On simplifying the equation , we get

But this is a contradiction because all the primes p1, p2, p3, ..., pn are distinct and assumed to be prime. Therefore, no prime used in the product can divide evenly into the number N.

From this reasoning, we can conclude that the primes that divide evenly into the number N are different from the primes used in the product. In other words, the number N has at least one prime factor that is different from the primes used in its construction.

Now, let's consider the implications for proving that there are infinitely many prime numbers. Suppose we assume there are only a finite number of prime numbers, denoted as p1, p2, p3, ..., pn. We can construct a new number N by taking the product of these primes and adding 1, as shown earlier.

N = (p1 * p2 * p3 * ... * pn) + 1

Since N has at least one prime factor that is different from p1, p2, p3, ..., pn, it implies that there must exist a prime number not included in the initial assumption. Therefore, there cannot be a finite number of prime numbers, and hence, there must be infinitely many prime numbers.

Hence , this line of reasoning provides another proof that there are infinitely many prime numbers

To learn more about prime numbers click :

https://brainly.com/question/30210177

#SPJ1

find the value of x for (4+5x)⁰ and (x+2)⁰​

Answers

Solving a linear equation we can see that the value of x is 29.

How to find the value of x?

We can see that the two angles in the image must add to a plane angle, that is an angle of 180°, then we can write the linear equation:

4x + 5 + x + 2= 180

Let's solve that equation for x.

4 + 5x + x + 2 = 180

x + 5x + 4 + 2 = 180

6x + 6= 180

6x = 180 - 6

x = 174/6 = 29

That is the value of x.

Learn more about angles at:

https://brainly.com/question/25716982

#SPJ1

the following values are true about a function f(x) and f(x)'s antiderivative f(x). x f(x) f(x) 1 -2 2 3 4 5 6 6 4 10 -13 -8 15 12 1. use the table to find ∫3 10 f(x) dx. Multiple choice O -13 O 13 O 6.5 O 3 O 0-3

Answers

According to given question about a function f(x) and f(x)'s antiderivative f(x): ∫3 10 f(x) dx = -6.5. Therefore, the correct answer is -6.5.

To find ∫3 10 f(x) dx, we need to find the antiderivative of f(x) and evaluate it at x=10 and x=3, then subtract the latter from the former. Looking at the table, we can see that f(x)'s antiderivative is a cubic polynomial (degree 3) because f(x) has degree 2 (quadratic). We can use the values of f(x) to find the coefficients of the antiderivative by solving a system of linear equations:

Let F(x) be the antiderivative of f(x), then we have:

F(x) = ax^3 + bx^2 + cx + d, where a, b, c, and d are constants.

Using the values of f(x), we can write:

F(1) = -2, F(3) = 6, F(4) = -13, F(5) = -8, F(6) = 15, F(10) = 1.

Substituting these values into the equation for F(x), we get:

a + b + c + d = -2
27a + 9b + 3c + d = 6
64a + 16b + 4c + d = -13
125a + 25b + 5c + d = -8
216a + 36b + 6c + d = 15
1000a + 100b + 10c + d = 1

Solving this system of equations (using a calculator or a computer), we get:

a = -0.5, b = -5/3, c = -23/3, d = 29.

Therefore, the antiderivative of f(x) is:

F(x) = -0.5x^3 - (5/3)x^2 - (23/3)x + 29.

To find ∫3 10 f(x) dx, we need to evaluate F(x) at x=10 and x=3, then subtract the latter from the former:

∫3 10 f(x) dx = F(10) - F(3)
= (-0.5(10)^3 - (5/3)(10)^2 - (23/3)(10) + 29) - (-0.5(3)^3 - (5/3)(3)^2 - (23/3)(3) + 29)
= (-500/2 - 500/3 - 230/3 + 29) - (-13/2 - 5/3 - 23/3 + 29)
= (-325/6 - 197/3)
= -13/2
= -6.5

Therefore, the answer is: ∫3 10 f(x) dx = -6.5.

Learn more about antiderivative:

https://brainly.com/question/31396969

#SPJ11

solve sin ( 2 x ) cos ( 5 x ) − cos ( 2 x ) sin ( 5 x ) = − 0.35 for the smallest positive solution.

Answers

The smallest positive solution for the given equation is x ≈ 0.121 radians.

To solve the equation sin(2x)cos(5x) - cos(2x)sin(5x) = -0.35 for the smallest positive solution, we can use the following steps:

Step 1: Use the angle subtraction formula for sine.
The given equation can be written using the angle subtraction formula: sin(A - B) = sin(A)cos(B) - cos(A)sin(B).

Therefore, the equation becomes sin(2x - 5x) = -0.35.

Step 2: Simplify the equation.
Simplify the equation to sin(-3x) = -0.35.

Step 3: Use the property sin(-x) = -sin(x).
Applying this property, we get sin(3x) = 0.35.

Step 4: Find the value of 3x using the arcsin function.
To find the value of 3x, take the inverse sine (arcsin) of both sides: 3x = arcsin(0.35).

Step 5: Solve for x.
Divide both sides of the equation by 3 to find x: x = (arcsin(0.35))/3.

Using a calculator, we find that x ≈ 0.121 radians. This is the smallest positive solution for the given equation.

To know more about smallest positive solution refer here:

https://brainly.com/question/29259347

#SPJ11

In Problems 47–54 find the eigenvalues and eigenvectors of the given matrix.|2 1||2 1|

Answers

The eigenvalues of the matrix are λ₁ = 0 and λ₂ = 3, and the corresponding eigenvectors are v₁ = (1, -2) and v₂ = (1, 1), respectively.

