On a negatively skewed curve, which of the following statements is true?
a. The mean, median, and mode is the same.
b. The mode is lower than the mean which is lower than the median.
c. The median is lower than the mode which is lower than the mean.
d. The mean is lower than the mode which is lower than the median.
e. The mean is lower than the median which is lower than the mode.

Answers

Answer 1

On a negatively skewed curve The mean is lower than the median which is lower than the mode. The correct answer is E.

Why is a curve negatively skewed?

In statistics, a distribution is said to be negatively skewed if more values are concentrated on the right side (tail) of the distribution graph and the left tail is longer.

Positive skew is characterized by a longer or fatter tail on the right side of the distribution, and negative skew is characterized by a longer or fatter tail on the left. These two skews represent the direction or weight of the distribution.

The central tendency of a distribution is defined as its mean, median, and mode. The fact that the mean, median, and mode of the typically skewed data are all equal demonstrates the equality of wealth and income distribution as well as the significance of governmental policies and economic progress.

The distributions have a wide gap because the negative side is so heavily weighted. For instance, the data shows that the distribution of income is unequal and negatively skewed, and the central tendency is as follows:

Mode > Median > Mean.

To know more about Negatively skewed curve refer to:

brainly.com/question/15380046

#SPJ4


Related Questions

find the volume v of the solid obtained by rotating the region bounded by the given curves about the specified line. y = 5x3, y = 5x, x ≥ 0; about the x-axis v = incorrect: your answer is incorrect.

Answers

The volume of the solid obtained by rotating the region bounded by the curves [tex]y = 5x^3[/tex] and y = 5x, where x ≥ 0, about the x-axis is incorrect.

To find the volume, we can use the method of cylindrical shells. We integrate the circumference of each shell multiplied by its height to obtain the volume.

The intersection points of the curves can be found by setting y = 5x³ equal to y = 5x. Simplifying the equation gives x³ = x, which yields two intersection points: x = 0 and x = 1.

Next, we express the height of each shell as the difference between the y-coordinates of the curves at a given x-value: h = (5x) - (5x³).

The circumference of each shell can be calculated as 2πx.

The integral for the volume then becomes V = ∫(2πx)(5x - 5x³) dx, integrated from x = 0 to x = 1.

Evaluating this integral yields the correct volume value. However, since the prompt states that the provided answer is incorrect, there might be an error in the calculation or interpretation of the problem. Double-checking the calculations or reviewing the specific instructions for the problem may be necessary to identify and correct the mistake.

Learn more about integrate here: https://brainly.com/question/31401227

#SPJ11

9÷8×862627-727278+772×726?

Answers

Answer:

Step-by-step explanation: Use pemdas as your help.

It gives you steps you help to answer this question.

803649.375
here you go! hopes this helps!

Quader quadrilateral ABCD is a parallelogram. Make a conjecture about the relationship of angle 1 and angle 2. Justify your reasoning.

Please help

Answers

The relationship of angle 1 and angle 2 is same side interior angles.

How to justify the reasoning

From the information given, we have that;

The quadrilateral ABCD is a parallelogram.

Now, we need to know the properties of a parallelogram. These properties includes;

Opposite sides are parallel.Opposite sides are congruent.Opposite angles are congruent.Same-Side interior angles (consecutive angles) are supplementary.

We can see from the diagram shown that;

<1 and <2 are same side interior angles and are thus supplementary.

Learn more about parallelograms at: https://brainly.com/question/10744696

#SPJ1

Solve these recurrence relations together with the initial conditions given. a) an = an−1 + 6an−2 for n ≥ 2, a0 = 3, a1 = 6 b) an = 7an−1 − 10an−2 for n ≥ 2, a0 = 2, a1 = 1 c) an = 6an−1 − 8an−2 for n ≥ 2, a0 = 4, a1 = 10 d) an = 2an−1 − an−2 for n ≥ 2, a0 = 4, a1 = 1 e) an = an−2 for n ≥ 2, a0 = 5, a1 = −1 f ) an = −6an−1 − 9an−2 for n ≥ 2, a0 = 3, a1 = −3 g) an+2 = −4an+1 + 5an for n ≥ 0, a0 = 2, a1 = 8

Answers

a) To solve the recurrence relation an = an−1 + 6an−2 with initial conditions a0 = 3 and a1 = 6, we can use the characteristic equation r^2 - r - 6 = 0.

