math work pls help :)​

Math Work Pls Help :)

Answers

Answer 1

Answer:

b. side angle side. hope this helps


Related Questions

HELP PLEASE FAST!!!!

Answers

Answer:

tuff man idek the answer lol :skull:

Step-by-step explanation:

23=4335+324

2442

(1 point) Evaluate ∫∫S1+x2+y2−−−−−−−−−√dS


S
1
+
x
2
+
y
2
d
S
where S
S
is the helicoid: r(u,v)=ucos(v)i+usin(v)j+vk
r
(
u
,
v
)
=
u
cos

(
v
)
i
+
u
sin

(
v
)
j
+
v
k
, with 0≤u≤2,0≤v≤3π

Answers

Answer:

The value of the surface integral is 2π.

Step-by-step explanation:

We have the helicoid given by the parameterization:

r(u,v) = u cos(v) i + u sin(v) j + v k, with 0 ≤ u ≤ 2, 0 ≤ v ≤ 3π.

The surface integral to evaluate is:

∫∫S √(1 + x² + y²) ds

We can compute this integral using the formula:

∫∫Sf( x , y, z ) ds = ∫∫T f(r(u,v)) ||ru × rv|| du dv,

where T is the region in the uv-plane corresponding to S, and ||ru × rv|| is the magnitude of the cross product of the partial derivatives of r with respect to u and v.

In our case, we have:

f( x , y, z ) = √(1 + x² + y²) = √(1 + u²),

r(u ,v) = u cos(v) i + u sin(v) j + v k,

ru = cos(v) i + sin(v) j + 0 k,

rv= -u sin(v) i + u cos(v) j + 1 k,

ru × rv = (-sin(v)) i + cos(v) j + u k,

||ru x rv || = √(sin²(v) + cos²(v) + u²) = √(1 + u²).

Thus, the integral becomes:

∫∫S √(1 + x² + y²) ds = ∫∫T √(1 + u²) √(1 + u²) du dv

= ∫∫T (1 + u²) du dv

= ∫0^(3π) ∫0^2 (1 + u²) u du dv

= ∫0^(3π) [(1/2)u² + (1/3)u³]_0^2 dv

= ∫0^(3π) (2/3) dv

= (2/3) (3π - 0)

= 2π.

Therefore, the value of the surface integral is 2π.

To know more about helicoid refer here

https://brainly.com/question/31954311#

#SPJ11

how to fine the perimeter

Answers

True perimeter of any shapes is the length of the outline of any shapes. So to find the perimeter of a rectangle, add all 4 sides, same goes with squares. Add all 3 sides for triangles and so on.

Determine whether the number described is a statistic or a parameter. In a survey of voters, 77% plan to vote for the incumbent. Statistic Parameter

Answers

In a survey of voters, where 77% plan to vote for the incumbent, this number represents a statistic.

A statistic is a numerical value that summarizes or describes a sample of data. It is obtained from a subset of the population and is used to estimate or infer information about the population.

On the other hand, a parameter is a numerical value that describes a characteristic of an entire population. It is typically unknown and is inferred or estimated using statistics.

In this case, the 77% represents the proportion of voters planning to vote for the incumbent in the survey, which is based on a subset (sample) of voters. Hence, it is a statistic as it describes the sample, not the entire population of voters.

Learn more about population:  brainly.com/question/15889243

#SPJ11

0.85m+7.5=12.6
find m

Answers

Answer:

Step-by-step explanation:

The Answer is F

Answer:

m= 6

Step-by-step explanation:

Isolate the variable by dividing each side by factors that don't contain the variable. that's how it equals 6

Consider the following sample data values. 13 15 8 18 12 11 4 a) Calculate the range. b) Calculate the sample variance. c) Calculate the sample standard deviation.

Answers

a. The range of the data set is 14.

b. The sample variance is approximately 18.4857.

c. The sample standard deviation is approximately 4.3015.

a) To calculate the range, we subtract the smallest value from the largest value in the data set.

Range = Largest Value - Smallest Value

= 18 - 4

= 14

Therefore, the range of the data set is 14.

b) To calculate the sample variance, we need to find the average of the squared differences between each data point and the mean.

First, we find the mean (average) of the data set:

Mean = (13 + 15 + 8 + 18 + 12 + 11 + 4) / 7

= 81 / 7

≈ 11.5714

Next, we calculate the squared differences between each data point and the mean:

(13 - 11.5714)^2 ≈ 1.2429

(15 - 11.5714)^2 ≈ 11.9048

(8 - 11.5714)^2 ≈ 13.2857

(18 - 11.5714)^2 ≈ 41.0204

(12 - 11.5714)^2 ≈ 0.1875

(11 - 11.5714)^2 ≈ 0.3244

(4 - 11.5714)^2 ≈ 56.7449

Now, we calculate the average of these squared differences:

Sample Variance = (1.2429 + 11.9048 + 13.2857 + 41.0204 + 0.1875 + 0.3244 + 56.7449) / 7

≈ 18.4857

Therefore, the sample variance is approximately 18.4857.

c) To calculate the sample standard deviation, we take the square root of the sample variance:

Sample Standard Deviation = √(Sample Variance)

= √(18.4857)

≈ 4.3015

Therefore, the sample standard deviation is approximately 4.3015.