The given matrix is:

|2 1|

|2 1|

To find the eigenvalues and eigenvectors, we need to solve the characteristic equation:

|2-lambda 1      |

|2         1-lambda|

= 0

Expanding the determinant, we get:

(2 - lambda) * (1 - lambda) - 2 = 0

lambda^2 - 3 lambda = 0

lambda * (lambda - 3) = 0

So the eigenvalues are λ₁ = 0 and λ₂ = 3.

Now we find the eigenvectors for each eigenvalue by solving the system of equations:

(A - λ * I) * v = 0

where A is the given matrix, λ is an eigenvalue, I is the identity matrix, and v is the corresponding eigenvector.

For λ₁ = 0, we have:

|2 1||x|   |0|

|2 1||y| = |0|

This gives us the equation 2x + y = 0, so we can choose any vector of the form v₁ = (t, -2t) for t ≠ 0 as an eigenvector. For example, if we choose t = 1, we get v₁ = (1, -2).

For λ₂ = 3, we have:

|-1 1||x|   |0|

|-2 2||y| = |0|

This gives us the equation -x + y = 0, so we can choose any vector of the form v₂ = (t, t) for t ≠ 0 as an eigenvector. For example, if we choose t = 1, we get v₂ = (1, 1).

Therefore, the eigenvalues of the given matrix are λ₁ = 0 and λ₂ = 3, and the corresponding eigenvectors are v₁ = (1, -2) and v₂ = (1, 1), respectively.

Learn more about eigenvectors here

https://brainly.com/question/15586347

#SPJ11

determine whether the series is absolutely convergent, conditionally convergent, or divergent. 4 7 4 · 10 7 · 9 4 · 10 · 16 7 · 9 · 11 4 · 10 · 16 · 22 7 · 9 · 11 · 13

Answers

To determine whether the series is absolutely convergent, conditionally convergent, or divergent, we can use the Ratio Test. Answer : the series is divergent.

Let's analyze the given series:

4, 7, 4 · 10, 7 · 9, 4 · 10 · 16, 7 · 9 · 11, 4 · 10 · 16 · 22, 7 · 9 · 11 · 13, ...

We will calculate the ratio of consecutive terms:

(7/4), (40/7), (63/40), (352/63), (1386/352), (7722/1386), ...

Now, we will calculate the limit of the absolute value of the ratios:

lim(n->∞) |a(n+1)/a(n)| = lim(n->∞) |(7722/1386) / (1386/352)| = lim(n->∞) |(7722/1386) * (352/1386)| = lim(n->∞) |7722/1386 * 352/1386| = |2039328/1933156| = 1.055...

The limit of the absolute value of the ratios is greater than 1. According to the Ratio Test, if the limit is greater than 1, the series diverges. Therefore, the given series is divergent.

In conclusion, the series is divergent.

Learn more about limit  : brainly.com/question/12211820

#SPJ11

an isosceles triangle has two sides of length 40 and a base of length 48. a circle circumscribes the triangle. what is the radius of the circle?

Answers

The radius of the circle circumscribing the given isosceles triangle is 40 unit.

To find the radius of the circle circumscribing an isosceles triangle with two sides of length 40 and a base of length 48, we can use the properties of a circumscribed circle.

In an isosceles triangle, the altitude from the vertex angle (angle opposite the base) bisects the base, creating two congruent right triangles. Let's call the altitude h.

Using the Pythagorean theorem, we can determine the height:

h² + (24)² = (40)²

h² + 576 = 1600

h² = 1024

h = 32

Now, we have a right triangle with one side measuring 32 and the hypotenuse (radius of the circumscribed circle) as the sum of half the base (24) and the height (32). Let's call the radius r.

r = sqrt((24)² + (32)^2)

r = sqrt(576 + 1024)

r = sqrt(1600)

r = 40

Therefore, the radius of the circle circumscribing the given isosceles triangle is 40 unit.

To know more about Pythagorean theorem refer to

https://brainly.com/question/14930619

#SPJ11

please help with this!

Answers

Answer:

A = 73 , B = 9 , C = 13

Step-by-step explanation:

the value of A corresponds to x = 8, in the interval x ≤ 10 , then

f(x) = 9x + 1 , that is

f(8) = 9(8) + 1 = 72 + 1 = 73 = A

the value of B corresponds to x = 10, in the interval x > 10 , then

f(x) = 2x - 11 , that is

f(10) = 2(10) - 11 = 20 - 11 = 9 = B

the value of C corresponds to x = 12, in the interval x > 10 , then

f(x) = 2x - 11 , that is

f(12) = 2(12) - 11 = 24 - 11 = 13

Dan runs for 15 minutes at an average speed of 8 miles per hour.
He then runs for 50 minutes at an average speed of 9 miles per hour.
It takes Carol 75 minutes to run the same total distance that Dan runs.
Work out Carol's average speed.
Give your answer in miles per hour.

Answers

Carol's average speed is approximately 4.06 miles per hour.

We have,

We can use the formula:

distance = speed × time

First, let's find out how far Dan runs. We can start by converting his times to hours:

15 minutes = 0.25 hours

50 minutes = 0.83 hours

Now we can use the formula above to find the distances he runs:

distance1 = speed1 × time1 = 8 mph × 0.25 hours = 2 miles

distance2 = speed2 × time2 = 9 mph × 0.83 hours ≈ 7.47 miles

Total distance

= distance1 + distance2

= 9.47 miles

Since Carol runs the same total distance, we can use the formula to find her average speed:

average speed = total distance ÷ total time

We know the total distance is approximately 9.47 miles.

To find the total time, we need to add Dan's two times:

Total time

= 15 minutes + 50 minutes + 75 minutes

= 140 minutes

= 2.33 hours

Now we can substitute into the formula:

Average speed

= 9.47 miles ÷ 2.33 hours

= 4.06 mph

Therefore,

Carol's average speed is approximately 4.06 miles per hour.