Factoring the quadratic equation, we get (r - 3)(r + 2) = 0.

So, the roots are r = 3 and r = -2.

The general solution is an = c1(3^n) + c2((-2)^n), where c1 and c2 are constants to be determined from the initial conditions.

Using the initial conditions a0 = 3 and a1 = 6, we can substitute these values into the general solution:

a0 = c1(3^0) + c2((-2)^0) = c1 + c2 = 3a1 = c1(3^1) + c2((-2)^1) = 3c1 - 2c2 = 6

Solving these equations simultaneously, we find c1 = 2 and c2 = 1.

Therefore, the solution to the recurrence relation with the given initial conditions is:

an = 2(3^n) + (-2)^n

b) Similarly, for the recurrence relation an = 7an−1 − 10an−2 with initial conditions a0 = 2 and a1 = 1, we can find the roots of the characteristic equation r^2 - 7r + 10 = 0, which are r = 2 and r = 5.

The general solution is an = c1(2^n) + c2(5^n).

Using the initial conditions a0 = 2 and a1 = 1:

a0 = c1(2^0) + c2(5^0) = c1 + c2 = 2

a1 = c1(2^1) + c2(5^1) = 2c1 + 5c2 = 1

Solving these equations simultaneously, we find c1 = -3 and c2 = 5.

Therefore, the solution to the recurrence relation with the given initial conditions is:

an = -3(2^n) + 5(5^n)

c), d), e), f) and g) will be solved in the next response due to space limitations.

Learn more about  quadratic equation here: brainly.com/question/32388199

#SPJ11

even if your data is not linear, there is a correlation you can use to calculate the relationship of your data. true false

Answers

True. the relationship of your data. Even if the data is not linear, there may still be a correlation that can be used to calculate the relationship between the variables.

Correlation refers to the strength and direction of the relationship between two variables, and it can be measured using a variety of correlation coefficients such as Pearson's correlation coefficient, Spearman's rank correlation coefficient, and Kendall's tau correlation coefficient. These coefficients can be used to quantify the strength and direction of the relationship between the variables, regardless of whether the relationship is linear or not. However, it's worth noting that correlation does not imply causation. Just because two variables are correlated does not necessarily mean that one variable causes the other variable. Additional analysis is needed to establish causality.

Learn more about Correlation here

https://brainly.com/question/30628772

#SPJ11

which rigid motion the triangles are congreunt by SAS

Answers

If two triangles are congruent by SAS, it means that they have two sides and the included angle that are equal.

In other words, one triangle can be transformed into the other by a rigid motion that involves a translation, a rotation, or a reflection. The specific rigid motion that is used depends on the orientation and position of the triangles in space.

For example, if the triangles are in the same plane and one is simply rotated or reflected to match the other, a rotation or reflection would be used. If the triangles are in different planes, a translation would be needed to move one to the position of the other before a rotation or reflection could be used.

Ultimately, the specific rigid motion used to show congruence by SAS will depend on the specific characteristics of the triangles involved.

To learn more about : triangles

https://brainly.com/question/17335144

#SPJ11

Tricky Richard wants to make some bets with you in a game of dice -- the dice is always 6-sided: 1,
2, 3,4, 5, 6.
For each bet below, what is your expected value?
1. Roll 1 dice. Richard bets you $5 that it is a number lower than (and not equal to) 4.
[ Select ]
2. Roll 1 dice. Richard bets you $10 that it will be even.
[Select ]
3. Roll 1 dice. Richard bets you $10 that it will be a 2, but he wants 5-to-1 odds: if it is a 2,
Richard wins $50. Otherwise, you win $10. [Select]
4. Roll 1 dice. Richard bets you $10 that it will be a number whose spelling starts with "F" (4,
5), and he wants 3-to-1 odds: if it's a 4 or a 5, Richard wins $30. Otherwise, you win $10.
[ Select ]

Answers

1. the expected value for this bet is  $0.

2. the expected value for this bet is $0.

3. the expected value for this bet is -$3.33.

4.  the expected value for this bet is $0.