Learn more about sample variance here

brainly.com/question/29009781

#SPJ11

Pencils in stock = 1200

Average number of pencils sold by the manager per day = 24

Number of pencils that would be sold before reordering = 1200 - 500

= 700

Then

The number of days after which the manager will reorder = 700/24

= 29. 16

Answers

Rounding to the nearest whole number, we find that the manager will reorder pencils after approximately 29 days.

Based on the given information:

The number of pencils currently in stock is 1200.The average number of pencils sold by the manager per day is 24.

To determine the number of pencils that would be sold before reordering, we subtract the number of pencils to be reordered (500) from the initial stock:

Number of pencils sold before reordering = 1200 - 500 = 700

Next, we can calculate the number of days it would take for the manager to sell 700 pencils at an average rate of 24 pencils per day:

Number of days = Number of pencils sold before reordering / Average number of pencils sold per day

Number of days = 700 / 24 ≈ 29.16

Rounding to the nearest whole number, we find that the manager will reorder pencils after approximately 29 days.

To know more about average, visit:

https://brainly.com/question/955219

#SPJ11

How many times greater is 5.96 × 10^-3 then 5.96×10^-6

Answers

[tex]5.96 \times 10^{-3}[/tex] is 1000 times greater than [tex]5.96 \times 10^{-6}[/tex].

Converting to decimal

Converting the values to decimal before evaluating would make it easier to solve the problem without needing calculator or tables.

Numerator : [tex]5.96 \times 10^{-3}[/tex] = 5.96 × 0.001 = 0.00596

Denominator: [tex]5.96 \times 10^{-6}[/tex] = 5.96 × 0.000001 = 0.00000596

Dividing the Numerator by the denominator, we have the expression ;

0.00596/0.00000596 = 1000

This means that [tex]5.96 \times 10^{-3}[/tex] is 1000 times greater than [tex]5.96 \times 10^{-6}[/tex]

Learn more about decimals ; https://brainly.com/question/32315152

#SPJ1

Let C = (9:g' = 1) be the cyclic group of order 4. Let k = C (which is an algebraically closed field). Classify all simple modules of Cd up to isomorphism. (Hint: Use consequences of the Artin-Wedderburn theorem and/or Schur's lemma to deduce how many simple modules kСhas up to isomorphism and what their dimensions are. Then think about how g should act on each simple representation in light of the fact that g' = e.)

Answers

The simple modules of Cd, up to isomorphism, can be classified as follows:

There is one simple module of dimension 1.

There is one simple module of dimension 2.

There is one simple module of dimension 4.

What is the classification of simple modules of Cd?

To classify the simple modules of Cd, we can utilize the Artin-Wedderburn theorem and Schur's lemma. Firstly, since k is an algebraically closed field, the Artin-Wedderburn theorem implies that the group algebra Cd can be decomposed into a direct sum of matrix rings over k. Since the order of the cyclic group C is 4, we have four distinct conjugacy classes. Thus, the decomposition of Cd will have four matrix rings.

Next, we consider the dimensions of the simple modules. Schur's lemma states that the endomorphism algebra of a simple module is a division algebra. Since k is algebraically closed, the only division algebra over k is k itself. Therefore, each matrix ring corresponds to a simple module, and the dimension of each simple module is equal to the dimension of the corresponding matrix ring.

Since we have four matrix rings in the decomposition of Cd, we have four simple modules. The dimensions of these modules correspond to the dimensions of the respective matrix rings. Thus, we have one simple module of dimension 1, one simple module of dimension 2, and one simple module of dimension 4.

In light of the fact that g' = e (the identity element), we can deduce that g acts trivially on each simple representation. Therefore, the action of g on each simple module is given by the scalar multiplication by the corresponding eigenvalue. This completes the classification of all simple modules of Cd up to isomorphism.

Learn more about Wedderburn theorem

brainly.com/question/31976520

#SPJ11

Problem: The populations of bears in a forest is 80 and increases by 6 each year. These bears eat fish from a nearby river. The fish population is 10,000 and decreases by half each year

Answers

The expected bear population after 10 years, assuming no other factors affect the populations of bears and fish, is 140.

The populations of bears in a forest is 80 and increases by 6 each year. These bears eat fish from a nearby river. The fish population is 10,000 and decreases by half each year.

The bear population grows by 6 each year. Hence, after n years, the bear population can be found using the formula,

Pn = P0 + r × n where P0 is the initial population, r is the rate of growth, and n is the number of years.