Learn more about speed here:

https://brainly.com/question/7359669

#SPJ1

Tutorial Exercise Find and sketch the domain of the function. RX,Y)= 36 - X2 Step 1 When finding the domain of a function, we must rule out points where the denominator equals zero equals zero and where there are negative negative values in the square root. Step 2 For rx, y) - Vy - x? the denominator equals 0 when x2 = 36 36 36 - X2 Therefore, we must have x y Step 3 The numerator Vy - x? is defined only when y - x 2 0. Therefore, we must have y 3 Step 4 Combining the above, we determine that the domain of the given function is as follows.

Answers

The domain of the given function is: {(x,y) | x = 6 or x = -6, and y ≥ 36}.

The domain of the function R(x,y) = 36 - x^2 is the set of all possible input values of x and y that make the function well-defined. To find the domain, we need to rule out any values of x and y that would result in a division by zero or a negative value inside the square root.

First, we need to check if there are any values of x that would make the denominator of the fraction equal to zero. This occurs when x^2 = 36, which means that x must be either 6 or -6.

Next, we need to check if there are any values of y that would result in a negative value inside the square root. However, since there is no square root in the given function, we do not need to worry about this step.

Finally, we need to make sure that the numerator of the fraction is well-defined. This requires that y - x^2 is greater than or equal to zero. Since the maximum value of x^2 is 36, this means that y must be greater than or equal to 36.

Combining these three conditions, we can determine that the domain of the given function is: {(x,y) | x = 6 or x = -6, and y ≥ 36}.

Learn more about domain here

https://brainly.com/question/26098895

#SPJ11

If A=3x^2+5x-6 and B=-2x^2-6x+7, then A-B equals
(1) -5x^2-11x+13 (3) -5x^2-x+1

(2) 5x^2+11x -13 (4) 5x^2 -x+1

Answers

After subtracting the given two expressions which are (3x² + 5x - 6) and (-2x² - 6x + 7), we get result as 5x² + 11x - 13. So, correct option is 2.

To find the difference between A and B, we need to subtract B from A.

A - B = (3x² + 5x - 6) - (-2x² - 6x + 7)

A - B = 3x² + 5x - 6 + 2x² + 6x - 7 (distributing the negative sign)

A - B = 5x² + 11x - 13

Therefore, the answer is (2) 5x²+11x-13.

To verify, we can also expand (1), (3), and (4) and see that they do not simplify to the same expression as (2).

To learn more about expression click on,

https://brainly.com/question/776447

#SPJ1

\text{claim amounts, $x$, follow a gamma distribution with mean 6 and variance 12.} \text{calculate }\,\pr[x\le4]\text{.}

Answers

The probability that a claim amount is less than or equal to 4, given that it follows a gamma distribution with a mean of 6 and variance of 12, can be calculated using the cumulative distribution function (CDF) of the gamma distribution.

The gamma distribution is a continuous probability distribution with two parameters: shape parameter (k) and scale parameter (θ). In this case, we are given the mean and variance of the gamma distribution, which can be related to the shape and scale parameters as follows:

Mean (μ) = kθ

Variance (σ²) = kθ²

From the given information, we have μ = 6 and σ² = 12. To find the parameters k and θ, we solve the above equations simultaneously:

6 = kθ

12 = kθ²

Dividing the second equation by the first equation, we get:

2 = θ

Substituting this value back into the first equation, we find:

6 = k * 2

k = 3

So, the parameters for the gamma distribution are k = 3 and θ = 2.

Now, we can use the CDF of the gamma distribution to calculate the probability that a claim amount is less than or equal to 4:

P(x ≤ 4) = CDF(4; k, θ)

By evaluating this expression using the values of k and θ we obtained, we can find the desired probability.

Learn more about continuous probability distribution here: https://brainly.com/question/15136700

#SPJ11

Mary's number is 11 more than Jerry's number. The sum is 89. What are their numbers?

Answers

Mary and Jerry's number will be 39 and 50.The sum of their numbers is 89. Which shows that the obtained answer is correct.

What is a linear equation?

It is defined as the relation between two variables if we plot the graph of the linear equation we will get a straight line.

If in the linear equation one variable is present then the equation is known as the linear equation in one variable.

Let, Mary’s number be x

Mary’s number is eleven more than Jerry’sJerry's number is x + 11

From the given condition sum of their numbers is 89.

[tex]\sf x+(x+11)=89[/tex]

[tex]\sf 2x+11=89[/tex]

[tex]\sf 2x=89-11[/tex]

[tex]\sf 2x=78[/tex]

[tex]\sf \dfrac{2x}{2} =\dfrac{78}{2}[/tex]

[tex]\sf x=39[/tex]

Jerry's number will be:

[tex]\sf x+11[/tex]

[tex]\sf 39+11[/tex]

[tex]\sf 50[/tex]

Hence the Mary and Jerry's number will be 39 and 50.

To learn more about the linear equation refer to the link:

https://brainly.com/question/29739212

. If P, Q and R are angle of triangle PQR then prove that, cos ec (P+R/2) = secQ/2​

Answers

If P, Q and R are the angles of triangle PQR, then cosec((P+R)/2) = sec(Q/2)

Since P, Q and R are the angles of triangle, then they hold the relation

P + Q + R = 180° .....(i)

Rearranging this equation, we get

P + R = 180° - Q ---(ii)

Using the lhs of the equation,

cosec((P+R)/2)

Substituting (P+R) from (ii), we get

cosec((180°-Q)/2)

=> cosec((180/2)°- (Q/2))

=> cosec(90°- (Q/2))

We know that cosec(90°- A) = sec(A). Using this in the above relation, we get

=> sec(Q/2)

which equates to the rhs of the equation given the question.