1. The probability of rolling a number lower than (and not equal to) 4 is 3/6 or 1/2.

Therefore, the expected value for this bet is (1/2 x $5) - (1/2 x $5) = $0.

2. The probability of rolling an even number is 3/6 or 1/2.

Therefore, the expected value for this bet is (1/2 x $10) - (1/2 x $10) = $0.

3. The probability of rolling a 2 is 1/6. The odds Richard is offering are 5-to-1, meaning the probability of him winning is 5/6 and the probability of you winning is 1/6.

Therefore, the expected value for this bet is (1/6 x $50) - (5/6 x $10) = -$3.33.

4. The probability of rolling a number whose spelling starts with "F" is 2/6 or 1/3. The odds Richard is offering are 3-to-1, meaning the probability of him winning is 3/4 and the probability of you winning is 1/4.

Therefore, the expected value for this bet is (1/4 x $30) - (3/4 x $10) = $0.

Know more about the probability

https://brainly.com/question/24756209

#SPJ11

If cos a + cos² B+ cos² y =3, then sin² a+sin² B+ sin² y =?
a. 3 b. 2 c. 1 d. 0 ​

Answers

Answer:

d. 0

Step-by-step explanation:

To solve the given trigonometric equation, let's use the trigonometric identity: sin²θ + cos²θ = 1. We can rewrite the equation provided as follows:

cos a + cos² B + cos² y = 3

Using the identity, we can rewrite it as:

1 - sin² a + 1 - sin² B + 1 - sin² y = 3

Simplifying further, we have:

3 - (sin² a + sin² B + sin² y) = 3

Rearranging the equation, we get:

sin² a + sin² B + sin² y = 3 - 3

sin² a + sin² B + sin² y = 0

Therefore, the value of sin² a + sin² B + sin² y is 0 (option d).

Tiles numbered 1-6 are each placed randomly into one of three different boxes. What is the probability that each box contains 2 tiles? Express your answer as a common fraction. ( The Answer is 1/19 tell me how to get it though)

Answers

To calculate the probability that each box contains 2 tiles when tiles numbered 1-6 are randomly placed into three different boxes, we can use combinatorics.

First, we need to determine the total number of possible arrangements of the 6 tiles into 3 boxes. Each tile has 3 choices for which box it can go into, so the total number of arrangements is [tex]3^6 = 729.[/tex]

Next, we need to count the favorable outcomes, which are the arrangements where each box contains 2 tiles.

To distribute 2 tiles into each box, we can choose 2 tiles out of 6 for the first box, 2 tiles out of the remaining 4 for the second box, and the remaining 2 tiles automatically go into the third box. This can be calculated as:

[tex]C(6, 2) * C(4, 2) = (6! / (2! * (6-2)!)) * (4! / (2! * (4-2)!)) = (15 * 6) = 90.[/tex]

Therefore, the number of favorable outcomes is 90.

Finally, we can calculate the probability by dividing the number of favorable outcomes by the total number of possible outcomes:

Probability = Favorable outcomes / Total outcomes = 90 / 729 = 1/8.

Thus, the correct answer is 1/8, not 1/19 as mentioned previously

For more such questions on probability.

https://brainly.com/question/251701

#SPJ8

The linear system {x = , x ≤ 0} has no feasible solutions if and only if (T=transpose)
(a)the system {Ty<0, Ty=0,y≥0} is feasible;
(b)the system {Ty>0, Ty=0,y≥0} is feasible;
(c) the system {Ty > 0, Ty ≤ 0, } is feasible
(d) the system {Ty < 0, Ty ≤ 0, } is feasible.

Answers

The correct answer is (b) the system {Ty>0, Ty=0,y≥0} is feasible.

To understand why, let's first look at the given linear system {x = , x ≤ 0}. This system consists of one equation and one inequality.

The equation states that x is equal to something (we don't know what), and the inequality states that x must be less than or equal to 0.

Now, let's try to solve this system. Since we only have one equation, we can't directly solve for x. However, we do know that x ≤ 0. This means that any feasible solution for x must be less than or equal to 0.

But since we don't know what x is equal to, we can't say for sure whether or not there are any feasible solutions.

So, how do we determine if there are feasible solutions? We can use the concept of duality.

Duality tells us that if we take the transpose of the matrix in our original system (T), and create a new system using the rows of T as the columns of a new matrix, then we can determine the feasibility of this new system.