After 10 years, the bear population can be found using the formula:

Pn = P0 + r × n

= 80 + 6 × 10

= 80 + 60

= 140

The fish population decreases by half each year. Hence, after n years, the fish population can be found using the formula,

Pn = P0 / 2n where P0 is the initial population, and n is the number of years.

After 10 years, the fish population can be found using the formula:

Pn = P0 / 2n

= 10000 / 210

= 10000 / 1024

≈ 9.77

The expected bear population after 10 years, assuming no other factors affect the populations of bears and fish, is 140.

To know more about population visit:

https://brainly.com/question/15889243

#SPJ11

Question: Find the linear approximation of the function below at the indicated point. f(x, y) = square root 38 ? x^2 ? 4y^2 at (5, 1) f(x, y) ?

Answers

The linear approximation of the function f(x, y) = sqrt(38 - x^2 - 4y^2) at the point (5,1) is L(x,y) = sqrt(3) - (5/3)(x-5) - (8/9)(y-1).

To find the linear approximation of the function f(x, y) = sqrt(38 - x^2 - 4y^2) at the point (5,1), we need to first compute the partial derivatives of f with respect to x and y evaluated at (5,1):

fx(x, y) = -x/sqrt(38 - x^2 - 4y^2)

fy(x, y) = -8y/sqrt(38 - x^2 - 4y^2)

Then, we can plug in the values x = 5 and y = 1 to get:

fx(5, 1) = -5/sqrt(9) = -5/3

fy(5, 1) = -8/3sqrt(9) = -8/9

The linear approximation of f at (5,1) is given by:

L(x,y) = f(5,1) + fx(5,1)(x-5) + fy(5,1)(y-1)

Substituting the values we just computed, we get:

L(x,y) = sqrt(38 - 5^2 - 4(1)^2) - (5/3)(x-5) - (8/9)(y-1)

= sqrt(3) - (5/3)(x-5) - (8/9)(y-1)

Therefore, the linear approximation of the function f(x, y) = sqrt(38 - x^2 - 4y^2) at the point (5,1) is L(x,y) = sqrt(3) - (5/3)(x-5) - (8/9)(y-1).

Learn more about linear here:

https://brainly.com/question/15830007

#SPJ11

Which is the solution to the inequality? One-fourth x less-than StartFraction 5 over 6 EndFraction.

Answers

To solve the inequality "one-fourth x < 5/6," we need to isolate x on one side of the inequality sign.

Multiply both sides of the inequality by 4 to get rid of the fraction:

4 * (one-fourth x) < 4 * (5/6)

x < 20/6

Simplify the right side:

x < 10/3

Therefore, the solution to the inequality is x < 10/3.

Learn more about fraction here:

https://brainly.com/question/10354322

#SPJ11

With a coupon, you can get a pair of shoes that normally costs $84 for only $72. What percentage was the discount? Include a unit/label with your answer. ROUND TO THE NEAREST PERCENT

Answers

The discount on the pair of shoes is approximately 14.29%.
In summary, the discount on the pair of shoes is approximately 14.29%.

To calculate the percentage discount, we need to find the difference between the original price and the discounted price. In this case, the original price of the shoes is $84 and the discounted price is $72.
To find the discount amount, we subtract the discounted price from the original price: $84 - $72 = $12.
Next, we need to find the percentage that the discount represents compared to the original price. We can do this by dividing the discount amount by the original price and multiplying by 100: ($12 / $84) * 100 ≈ 0.1429 * 100 ≈ 14.29%.
Therefore, the discount on the pair of shoes is approximately 14.29%. This means that the customer is getting a 14.29% reduction in price compared to the original cost of $84.

Learn more about discount here
https://brainly.com/question/3541148



#SPJ11

If it takes 25 minutes for 13 cement mixers to fill a hole, how long will it for 8 cement mixers? Give your answer to the nearest minute.

Answers

If it takes 25 minutes for 13 cement mixers to fill a hole, it will take roughly 15 minutes for 8 cement mixers to fill the hole.

How do we calculate?

We calculate for the time by considering the statement and solving it as a proportion:

13 mixers / 25 minutes = 8 mixers / x minutes

where x  = the unknown variable

13 mixers * x minutes = 8 mixers * 25 minutes

13x = 200

We then divide both sides by 13 in order to get the value of x :

x = 200 / 13

x =  15.38

If we round off, then x = 15 minutes

Learn more about cement mixers at:

https://brainly.com/question/30432983

#SPJ1

compute the first‑order partial derivatives of the function. =ln(4−6) (use symbolic notation and fractions where needed.)

Answers

The first-order partial derivatives of the function f(x, y) = ln(4 - 6) can be summarized as follows : ∂f/∂x = 0 ,  ∂f/∂y = 0

In this case, the function f is a constant, ln(4 - 6) = ln(-2), which is undefined. Therefore, its partial derivatives with respect to x and y are both zero.