Therefore, cosec((P+R)/2) = sec(Q/2)

To learn more about trigonometry,

https://brainly.com/question/3785172

how many seconds will be required to produce 1.0 g of silver metal by the electrolysis of a agno3 solution using a current of 30 amps? choix de groupe de réponses

Answers

it will take approximately 29.823 seconds to produce 1.0 g of silver metal by the electrolysis of an AgNO3 solution using a current of 30 amps.

To determine how many seconds will be required to produce 1.0 g of silver metal by the electrolysis of an AgNO3 solution using a current of 30 amps, we need to follow these steps:

1. Calculate the number of moles of silver (Ag) in 1.0 g:
1.0 g / 107.87 g/mol (molar mass of Ag) = 0.00927 mol of Ag

2. Use Faraday's law of electrolysis to find the total charge needed:
Total charge (Q) = n × F
where n is the number of moles of Ag (0.00927 mol) and F is the Faraday constant (96,485 C/mol).
Q = 0.00927 mol × 96,485 C/mol = 894.7 C (Coulombs)

3. Determine the time (t) required to pass the total charge at a current of 30 amps:
t = Q / I
where Q is the total charge (894.7 C) and I is the current (30 A).
t = 894.7 C / 30 A = 29.823 seconds

So, it will take approximately 29.823 seconds to produce 1.0 g of silver metal by the electrolysis of an AgNO3 solution using a current of 30 amps.

To know more about electrolysis visit:

https://brainly.com/question/12994141

#SPJ11

P is the mid –point of NO and equidistant from MO. If MN =8i+3j and MO=14i–5j. Find MP

Answers

MP is equal to -3i + 4j.

To find the coordinates of point P, we can use the midpoint formula. The midpoint formula states that the coordinates of the midpoint between two points (x₁, y₁) and (x₂, y₂) are given by the average of the x-coordinates and the average of the y-coordinates.

Given that P is the midpoint of NO, we can find the coordinates of P by finding the average of the x-coordinates and the average of the y-coordinates of N and O.

The coordinates of point N are (x₁, y₁) = (8, 3).

The coordinates of point O are (x₂, y₂) = (14, -5).

Using the midpoint formula:

x-coordinate of P = (x₁ + x₂) / 2 = (8 + 14) / 2 = 22 / 2 = 11.

y-coordinate of P = (y₁ + y₂) / 2 = (3 + (-5)) / 2 = -2 / 2 = -1.

Therefore, the coordinates of point P are (11, -1).

Since MP is the vector from M to P, we can find MP by subtracting the coordinates of M from the coordinates of P:

MP = (11 - 14)i + (-1 - (-5))j = -3i + 4j.

So, MP is equal to -3i + 4j.

For more questions on coordinates

https://brainly.com/question/25716982

#SPJ8

Find a basis B of R3 such that the B-matrix B of the given linear transformation T is diagonal. T is the orthogonal projection of R3 onto the plane 3x + y + 2z = 0. To find the basis, use the normal vector to the plane together with basis vectors for the nullspace of A = [3 1 2].

Answers

The orthogonal projection of R3 onto the plane 3x + y + 2z = 0 has a diagonal matrix representation with respect to an orthonormal basis formed by the normal vector to the plane and two normalized vectors from the nullspace of the matrix [3 1 2].

How to find basis for diagonal matrix representation of orthogonal projection onto a plane?

To find a basis B of R3 such that the B-matrix of the given linear transformation T is diagonal, we need to follow these steps:

Find the normal vector to the plane given by the equation:

                            3x + y + 2z = 0

We can do this by taking the coefficients of x, y, and z as the components of the vector, so the normal vector is:

                                  n = [3, 1, 2]

Find a basis for the nullspace of the matrix:

                                 A = [3 1 2]

We can do this by solving the equation :

                               Ax = 0

where x is a vector in R3. Using row reduction, we get:

                          [tex]| 3 1 2 | | x1 | | 0 | | 0 -2 -4 | * | x2 | = | 0 | | 0 0 0 | | x3 | | 0 |[/tex]

From this, we see that the nullspace is spanned by the vectors [1, 0, -1] and [0, 2, 1].

Combine the normal vector n and the basis for the nullspace to get a basis for R3.

One way to do this is to take n and normalize it to get a unit vector

             [tex]u = n/||n||[/tex]

Then, we can take the two vectors in the nullspace and normalize them to get two more unit vectors v and w.

These three vectors u, v, and w form an orthonormal basis for R3.

Find the matrix representation of T with respect to the basis

                       B = {u, v, w}

Since T is the orthogonal projection onto the plane given by

                   3x + y + 2z = 0

the matrix representation of T with respect to any orthonormal basis that includes the normal vector to the plane will be diagonal with the first two diagonal entries being 1 (corresponding to the components in the plane) and the third diagonal entry being 0 (corresponding to the component in the direction of the normal vector).

So, the final answer is:

                       B = {u, v, w}, where

                       u = [3/√14, 1/√14, 2/√14],

                       v = [1/√6, -2/√6, 1/√6], and

                      w = [-1/√21, 2/√21, 4/√21]

The B-matrix of T is diagonal with entries [1, 1, 0] in that order.

Learn more about linear transformation

brainly.com/question/30514241

#SPJ11

given ∫(6x6−6x5−4x3 2)dx, evaluate the indefinite integral.

Answers

The indefinite integral of the given function is[tex](6/7)x^7 - x^6 - (8/5)x^{(5/2) }+ C.[/tex]

We can begin by using the power rule of integration, which states that for any term of the form x^n, the indefinite integral is[tex](1/(n+1)) x^{(n+1) }+ C,[/tex] where C is the constant of integration.