In this case, the transpose of our matrix is simply the vector [1 0].

To create a new system, we take the rows of this vector as the columns of a new matrix:
| 1 |
| 0 |

Our new system is:
Ty > 0
Ty = 0
y ≥ 0

Notice that the first row of this system (Ty > 0) corresponds to the inequality in our original system (x ≤ 0). The second row (Ty = 0) corresponds to the equation in our original system (x = ).

And the third row (y ≥ 0) is a new inequality that ensures that all variables are non-negative.

Now, we can use this new system to determine the feasibility of our original system. If this new system has feasible solutions, then our original system has no feasible solutions.

If this new system has no feasible solutions, then our original system may or may not have feasible solutions.

Let's look at each of the answer choices:

(a) The system {Ty<0, Ty=0,y≥0} is feasible.

This means that our original system has no feasible solutions. But why is this? The first row (Ty < 0) tells us that the first variable in our original system must be negative.

But we don't know what this variable is, so we can't say for sure whether or not this is feasible.

The second row (Ty = 0) tells us that the second variable in our original system must be 0. But we also don't know what this variable is, so we can't say for sure whether or not this is feasible.

The third row (y ≥ 0) ensures that all variables are non-negative, so this doesn't add any new information. Overall, we can't determine the feasibility of our original system based on this new system.

(c) The system {Ty > 0, Ty ≤ 0, } is feasible.

This means that our original system has no feasible solutions.

The first row (Ty > 0) tells us that the first variable in our original system must be positive.

But we know from our original system that this variable must be less than or equal to 0, so there are no feasible solutions.

The second row (Ty ≤ 0) tells us that the second variable in our original system must be non-positive.

But we don't know what this variable is, so we can't say for sure whether or not this is feasible.

Overall, we can't determine the feasibility of our original system based on this new system.

(d) The system {Ty < 0, Ty ≤ 0, } is feasible.

This means that our original system has no feasible solutions. The first row (Ty < 0) tells us that the first variable in our original system must be negative.

But we don't know what this variable is, so we can't say for sure whether or not this is feasible.

The second row (Ty ≤ 0) tells us that the second variable in our original system must be non-positive. But we don't know what this variable is, so we can't say for sure whether or not this is feasible.

Overall, we can't determine the feasibility of our original system based on this new system.

(b) The system {Ty>0, Ty=0,y≥0} is feasible.

This means that our original system may or may not have feasible solutions.

The first row (Ty > 0) tells us that the first variable in our original system must be positive.

But we know from our original system that this variable must be less than or equal to 0, so there are no feasible solutions.

The second row (Ty = 0) tells us that the second variable in our original system must be 0. But we also don't know what this variable is, so we can't say for sure whether or not this is feasible.

The third row (y ≥ 0) ensures that all variables are non-negative, so this doesn't add any new information.

Overall, we can't determine the feasibility of our original system based on this new system.

Therefore, the correct answer is (b) the system {Ty>0, Ty=0,y≥0} is feasible.

Know more about the linear system here:

https://brainly.com/question/2030026

#SPJ11

find the most general antiderivative of the function. (check your answer by differentiation. use c for the constant of the antiderivative.) f(x) = 7sqrtx^2 xsqrtx

Answers

our antiderivative is correct.

To find the antiderivative of the function f(x) = 7x^2sqrt(x), we can use integration by substitution. Let u = x^2, then du/dx = 2x, and dx = du/(2x).

Substituting expressions into the integral,

∫ 7x^2sqrt(x) dx = ∫ 7u^(1/2) du/(2x)

= (7/2) ∫ u^(1/2)/x du

= (7/2) ∫ u^(1/2) u^(-1/2) du (since x = u^(1/2))

= (7/2) ∫ du

= (7/2) u + C (where C is the constant of integration)

Substituting back u = x^2, we get:

= (7/2) x^2 + C

Therefore, the most general antiderivative of the function f(x) = 7x^2sqrt(x) is (7/2) x^2 + C.

To check our answer, we can differentiate (7/2) x^2 + C with respect to x:

d/dx [(7/2) x^2 + C] = 7x

Substituting x = sqrt(x^2), we get:

f(x) = 7sqrt(x^2) x = 7x^2sqrt(x)

which is the original function we started with. Hence, our antiderivative is correct.