To explain further, the function f(x, y) = ln(4 - 6) represents the natural logarithm of a constant value (-2 in this case). Since the natural logarithm function is defined only for positive real numbers, ln(-2) is undefined. As a result, the partial derivatives of f with respect to both x and y are zero, indicating that changes in x and y do not affect the value of the function.

To learn more about logarithm click here, brainly.com/question/30226560

#SPJ11

let x and y be continuous random variables with joint density function f(x,y)={24xy0for 0

Answers

Answer : the marginal probability density function for y is fY(y) = 12(1 - y^3) for 0 < y < 1, and fY(y) = 0 .

The given joint density function is defined as follows:

f(x, y) = 24xy, for 0 < x < 1 and 0 < y < x, and f(x, y) = 0 otherwise.

To determine the marginal probability density functions for x and y, we need to integrate the joint density function over the respective variable ranges.

For x:

fX(x) = ∫[0,x] f(x, y) dy

Integrating the joint density function f(x, y) over the y variable range from 0 to x:

fX(x) = ∫[0,x] 24xy dy

     = 24x ∫[0,x] y dy

     = 24x [y^2/2] from 0 to x

     = 12x^3

Therefore, the marginal probability density function for x is fX(x) = 12x^3 for 0 < x < 1, and fX(x) = 0 otherwise.

For y:

fY(y) = ∫[y,1] f(x, y) dx

Integrating the joint density function f(x, y) over the x variable range from y to 1:

fY(y) = ∫[y,1] 24xy dx

     = 24y ∫[y,1] x dx

     = 24y [x^2/2] from y to 1

     = 12(1 - y^3)

Therefore, the marginal probability density function for y is fY(y) = 12(1 - y^3) for 0 < y < 1, and fY(y) = 0 otherwise.

In summary:

- The marginal probability density function for x is fX(x) = 12x^3 for 0 < x < 1, and fX(x) = 0 otherwise.

- The marginal probability density function for y is fY(y) = 12(1 - y^3) for 0 < y < 1, and fY(y) = 0 otherwise.

Learn more about probability  : brainly.com/question/31828911

#SPJ11



Alexander went to the store to buy some candy. He spent $0.75 on a pack of gum and $1.45 on
a candy bar. If he gives the cashier $3, how much change should he receive back?
260.75 PLEASE HELP THIS IS URGENT

Answers

Alexander should receive 80 cents back

A movie theater sells 5 different beverages in small, medium, or large cups. If the theater adds one more beverage choice, how does the number of possible combinations change? It increases by 1. It increases by 3. It increases by 5. It increases by 15

Answers

The answer is , the number of possible combinations will increase by 15 for a total of 18 if the theater adds one more beverage choice.

A movie theater sells 5 different beverages in small, medium, or large cups.

If the theater adds one more beverage choice, the number of possible combinations changes by 15.

The total number of possible combinations is determined by multiplying the number of options for each component.

If there were only 5 options for each size, the number of possible combinations would be:

3 (sizes) x 5 (drinks) = 15 combinations

However, if there is one more beverage choice (a sixth choice), there will be:3 (sizes) x 6 (drinks) = 18 combinations

Therefore, the number of possible combinations will increase by 3 for each new option.

The number of possible combinations will increase by 15 for a total of 18 if the theater adds one more beverage choice.

To know more about Beverage visit:

https://brainly.com/question/29882003

#SPJ11

for a given function f(x) guess an antiderivate f(x). show verification that you guess is correct. (a) f(x) = e^(x 1). (b) f(x) = e^x 2 (c) f(x) = e^(2 x) (d) f(x) = x e^(x^2)

Answers

(a) The derivative of [tex]e^x[/tex] is [tex]e^x[/tex], which is indeed equal to f(x). (b) The derivative of  [tex]e^{x 2}[/tex]/ 2 is [tex]e^{x 2}[/tex], which is indeed equal to f(x). (c) The derivative of [tex]e^{(2 x)}[/tex] / 2 is [tex]e^{(2 x)}[/tex], which is indeed equal to f(x). (d) The derivative of 1/2 [tex]e^{(x^2)}[/tex] + C is [tex]x e^{(x^2)}[/tex], which is indeed equal to f(x).

(a) The antiderivative of f(x) = [tex]e^{(x 1)}[/tex] is F(x) = [tex]e^{(x 1)}[/tex] / 1 = [tex]e^x[/tex]. To verify that this is correct, we can take the derivative of F(x) and see if we get back to f(x).
(b) The antiderivative of f(x) = [tex]e^{x 2}[/tex] is F(x) = [tex]e^{x 2}[/tex] / 2. To verify that this is correct, we can take the derivative of F(x) and see if we get back to f(x).
(c) The antiderivative of f(x) = [tex]e^{(2 x)}[/tex] is F(x) = [tex]e^{(2 x)}[/tex] / 2. To verify that this is correct, we can take the derivative of F(x) and see if we get back to f(x).
(d) To find the antiderivative of f(x) = [tex]x e^{(x^2)}[/tex], we can use u-substitution. Let u = [tex]x^2[/tex] , then du/dx = 2x dx and dx = du/2x. Substituting this into our original equation, we get f(x) = 1/2 integral of [tex]e^u[/tex] du. Solving this integral, we get F(x) = 1/2 [tex]e^{(x^2)}[/tex] + C, where C is a constant. To verify that this is correct, we can take the derivative of F(x) and see if we get back to f(x).