Applying this rule to each term of the integrand, we get:

[tex]\int (6x^6 - 6x^5 - 4x^{3/2})dx = 6\int x^6 dx - 6\int x^5 dx - 4\int x^{(3/2)}dx[/tex]

Using the power rule, we can evaluate each of these integrals as follows:

[tex]\int x^6 dx = (1/7) x^7 + C1\\\int x^5 dx = (1/6) x^6 + C2\\\int x^{(3/2)}dx = (2/5) x^{(5/2)} + C3[/tex]

Putting everything together, we get:

[tex]\int (6x^6 - 6x^5 - 4x^{3/2})dx = 6(1/7)x^7 - 6(1/6)x^6 - 4(2/5)x^{(5/2)} + C[/tex]

Simplifying, we get:

[tex]\int (6x^6 - 6x^5 - 4x^{3/2})dx = (6/7)x^7 - x^6 - (8/5)x^{(5/2)} + C[/tex]

for such more question on integral

https://brainly.com/question/22008756

#SPJ11

To evaluate the indefinite integral of ∫(6x6−6x5−4x3/2)dx, we need to use the power rule of integration. According to this rule, we need to add one to the power of x and divide the coefficient by the new power.


Given the function:

∫(6x^6 - 6x^5 - 4x^3 + 2)dx

To find the indefinite integral, we'll apply the power rule for integration, which states:

∫(x^n)dx = (x^(n+1))/(n+1) + C

Applying this rule to each term in the function, we get:

∫(6x^6)dx - ∫(6x^5)dx - ∫(4x^3)dx + ∫(2)dx

= (6x^(6+1))/(6+1) - (6x^(5+1))/(5+1) - (4x^(3+1))/(3+1) + 2x + C

= (x^7) - (x^6) - (x^4) + 2x + C

So, the indefinite integral of the given function is:

x^7 - x^6 - x^4 + 2x + C, where C is the constant of integration.

To learn more about indefinite integral click here, brainly.com/question/28036871

#SPJ11

Use the root test to determine whether the following series converge. Please show all work, reasoning. Be sure to use appropriate notation Σ(1) 31

Answers

The limit is greater than 1, the series diverges by the root test. The series Σ(1) 3^n diverges.

The root test is a convergence test that can be used to determine whether a series converges or diverges. The root test states that if the limit of the nth root of the absolute value of the nth term of the series is less than 1, then the series converges absolutely. If the limit is greater than 1, the series diverges, and if the limit is exactly 1, the test is inconclusive.

Here, we are asked to determine whether the series Σ(1) 3^n converges. Applying the root test, we have:

lim(n→∞) (|3^n|)^(1/n) = lim(n→∞) 3 = 3

Since the limit is greater than 1, the series diverges by the root test. Therefore, the series Σ(1) 3^n diverges.

Learn more about diverges here

https://brainly.com/question/28452298

#SPJ11

13–20. Mass of one-dimensional objects Find the mass of the following thin bars with the given density function. 13. p(x) = 1 + sin x, for 0 SX SA

Answers

The mass of the thin bar is [tex](\pi/2) - 1[/tex].

How to find the mass of the thin bar?

To find the mass of the thin bar with the given density function, we need to integrate the density function over the length of the bar.

The length of the bar is given as L = SA - SX = [tex]\pi/2 - 0 = \pi/2.[/tex]

So, the mass of the bar is given by the integral:

M = ∫(SX to SA) p(x) dx

Substituting the given density function, we get:

M = ∫(0 to [tex]\pi/2[/tex]) (1 + sin x) dx

Using integration rules, we can integrate this as follows:

M = [x - cos x] from 0 to [tex]\pi/2[/tex]

M = [tex](\pi/2) - cos(\pi/2) - 0 + cos(0)[/tex]

[tex]M = (\pi/2) - 1[/tex]

Therefore, the mass of the thin bar is [tex](\pi/2) - 1.[/tex]

Learn more about density function

brainly.com/question/30689274

#SPJ11

For what values of x does the series ∑n=0[infinity]​n!(2x−3)n​ converge? (A) x=23​ only (B) 1

Answers

To satisfy the inequality, we need |2x - 3| = 0, the series ∑n=0[infinity]​n!(2x−3)n​ converges for x = 2/3.

To determine the values of x for which the series converges, we can use the ratio test. The ratio test states that if the limit of the absolute value of the ratio of consecutive terms is less than 1, then the series converges.

Considering the given series, let's apply the ratio test:

lim(n→∞) |(n + 1)!(2x - 3)^(n + 1)| / (n!(2x - 3)^n)

= lim(n→∞) |(n + 1)(2x - 3)|

For the series to converge, this limit must be less than 1.

Simplifying the expression, we have |2x - 3| < 1/(n + 1).

As n approaches infinity, the right side of the inequality becomes arbitrarily small.

Thus, to satisfy the inequality, we need |2x - 3| = 0, which gives x = 2/3.

Therefore, the series converges for x = 2/3, which corresponds to option (A).

Learn more about consecutive terms here:  brainly.com/question/14171064

#SPJ11

let p(a) = 0.6, p(b) = 0.3, and p(a∪b)c = 0.1. calculate p(a∩b).

Answers

The probability of the intersection of events a and b, p(a∩b), is 0.8.

To calculate the probability of the intersection of two events, p(a∩b), we can use the formula:

p(a∩b) = p(a) + p(b) - p(a∪b),

where p(a) is the probability of event a, p(b) is the probability of event b, and p(a∪b) is the probability of the union of events a and b.

Given that p(a) = 0.6, p(b) = 0.3, and p(a∪b)c = 0.1, we can substitute these values into the formula:

p(a∩b) = 0.6 + 0.3 - 0.1.

Simplifying the expression, we get:

p(a∩b) = 0.8.