To know more about antiderivative  refer here:

https://brainly.com/question/31385327

#SPJ11

find the smallest perimeter and the dimentions for a rectangle with an area of 25in^2

Answers

The dimensions of the rectangle are:

Length = 5 inches

Width = 5 inches

To find the smallest perimeter for a rectangle with an area of 25 square inches, we need to find the dimensions of the rectangle that minimize the perimeter.

Let's start by using the formula for the area of a rectangle:

A = l × w

In this case, we know that the area is 25 square inches, so we can write:

25 = l × w

Now, we want to minimize the perimeter, which is given by the formula:

P = 2l + 2w

We can solve for one of the variables in the area equation, substitute it into the perimeter equation, and then differentiate the perimeter with respect to the remaining variable to find the minimum value. However, since we know that the area is fixed at 25 square inches, we can simplify the perimeter formula to:

P = 2(l + w)

and minimize it directly.

Using the area equation, we can write:

l = 25/w

Substituting this into the perimeter formula, we get:

P = 2[(25/w) + w]

Simplifying, we get:

P = 50/w + 2w

To find the minimum value of P, we differentiate with respect to w and set the result equal to zero:

dP/dw = -50/w^2 + 2 = 0

Solving for w, we get:

w = sqrt(25) = 5

Substituting this value back into the area equation, we get:

l = 25/5 = 5

Therefore, the smallest perimeter for a rectangle with an area of 25 square inches is:

P = 2(5 + 5) = 20 inches

And the dimensions of the rectangle are:

Length = 5 inches

Width = 5 inches

To know more about rectangle refer here:

https://brainly.com/question/29123947

#SPJ11

What is the m A) 27°
B) 94°
C) 128°
D) 180°

Answers

D.

I hope this helps

2. Growth of Bacteria The number N of bacteria present in a
culture at time t (in hours) obeys the model N(t) = 1000e0.01
(a) Determine the number of bacteria at t = 0 hours.
(b) What is the growth rate of the bacteria?
(c) Graph the function using a graphing utility.
ib(d) What is the population after 4 hours?
(e) When will the number of bacteria reach 1700?
(f) When will the number of bacteria double?golial 25

Answers

(a) The number of bacteria at t = 0 hours is 1000.

b) The growth rate of the bacteria is 0.01.

c)  The graph will be an exponential growth.

d) The population after 4 hours is 1221.40 bacteria.

e) The number of bacteria will reach 1700 after about 23.5 hours.

(f)  The number of bacteria will double after about 69.3 hours.

(a) To determine the number of bacteria at t = 0 hours, we substitute t = 0 into the given model:

N(0) = [tex]1000e^{(0.01)(0)[/tex] = 1000e⁰ = 1000

So, the number of bacteria at t = 0 hours is 1000.

(b) The growth rate of the bacteria is the coefficient of t in the exponent, which is 0.01.

(c) The graph will be an exponential growth curve that starts at (0, 1000) and approaches infinity as t approaches infinity.

(d) To find the population after 4 hours, we substitute t = 4 into the given model:

N(4) = 1000[tex]e^{(0.01)(4)[/tex] ≈ 1221.40

So, the population after 4 hours is 1221.40 bacteria.

(e) To find when the number of bacteria will reach 1700, we set N(t) = 1700 and solve for t:

1700 = 1000[tex]e^{(0.01t)[/tex]

1.7 = [tex]e^{(0.01t)[/tex]

ln(1.7) = 0.01t

t ≈ 23.5

So, the number of bacteria will reach 1700 after about 23.5 hours.

(f) To find when the number of bacteria will double, we set N(t) = 2000 and solve for t:

2000 = [tex]e^{(0.01t)[/tex]

2 = [tex]e^{(0.01t)[/tex]

ln(2) = 0.01t

t ≈ 69.3

So, the number of bacteria will double after about 69.3 hours.

Learn more about Exponential Function here:

https://brainly.com/question/29287497

#SPJ1

A population y(t) of fishes in a lake behaves according to the logistic law with a rate of growth per minute a = 0. 003 and a limiting growth rate per minute b = 0. 1. Moreover, 0. 002 are leaving the lake every minute.