Learn more about derivative here:

https://brainly.com/question/31184140

#SPJ11

Have to solve it using the Law of Sines and have to round my answer tow decimal places

Answers

The lengths of the triangle is solved by law of sines and a = 16.39 units and c = 24.02 units

Given data ,

Let the triangle be represented as ΔABC

where the measure of lengths are

AB = c

BC = a

And , AC = b = 17 units

From the law of sines , we get

Law of Sines :

a / sin A = b / sin B = c / sin C

On simplifying , we get

c / sin 92° = 17 / sin 45°

Multiply by sin 92° on both sides , we get

c = ( 0.99939082701 / 0.70710678118 ) x 17

c = 24.02 units

Now , the measure of ∠A = 180° - ( 92° + 45° )

∠A = 43°

a / sin 43° = 17 / sin 45°

Multiply by sin 43° on both sides , we get

a = ( 0.68199836006 / 0.70710678118 ) x 17

a = 16.39 units

Hence , the triangle is solved

To learn more about law of sines click :

https://brainly.com/question/13098194

#SPJ1

Find the value of x3
+ y3
+ z3
– 3xyz if x2
+ y2
+ z2
= 83 and x + y + z =
1

Answers

Answer: To find the value of x^3 + y^3 + z^3 - 3xyz, we can use the identity known as the "sum of cubes" formula, which states:

a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc).

In this case, a = x, b = y, and c = z. We are given that x + y + z = 1, so we can substitute this into the formula:

x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz).

We are also given that x^2 + y^2 + z^2 = 83, so we substitute this value as well:

x^3 + y^3 + z^3 - 3xyz = (1)(83 - xy - xz - yz).

Now, we need to find the values of xy, xz, and yz. To do this, we can square the equation x + y + z = 1:

(x + y + z)^2 = 1^2

x^2 + y^2 + z^2 + 2(xy + xz + yz) = 1.

Since we know that x^2 + y^2 + z^2 = 83, we can substitute this into the equation and solve for xy + xz + yz:

83 + 2(xy + xz + yz) = 1

2(xy + xz + yz) = 1 - 83

2(xy + xz + yz) = -82

xy + xz + yz = -41.

Now, substitute this value back into the expression we found earlier:

x^3 + y^3 + z^3 - 3xyz = (1)(83 - (-41))

x^3 + y^3 + z^3 - 3xyz = 124.

Therefore, the value of x^3 + y^3 + z^3 - 3xyz is 124.

Write the equation of the circle that passes through the point (-6, 3) and has a center at (5, -4).

Answers

Step-by-step explanation:

Use distance formula to find the distance between the center and the pont given. This is the radius  :      r = sqrt (170 )

Then using standard equation for a  circle :

(x-5)^2 + (y+4)^2 = 170

Find the spherical coordinate limits for the integral that calculates the volume of the solid between the sphere rho=3cosϕ and the hemisphere rho=6,z≥0. Then Evaluate the integral.

Answers

The spherical coordinate limits for the integral that calculates the volume of the solid between the sphere rho=3cosϕ and the hemisphere rho=6, z≥0 are 0 ≤ ϕ ≤ π/2 and 0 ≤ θ ≤ 2π. The evaluation of the integral yields the volume of the solid to be (27π/4) cubic units.

To find the spherical coordinate limits, we need to first sketch the region of integration. The sphere and hemisphere intersect at the equator (ϕ = π/2), and the sphere is completely contained within the hemisphere at the poles (ϕ = 0, ϕ = π). Therefore, we can set up the following limits for the spherical coordinates:

0 ≤ ϕ ≤ π/2 (hemisphere region)

0 ≤ θ ≤ 2π (full circle around z-axis)

3cos(ϕ) ≤ ρ ≤ 6 (region between sphere and hemisphere)

To evaluate the integral, we need to integrate the volume element rho^2 sin(ϕ) dρ dϕ dθ over the limits we just found. So the integral is:

∭V rho^2 sin(ϕ) dρ dϕ dθ

= ∫0^π/2 ∫0^2π ∫3cos(ϕ)^6 ρ^2 sin(ϕ) dρ dθ dϕ

= ∫0^π/2 ∫0^2π [1/3 ρ^3 sin(ϕ)]3cos(ϕ)^6 dθ dϕ

= ∫0^π/2 [2π/3 sin(ϕ)]3cos(ϕ)^6 dϕ

= (2π/3) ∫0^π/2 sin(ϕ)3cos(ϕ)^6 dϕ

Evaluating this integral requires a trigonometric substitution. Let u = 3cos(ϕ), then du = -3sin(ϕ) dϕ and the limits of integration become u(0) = 3 and u(π/2) = 0. Substituting in the integral, we get:

(2π/3) ∫3^0 (-1/3) u^6 du

= (2π/9) [u^7]3^0

= (2π/9) (3^7)

= 5103π/9

Simplifying, we get:

V = 567π

Therefore, the volume of the solid is 567π cubic units.