Therefore, the probability of the intersection of events a and b, p(a∩b), is 0.8.

To know more about probability , refer here :

https://brainly.com/question/30034780#

#SPJ11

Sam starts traveling at 4km/h from a campsite 2 hours ahead of Sue, who travels 6km/h in the same direction. How many hours will it take for Sue to catch up to Sam?

Answers

To find out how many hours it will take for Sue to catch up to Sam, we can set up an equation based on their relative speeds and the time difference.

Let's denote the time it takes for Sue to catch up to Sam as t hours.

In that time, Sam will have traveled a distance of 4 km/h * (t + 2) hours (since he started 2 hours earlier).

Sue, on the other hand, will have traveled a distance of 6 km/h * t hours.

Since they meet at the same point, the distances traveled by Sam and Sue must be equal.

Therefore, we can set up the equation:

4 km/h * (t + 2) = 6 km/h * t

Now we can solve for t:

4t + 8 = 6t

8 = 6t - 4t = 2t

t = 8/2 = 4

Therefore, it will take Sue 4 hours to catch up to Sam.

Learn more about relative speeds here:

https://brainly.com/question/14362959

#SPJ11

a 9th order, linear, homogeneous, constant coefficient differential equation has a characteristic equation which factors as follows. (r2 2r 5)r3(r 3)4=0 Write the nine fundamental solutions to the differential equation as functions of the variable t . Y1 (e^(3tJJcos(2t) Y2 (e^3t))sin(2t) Y3 t (2Je^(-3t) Y4 t43 Ys tN(2Je^(-3t) Y6 Y7 Y8 e^(-3t) Y9 teN-3t) (You can enter your answers in any order:)

Answers

The nine fundamental solutions to the differential equation are:
Y1 = e^(3t)(cos(2t) + 2i*sin(2t))    Y2 = e^(3t)(cos(2t) - 2i*sin(2t))    Y3 = t^3    Y4 = t^4    Y5 = t^3*e^(-3t)    Y6 = t^4*e^(-3t)
Y7 = e^(-3t)    Y8 = t*e^(-3t)    Y9 = t^2*e^(-3t)

To find the nine fundamental solutions to the given 9th order, linear, homogeneous, constant coefficient differential equation, we need to consider the roots of the characteristic equation, which factors as follows:

(r2 + 2r + 5)(r3)(r + 3)4 = 0

The roots of the characteristic equation are:

r1 = -1 + 2i
r2 = -1 - 2i
r3 = 0 (with multiplicity 3)
r4 = -3 (with multiplicity 4)

To find the fundamental solutions, we need to use the following formulas:

If a root of the characteristic equation is complex and non-repeated (i.e., of the form a + bi), then the corresponding fundamental solution is:
y = e^(at)(c1*cos(bt) + c2*sin(bt))

If a root of the characteristic equation is real and non-repeated, then the corresponding fundamental solution is:
y = e^(rt)

If a root of the characteristic equation is real and repeated (i.e., of the form r with multiplicity k), then the corresponding fundamental solutions are:
y1 = e^(rt)
y2 = t*e^(rt)
y3 = t^2*e^(rt)
...
yk = t^(k-1)*e^(rt)

Using these formulas, we can find the nine fundamental solutions as follows:
y1 = e^(3t)(cos(2t) + 2i*sin(2t))
y2 = e^(3t)(cos(2t) - 2i*sin(2t))
y3 = t^3*e^(0t) = t^3
y4 = t^4*e^(0t) = t^4
y5 = t^3*e^(-3t)
y6 = t^4*e^(-3t)
y7 = e^(-3t)
y8 = t*e^(-3t)
y9 = t^2*e^(-3t)

So the nine fundamental solutions to the differential equation are:
Y1 = e^(3t)(cos(2t) + 2i*sin(2t))
Y2 = e^(3t)(cos(2t) - 2i*sin(2t))
Y3 = t^3
Y4 = t^4
Y5 = t^3*e^(-3t)
Y6 = t^4*e^(-3t)
Y7 = e^(-3t)
Y8 = t*e^(-3t)
Y9 = t^2*e^(-3t)

Know more about the differential equation here:

https://brainly.com/question/1164377

#SPJ11

Solve these pairs of equations (find the intersection point) 3x + 2y = 9 and 2x+ 3y = 6

Answers

The solution to the system of equations is (5, -3). To solve the system of equations 3x + 2y = 9 and 2x + 3y = 6, we can use the method of substitution.

We can solve one of the equations for one of the variables in terms of the other variable. For example, we can solve the second equation for x to get x = (6 - 3y)/2. Then, we can substitute this expression for x into the first equation and solve for y: 3(6 - 3y)/2 + 2y = 9

Simplifying this equation, we get: 9 - 9y + 4y = 18. Solving for y, we get: y = -3

Now that we have the value of y, we can substitute it into one of the original equations to solve for x. Using the first equation, we get: 3x + 2(-3) = 9

Simplifying this equation, we get: 3x = 15. Solving for x, we get: x = 5

Therefore, the solution to the system of equations is (5, -3).

To know more about substitution, refer here:

https://brainly.com/question/30284926#

#SPJ11

A ball is thrown into the air with initial velocity v(0) = 3i + 8k. The acceleration is given by a(t) = 8j − 16k. How far away is the ball from its initial position at t = 1?

Answers

The ball is approximately 4 units away from its initial position at t = 1.

To find the position of the ball at t = 1, we need to integrate the velocity function. The velocity function v(t) is obtained by integrating the acceleration function a(t):

v(t) = ∫ a(t) dt = ∫ (8j − 16k) dt

Integrating the j-component of the acceleration gives the j-component of the velocity:

v_j(t) = ∫ 8 dt = 8t + C₁,

where C₁ is the constant of integration.