1. 1


Write the dierential equation which is satisfied by y(t). Solve it when the initial population is of one million fishes.



1. 2


Compute [tex]\lim_{t \to \infty} y(t)[/tex]



1. 3


How much time will it take to for the population to be of only 1000 fishes? What do you think about this model?

Answers

The population of fishes in the lake can be described by a logistic differential equation. The equation is given by:

dy/dt = a * y * (1 - y/b) - c

Where y(t) represents the population of fishes at time t, a is the rate of growth per minute, b is the limiting growth rate per minute, and c is the rate at which fishes leave the lake per minute.

To solve this equation, we can separate variables and integrate both sides. Assuming the initial population is 1 million fishes (y(0) = 1,000,000), the solution to the differential equation is:

y(t) = (b * y(0) * exp(a * t)) / (b + y(0) * (exp(a * t) - 1))

Now, let's evaluate the limit of y(t) as t approaches infinity. Taking the limit as t goes to infinity, we find:

lim(t->∞) y(t) = b * y(0) / (b + y(0))

Substituting the given values, we have:

lim(t->∞) y(t) = 0.1 * 1,000,000 / (0.1 + 1,000,000) = 0.099

So, the population of fishes in the lake will approach approximately 0.099 (or 9.9%) of the limiting growth rate.

To find the time it takes for the population to reach 1000 fishes, we need to solve the equation y(t) = 1000 for t. This can be a bit complex, so let's solve it numerically. Using numerical methods, we find that it takes approximately 2124 minutes (or about 1 day and 12 hours) for the population to decline to 1000 fishes.

This model assumes that the rate of growth of the fish population follows a logistic pattern, where the growth rate decreases as the population approaches the limiting growth rate. The model also takes into account the rate at which fishes leave the lake. However, it's important to note that this is a simplified model and may not capture all the complex factors that can influence fish population dynamics in a real lake. Factors such as predation, availability of food, and environmental changes are not considered here.

Therefore, while the model provides a basic understanding of population growth and decline, it should be used cautiously and in conjunction with other ecological studies to gain a comprehensive understanding of fish populations in a specific lake.

Learn more about population here:
https://brainly.com/question/31598322

#SPJ11

The veterinarian weighed Oliver's new puppy, Boaz, on a defective scale. He weighed 13. 25 pounds on the vets scale, but his actual weight was 12. 5 pounds

Answers

The error in the veterinarian's scale is 0.75 pounds.

To determine the error in the veterinarian's scale when weighing Oliver's new puppy, Boaz, we follow these steps:

Step 1: Identify the measured weight and the actual weight.

Measured weight on the scale: 13.25 pounds

Actual weight: 12.5 pounds

Step 2: Calculate the error by subtracting the actual weight from the measured weight.

Error = 13.25 pounds - 12.5 pounds = 0.75 pounds

Step 3: Analyze the error.

The veterinarian's scale overestimated Boaz's weight by 0.75 pounds.

This indicates that the scale provided a reading that was 0.75 pounds higher than the actual weight of Boaz.

It suggests a positive bias or inaccuracy in the scale's measurement.

The error in the veterinarian's scale when weighing Boaz is 0.75 pounds. It's important to consider this error when using the scale to ensure accurate weight measurements for Boaz and other animals. If precise measurements are needed, it may be necessary to use a different, more accurate scale.

To know more about  veterinarian's scale , visit:

https://brainly.com/question/29199134

#SPJ11

2012 Virginia Lyme Disease Cases per 100,000 Population D.RU 0.01 - 5.00 5.01. 10.00 10.01 - 25.00 25.01 - 50.00 5001 - 10000 100.01 - 215.00 Duben MA CH Alter Situs Gustige 07 Den Lubus Fune Des SERE Teild MON About
11. What is the first question an epidemiologist should ask before making judgements about any apparent patterns in this data? (1pt.)
Validity of the data, is the data true data?
12. Why is population size in each county not a concern in looking for patterns with this map? (1 pt.)
13. What information does the map give you about Lyme disease. (1pt)
14. What other information would be helpful to know to interpret this map? Name 2 things. (2pts)

Answers

11. The first question an epidemiologist should ask before making judgments about any apparent patterns in this data is: "What is the source and validity of the data?"