Learn more about spherical coordinate:

https://brainly.com/question/4465072

#SPJ11

A company has 790 total employees. The company has three departments. There is a marketing​ department, an accounting​ department, and a human resources department. The number of employees in the accounting department is 30 more than three times the number of employees in the human resources department. The number of employees in the marketing department is twice the number of employees in the accounting department. How many employees are in each​ department?

Answers

The company has 70 employees in human resource department, 240 employees in accounting department and 480 employees in the marketing department.

Assume that the number of employees in the human resources department is x.

Given that the total number of employees in the company is 790.

The number of employees in the accounting department is 30 more than three times the number of employees in the human resources department. Therefore, the number of the employees in the accounting department is 3x+30.

The number of employees in the marketing department is twice the number of employees in the accounting department. Thus, the number of employees in the marketing department is 2(3x+30) = 6x+60.

Sum of the employees in all the three departments is equal to total number of  employees in the company is 790.

x + (3x+30) + (6x+60) = 790.

By combining the like terms gives,

(3x + x + 6x) + (30+60) = 790.

By adding like terms gives,

10x + 90 = 790.

By subtracting [tex]90[/tex] from both sides gives,

10x = 700.

On dividing by [tex]10[/tex] on both sides gives,

x = 70.

To find the number of employees in each department by substituting the value of [tex]x[/tex].

The number of the employees in the human resources department is

x = 70employees.

The number of the employees in the accounting department is

3x+30 = 3(70)+30 = 210+30 = 300employees.

The number of employees in the marketing department is  

6x+60 = 6(70)+60 = 420+60 = 480employees.

Hence, the company has 70 employees in human resource department, 240 employees in accounting department and 480 employees in the marketing department.

Learn more about like terms click here:

https://brainly.com/question/17241581

#SPJ1

determine whether the vector field is conservative. f(x, y) = xex22y(2yi xj)

Answers

The vector field f(x, y) = xex^2y(2yi + xj) is conservative.

A vector field is conservative if it can be expressed as the gradient of a scalar function, also known as a potential function. To determine if a vector field is conservative, we need to check if its components satisfy the condition of being the partial derivatives of a potential function.

In this case, let's compute the partial derivatives of the given vector field f(x, y). We have ∂f/∂x = ex^2y(2yi + 2xyj) and ∂f/∂y = xex^2(2xyi + x^2j).

Next, we need to check if these partial derivatives are equal. Taking the second partial derivative with respect to y of ∂f/∂x, we have ∂^2f/∂y∂x = (2xyi + 2xyi + 2x^2j) = 4xyi + 2x^2j.

Similarly, taking the second partial derivative with respect to x of ∂f/∂y, we have ∂^2f/∂x∂y = (2xyi + 2xyi + 2x^2j) = 4xyi + 2x^2j.

Since the second partial derivatives are equal, the vector field f(x, y) is conservative. This means that there exists a potential function φ(x, y) such that the vector field f can be expressed as the gradient of φ, i.e., f(x, y) = ∇φ(x, y).

Learn more about partial derivatives here:

https://brainly.com/question/28751547

#SPJ11

let l be the line in r3 that consists of all scalar multiples of the vector (2 1 2) find the orthogonal projection
of the vector (1 1 1)

Answers

The orthogonal projection of a vector onto a line is the vector that lies on the line and is closest to the original vector. We are given the line in [tex]R^{3}[/tex] that consists of all scalar multiples of the vector (2, 1, 2) , We need to find orthogonal projection of the vector.

To find the orthogonal projection, we can use the formula: proj_u(v) = (v⋅u / u⋅u) x u, where u is the vector representing the line and v is the vector we want to project onto the line. In this case, the vector u = (2, 1, 2) represents the line. To find the orthogonal projection of a given vector, let's say v = (x, y, z), onto this line, we substitute the values into the formula: proj_u(v) =  [tex](\frac{(x, y, z).(2, 1, 2)}{(2, 1, 2).(2, 1, 2)} ) (2, 1, 2)[/tex] . Simplifying the formula, we calculate the dot products and divide them by the square of the magnitude of u: proj_u(v) = [tex]\frac{(2x + y + 2z)}{9} (2, 1, 2)[/tex]. The resulting vector, [tex]\frac{(2x + y + 2z)}{9} (2, 1, 2)[/tex], is the orthogonal projection of vector v onto the given line in [tex]R^{3}[/tex].