Integrating the k-component of the acceleration gives the k-component of the velocity:

v_k(t) = ∫ (-16) dt = -16t + C₂,

where C₂ is another constant of integration.

Given the initial velocity v(0) = 3i + 8k, we can determine the values of C₁ and C₂:

v(0) = 3i + 8k = 8(0) + C₁ j + C₂ k

Comparing the coefficients, we have C₁ = 0 and C₂ = 8.

Thus, the velocity function v(t) becomes:

v(t) = (8t)j + (8 - 16t)k = 8tj + 8k - 16tk.

To find the position function r(t), we integrate the velocity function:

r(t) = ∫ v(t) dt = ∫ (8tj + 8k - 16tk) dt

Integrating the j-component of the velocity gives the j-component of the position:

r_j(t) = ∫ (8t) dt = 4t^2 + C₃,

where C₃ is the constant of integration.

Integrating the k-component of the velocity gives the k-component of the position:

r_k(t) = ∫ (8 - 16t) dt = 8t - 8t^2 + C₄,

where C₄ is another constant of integration.

Using the initial position r(0) = 0, we find C₃ = C₄ = 0.

Therefore, the position function r(t) becomes:

r(t) = (4t^2)i + (8t - 8t^2)k.

To find the distance traveled at t = 1, we substitute t = 1 into the position function:

r(1) = (4(1)^2)i + (8(1) - 8(1)^2)k

= 4i + 0k

= 4i.

The distance traveled is the magnitude of the position vector:

| r(1) | = | 4i | = 4.

Hence, the ball is approximately 4 units away from its initial position at t = 1.

For more questions like Function click the link below:

https://brainly.com/question/12431044

#SPJ11

Show that if a and b are positive integers and a3|b3 then a|b.

Answers

a divides b (a|b), as required and they are positive integers.

Given that a and b are positive integers, and a³ divides b³ (written as a³|b³), we need to show that a divides b (written as a|b).

Since a³|b³, this means that b³ = k * a³ for some integer k. Taking the cube root of both sides, we get:

b = (k * a³)^(1/3)

Now, we know that the cube root of a³ is a, so:

b = a * (k)^(1/3)

Since a and b are positive integers, and the cube root of an integer is either an integer or an irrational number, the only way for b to be an integer is if (k)^(1/3) is an integer. Let's denote this integer as m, so:

b = a * m

This shows that a divides b (a|b), as required.

To know more about positive integers, refer to the link below:

https://brainly.com/question/18380011#

#SPJ11

the width of the confidence inveral of part b is approximately 13.04 miles. how many samples would we need to take to obtain 90onfidenc einterval of at most the same width

Answers

We would need to take a sample size of at least 168 to obtain a 90% confidence interval with a maximum width of 13.04 miles.

To calculate the sample size needed to obtain a 90% confidence interval with a width of at most 13.04 miles, we can use the formula:

n = [(z*σ)/E]^2

where n is the sample size, z is the z-score corresponding to the desired confidence level (in this case, z = 1.645 for a 90% confidence interval), σ is the standard deviation of the population (unknown), and E is the maximum desired margin of error (half the width of the confidence interval, which is 13.04/2 = 6.52 miles).

Since we don't know the population standard deviation, we can use the sample standard deviation as an estimate. From part (b), we have s = 278.5 miles. We also know that the standard error of the mean is given by:

SE = s/sqrt(n)

where s is the samplehttps://brainly.com/question/31415755? and n is the sample size.

Rearranging this formula to solve for n, we get:

n = (zσ/E)^2 = (zs/E)^2 = (zs/(2SE))^2

Substituting the values, we get:

n = (1.645278.5/(26.52))^2 ≈ 168

Therefore, we would need to take a sample size of at least 168 to obtain a 90% confidence interval with a maximum width of 13.04 miles.

Learn more about maximum width  here:

https://brainly.com/question/31415755

#SPJ11

Suppose R = 3, 2, 4, 3, 4, 2, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 5, 6, 7, 2, 1 is a page reference stream.a) Given a page frame allocation of 3 and assuming the primary memory is initially unloaded, how many page faults will the given reference stream incur under Belady's optimal algorithm?b) Given page frame allocation of 3 and assuming the primary memory is initially unloaded, how many page faults will the given references stream incur under LRU algorithim?c) Given a page frame allocation of 3 and assuming the primary memory is initially unloaded, how many page faults will the given reference stream incur under FIFO algorithm?d) Given a window size of 6 and assuming the primary memory is initially unloaded, how many page faults will the given reference stream incur under the working-set algorithm?e) Given a window size of 6 and assuming the primary memory is initially unloaded, what is the working-set size under the given reference stream after the entire stream has been processed?

Answers

The working-set size would depend on the specific window being considered, since the reference stream has a varying number of distinct pages over different windows. We cannot determine the working-set size without specifying which window to consider.

(a) Using Belady's optimal algorithm, the reference stream with a page frame allocation of 3 will incur a total of 9 page faults.

(b) Using the LRU algorithm, the reference stream with a page frame allocation of 3 will incur a total of 16 page faults.

(c) Using the FIFO algorithm, the reference stream with a page frame allocation of 3 will incur a total of 15 page faults.

(d) Using the working-set algorithm with a window size of 6, the reference stream will incur a total of 14 page faults.

(e) To determine the working-set size, we need to keep track of the set of pages referenced within a window of size 6. After the entire reference stream has been processed, the working-set size will be the number of distinct pages referenced in the window.

For such more questions on Windows:

https://brainly.com/question/8162397

#SPJ11

The table below gives the list price and the number of bids received for five randomly selected items sold through online auctions. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the number of bids an item will receive based on the list price. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Price in Dollars 31 38 42 44 46 Number of Bids 3 4 6 7 9 Table Step 3 of 6: Determine the value of the dependent variable yˆ at x=0.

Answers

The value of the dependent variable yˆ at x=0 is approximately 8.11.

To determine the value of the dependent variable yˆ at x=0, we need to use the regression line equation yˆ=b0+b1x and substitute x=0 into the equation.

From the given data, we have the following values:

Price in Dollars: 31 38 42 44 46

Number of Bids: 3 4 6 7 9

To find the regression we need to calculate the slope (b1) and the y-intercept (b0).

First, let's calculate the mean of the Price in Dollars (x) and the mean of the Number of Bids (y):

Mean of x (Price) = (31 + 38 + 42 + 44 + 46) / 5 = 40.2

Mean of y (Number of Bids) = (3 + 4 + 6 + 7 + 9) / 5 = 5.8

Next, we need to calculate the deviations from the means for both x and y:

Deviation of x = Price - Mean of x

Deviation of y = Number of Bids - Mean of y

Using these deviations, we calculate the sum of the products of the deviations:

Sum of (Deviation of x * Deviation of y) = (31 - 40.2)(3 - 5.8) + (38 - 40.2)(4 - 5.8) + (42 - 40.2)(6 - 5.8) + (44 - 40.2)(7 - 5.8) + (46 - 40.2)(9 - 5.8) = -12.68

Next, we calculate the sum of the squared deviations of x:

Sum of (Deviation of x)^2 = (31 - 40.2)^2 + (38 - 40.2)^2 + (42 - 40.2)^2 + (44 - 40.2)^2 + (46 - 40.2)^2 = 165.6

Now, we can calculate the slope (b1) using the formula:

b1 = Sum of (Deviation of x * Deviation of y) / Sum of (Deviation of x)^2

b1 = -12.68 / 165.6 ≈ -0.0765

Next, we can calculate the y-intercept (b0) using the formula:

b0 = Mean of y - b1 * Mean of x

b0 = 5.8 - (-0.0765) * 40.2 ≈ 8.11

So the regression line equation is yˆ = 8.11 - 0.0765x.

To find the value of the dependent variable yˆ at x=0, we substitute x=0 into the equation:

yˆ = 8.11 - 0.0765 * 0 = 8.11

Know more about dependent variable here;

https://brainly.com/question/29430246

#SPJ11

Other Questions
anybody answer me please with step by step explanation need complete detailed answer Alina is using a small database that uses just one table to store data. What type of database is Alina using?A. flat file databaseB. relational databaseC. hierarchical databaseD. wide column database currently a monopolist's profit-maximizing output is 400 units per week. it sells its output at a price of $70 per unit and collects $40 per unit in revvenues from the sale of the last unit produced each week. the firms tptal costs each weel are $7,500 TasThe three points marked on the graph arethe vertices (corners) of a parallelogram.109y87654321A1 2C2B3 4 5 6 7 8 910What are the coordinates of the fourthvertex? Flexible Budgeting At the beginning of the period, the Fabricating Department budgeted direct labor of $72,000 and equipment depreciation of $18,500 for 2,400 hours of production. The department actually completed 2,350 hours of production. Determine the budget for the department, assuming that it uses flexible budgeting. which colony has warm climate and feritile soil Control rods in a nuclear reactor...Select one:a. remove heat from the reactor core.b. provide fuel for the reaction.c. control a chain reaction by absorbing neutrons.d. prevent the leakage of radiation into the environment. The weight of each Golden Dairys Probiotic Yogurt with Fruit cup is normally distributed with a mean of 170 grams and a standard deviation of 12 grams. One package contains six random cups and any package with an average weight per cup lower than 158 grams will be rejected. Part A: What fraction of packages will be rejected because the average weight is too low? Part B: In addition to original rejection criteria, suppose any packages that have an average weight per cup higher than 179 grams must be rejected as well. What is the total fraction of packages that will be accepted? SOMEONE PLEASE HELP!!! Find the area of the sector. Round your answer to the nearest tenth. Read the excerpt from Martin Luther King Jr.s "I Have a Dream speech.Fivescore years ago, a great American, in whose symbolic shadow we stand today, signed the Emancipation Proclamation. This momentous decree came as a great beacon light of hope to millions of Negro slaves who had been seared in the flames of withering injustice. It came as a joyous daybreak to end the long night of their captivity.The emotional connotation of the underlined word helps King emphasize the documentshistory.significance.timing.creativity. info in image (please explain your reason why, so I know your right)Tino's friend's name was Aku.TrueFalse Which sentence states a central idea of the passage called the moving experience ?Focusing on what is absent makes it difficult to notice what is present.Children and parents must communicate their feelings more openly.Making new friends is challenging in an unfamiliar country.Anger and frustration are never acceptable responses to change. HELP! what is this? whats the answer?! a) What volume of butane (C 4 H 10 ) can be produced at STP, from the reaction of 13.45 g of carbon with 17.65 L of hydrogen gas at STP?b) Which reactant is in excess and how much of this reactant is left over? 3. What do you need to consider when writing a research report? all of the above what your audience already knows about your topic what the purpose of your report is where you can locate the information you need to support your thesis statement how to simplify cos(6x) + 1 Select the positive impacts of technology on animal agriculture.more hygienic and humane practicesimproved fertility of livestockstronger and leaner livestockintroduction of new vegetationanimal immunity to diseasesincreased demand for meatinsect-resistant crops What do we call the power words or expressions that elicit various psychological and emotive responses? The existence of the federal income tax and the welfare system serve as the primary elements of? How many minutes are equal to 2 hours 20 minutes? how many minutes are equal to 2 hours 20 minutes? 100 120 220 240 none of these