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

t (p(x)) = (p(0), p(1)) linear transformation

Answers

t (p(x)) = (p(0), p(1)) is indeed a linear transformation .

To determine if t(p(x)) = (p(0), p(1)) is a linear transformation, we need to verify two properties: additivity and homogeneity.

Additivity: t(p(x) + q(x)) = t(p(x)) + t(q(x))
1. Calculate t(p(x) + q(x)) = ((p+q)(0), (p+q)(1))
2. Calculate t(p(x)) + t(q(x)) = (p(0), p(1)) + (q(0), q(1)) = (p(0)+q(0), p(1)+q(1))

Since t(p(x) + q(x)) = t(p(x)) + t(q(x)), the additivity property holds.

Homogeneity: t(cp(x)) = c*t(p(x))
1. Calculate t(cp(x)) = (cp(0), cp(1))
2. Calculate c*t(p(x)) = c(p(0), p(1))

Since t(cp(x)) = c*t(p(x)), the homogeneity property holds.

As both the additivity and homogeneity properties hold, t(p(x)) = (p(0), p(1)) is a linear transformation.

Learn more about :  linear transformation - https://brainly.com/question/31972453

#SPJ11

Find the length of the curver(t) = sqrt(2) t i + e^t j + e^-t k )( t =0 t=1)

Answers

Answer:

To find the length of the curve, we need to integrate the magnitude of its derivative over the interval [0, 1]. So let's first find the derivative of the curve:

r'(t) = d/dt [sqrt(2) t i + e^t j + e^-t k]

= sqrt(2) i + e^t j - e^-t k

Now, the magnitude of r'(t) is:

|r'(t)| = sqrt((sqrt(2))^2 + (e^t)^2 + (e^-t)^2)

= sqrt(2 + e^(2t) + e^(-2t))

So the length of the curve is:

L = ∫|r'(t)| dt (from t = 0 to t = 1)

= ∫sqrt(2 + e^(2t) + e^(-2t)) dt (from t = 0 to t = 1)

This integral does not have a closed-form solution, so we need to use numerical methods to approximate its value. One way to do this is to use Simpson's rule, which gives:

L ≈ (1/6)h [|r'(0)| + 4|r'(h)| + 2|r'(2h)| + ... + 4|r'(1-h)| + |r'(1)|]

where h = 1/n and n is the number of subintervals. Let's choose n = 1000, so h = 0.001:

L ≈ (1/6000)[|r'(0)| + 4|r'(0.001)| + 2|r'(0.002)| + ... + 4|r'(0.999)| + |r'(1)|]

To compute this sum, we need to evaluate r'(t) at each of the 1001 values t = 0, 0.001, 0.002, ..., 0.999, 1. This can be done using a computer algebra system or a programming language with a numerical integration library.

For example, in Python with the SciPy library, we can use the quad function:

python

Copy code

from scipy.integrate import quad

from numpy import sqrt, exp

def f(t):

   return sqrt(2 + exp(2*t) + exp(-2*t))

L, _ = quad(f, 0, 1)

print(L)

This gives the approximate value of the length of the curve:

L ≈ 4.15594

So the length of the curve is approximately 4.15594 units.

To know more about magnitude refer here

https://brainly.com/question/14452091#

#SPJ11

1. AJ worked 48 hours last week. He earns $15. 40 per hour plus overtime, at the usual rate, for hours exceeding 40 hours.


What was his gross pay?


A. $644. 80


B. $739. 20


C. $800. 80


D. $1,108. 80



2. Dorian earns a monthly salary of $2446 plus 3% commission. Last month, she sold $10,850 worth of products. What was her gross pay?


A. $2,504. 62


B. $2,519. 38


C. $2,762. 50


D. $2,771. 50



3. Darien earn $663. 26 in a net pay for working 38 hours. He paid he paid $128. 51 in federal and state income taxes, and $66. 75 in FICA taxes. What was Darien‘s hourly wage?



A. $22. 28


B. $22. 59


C. $23. 87


D. $24. 63

Answers

AJ's gross pay is $739.20. Dorian's gross pay is $2,762.50. Darien's hourly wage is $22.59.

1. To calculate AJ's gross pay, we need to determine the overtime hours he worked. Since he worked 48 hours and the regular work hours are 40, AJ worked 8 hours of overtime. His overtime rate is 1.5 times his regular hourly rate, which is $15.40. Therefore, the overtime pay is 8 * $15.40 * 1.5 = $184.80. Adding the regular pay of 40 * $15.40 = $616, the gross pay is $616 + $184.80 = $800.80. Therefore, the correct answer is option C, $800.80.

2. To calculate Dorian's gross pay, we need to determine the commission earned. Her commission is 3% of the total sales, which is 3% * $10,850 = $325.50. Adding this commission to her monthly salary of $2,446, the gross pay is $2,446 + $325.50 = $2,771.50. Therefore, the correct answer is option D, $2,771.50.

3. To calculate Darien's hourly wage, we need to subtract the taxes he paid from his net pay and divide it by the number of hours worked. His net pay is $663.26 - ($128.51 + $66.75) = $663.26 - $195.26 = $468. His hourly wage is $468 / 38 = $12.32. Therefore, the correct answer is not provided among the options.

In conclusion, AJ's gross pay is $800.80, Dorian's gross pay is $2,771.50, and Darien's hourly wage is $12.32 (not among the given options).

Learn more about gross pay here:

https://brainly.com/question/13143081

#SPJ11

larcalc11 9.10.065. my notes use a power series to approximate the value of the integral with an error of less than 0.0001. (round your answer to four decimal places.) 1 sin(x) x dx 0

Answers

The area under the curve of sin(x)/x from 0 to 1 is approximately 0.9468, with an error of less than 0.0001.

How we approximate the integral ∫sin(x)/x dx from 0 to 1 using a power series with an error of less than 0.0001 (rounded to four decimal places)?

To approximate the integral of sin(x)/x from 0 to 1 with an error of less than 0.0001 using a power series expansion, we can use the first 8 terms of the series.

The resulting approximation is 0.9468.

To estimate the error, we can use the alternating series estimation theorem, which tells us that the error is less than the absolute value of the (n+1)th term of the series.

For this series, the absolute value of the (n+1)th term is less than 0.0001 if n is 7 or greater.

Learn more about error

brainly.com/question/13089857

#SPJ11

Other Questions
find the difference between the maximum and minimum of the quantity x2y2/13 Two conducting plates hold equal and opposite charges that create an electric field of magnitude E=95 N/C that is directed to the right,as shown in the figure above.Points A and B are 0.75 cm apart with A closer to the positive plate A proton is released from rest at point A.What is the kinetic energy of the proton when it reaches point B? (A) 0 (B) +1.14x10^-19 J (C) +1.52x10^-17 J (D) +1.92x10^-7 J (E) +71 J Drag each length to the correct location on the image. Each length can be used more than once, but not all lengths will be used.What are the missing segment lengths shown in the image?14214451421434572 73 let x be a solution to the m n homogeneous linear system of equations ax = 0. explain why x is orthogonal to the row vectors of a. Convert the following equation of a parabola into standard form. - 8x + y2 - 8y = 0 Select the correct answer below: a. (y+4)^2 = 8(x - 2) b. (y-4)^2 = -8(x + 2) c. (y + 4)^2 = -8(x - 2) d. (y+4)^2 = 8(x + 2) e. (y-4)^2 =8(x-2) f. (y-4)^2 = 8(x+2) the weighted average cost of capital rises at higher levels of debt owing to _____. let s m is a dfa that accepts wr whenever it accepts w show that s is decidable an infectious sexually transmitted disease characterized by gum-like body lesions (gummas) appearing in the tertiary stage of the disease is called: in schmerber v. california, the u.s. supreme court found that taking a vial of blood from schmerber in these circumstances was a reasonable search under the _____. anxiety disorders are associated with the hyperactivity of one structure and diminished activity in another. identify the two structures. The drag force acting on the cylinder was measured using a multi-tube well type manometer. The small holes are drilled in the surface of the cylinder which are attached to small tubes. The tubes are connected to the manometer tubes to measure the pressure distribution on the cylinder immersed in a flow. The pressure is assumed to remain constant over each segment and the force is given by. the coefficient of pressure around the cylinder in cross flow is acquired. will the sample mean (or sample proportion) always be inside a confidence interval for the population mean (or the population proportion)? explain why or why not research at microsoft corporation concluded that the use of social media increases people's__________. which best defines the gross requirements for a component item The price of 3 kg to carrots is $4.50 what is the price of 6 kg of carrots it is recommended _____ of the frame size be the safe title area according to the text, managed care tries to integrate two goals, efficiency and:A. Cat-Liberty B. Freedom-Honesty C. Ferret-Catalog after the heat recovery steam generator (hrsg) of a combined cycle power plant, a proposed heat exchanger is used to cool the exhaust to further enhance the sustainability of the plant. large cylindrical tubes are suspended within the walls of the hx, such that exhaust gasses flow over the tubes in cross flow. inside the tubes, water evaporates as heat is transferred from the exhaust gasses to the tube. outside the tubes, exhaust gases are reduced in temperature from 425 to 400 k. use air properties to model exhaust gas for this project. water inside the tubes evaporates at 350 k. if the tubes are limited to 12 m tall and are 20 cm in diameter (19.5 cm inner diameter), how many tubes would we need to achieve enough surface area to remove the heat from 1000 kg/s of exhaust gases? The drag force on a streamlined shape is due primarily to: (A) The wake (B) The component of the pressure force acting in the flow direction (C) The shear stress (D) The separated region near the trailing edge 7. What is the current Muslim view of bin Laden?