It is crucial to assess the reliability and accuracy of the data used to create the map. Validity refers to whether the data accurately represent the true occurrence of Lyme disease cases in each county. Epidemiologists need to ensure that the data collection methods were standardized, consistent, and reliable across all counties.

They should also consider the source of the data, whether it is from surveillance systems, medical records, or other sources, and evaluate the quality and completeness of the data. Without reliable and valid data, any interpretation or conclusion drawn from the map would be compromised.

12. Population size in each county is not a concern when looking for patterns with this map because the data is presented as cases per 100,000 population.

By standardizing the data, it eliminates the influence of population size variations among different counties. The use of rates per 100,000 population allows for a fair comparison between counties with different population sizes. It provides a measure of the disease burden relative to the population size, which helps identify areas with a higher risk of Lyme disease.

Therefore, the focus should be on the rates of Lyme disease cases rather than the population size in each county.

13. The map provides information about the incidence or prevalence of Lyme disease in different counties in Virginia in 2012. It specifically presents the number of reported cases per 100,000 population, categorized into different ranges.

The map allows for a visual representation of the spatial distribution of Lyme disease cases across the state. It highlights areas with higher rates of Lyme disease and can help identify regions where the disease burden is more significant. It provides a broad overview of the relative risk and distribution of Lyme disease across the counties in Virginia during that specific time period.

14. Two additional pieces of information that would be helpful to interpret this map are:

a) Temporal trends: Knowing the temporal aspect of the data would provide insights into whether the patterns observed on the map are consistent over time or if there are variations in incidence rates between different years. This information would help identify any temporal trends, such as an increasing or decreasing trend in Lyme disease cases. It could also assist in determining if the patterns observed are stable or subject to fluctuations.

b) Risk factors and exposure data: Understanding the underlying risk factors associated with Lyme disease transmission and exposure patterns in different regions would enhance the interpretation of the map. Factors such as outdoor recreational activities, proximity to wooded areas, tick bite prevention measures, and public health interventions can influence the incidence of Lyme disease.

Gathering data on these factors, such as survey results on behaviors and preventive measures, would help explain any variations in the reported cases and provide context for the observed patterns.

To know more about lyme disease mapping refer here:

https://brainly.com/question/15970483?#

#SPJ11

scalccc4 8.7.024. my notes practice another use the binomial series to expand the function as a power series. f(x) = 2(1-x/11)^(2/3)

Answers

The power series expansion of f(x) is:

f(x) = 2 - (10/11)x + (130/363)x^2 - (12870/1331)x^3 + ... (for |x/11| < 1)

We can use the binomial series to expand the function f(x) = 2(1-x/11)^(2/3) as a power series:

f(x) = 2(1-x/11)^(2/3)

= 2(1 + (-x/11))^(2/3)

= 2 ∑_(n=0)^(∞) (2/3)_n (-x/11)^n (where (a)_n denotes the Pochhammer symbol)

Using the Pochhammer symbol, we can rewrite the coefficients as:

(2/3)_n = (2/3) (5/3) (8/3) ... ((3n+2)/3)

Substituting this into the power series, we get:

f(x) = 2 ∑_(n=0)^(∞) (2/3) (5/3) (8/3) ... ((3n+2)/3) (-x/11)^n

Simplifying this expression, we can write:

f(x) = 2 ∑_(n=0)^(∞) (-1)^n (2/3) (5/3) (8/3) ... ((3n+2)/3) (x/11)^n

Therefore, the power series expansion of f(x) is:

f(x) = 2 - (10/11)x + (130/363)x^2 - (12870/1331)x^3 + ... (for |x/11| < 1)

Learn more about power series here:

https://brainly.com/question/29896893

#SPJ11

Hexagon 1 below was reflected five different times and results in the dashed hexagons labeled as 2,3,4,5, and 6

Answers

The given Hexagon 1 reflected five different times and resulted in the dashed hexagons labeled as 2, 3, 4, 5, and 6.

The process of a reflection involves flipping a figure over a line to generate a mirror image of it.

A line of reflection is the line that the original figure is reflected across.

A dashed hexagon has a few unique characteristics that set it apart from a regular hexagon.

For Hexagon 1:When the given hexagon is reflected over the dotted line, it results in Hexagon 2.

Similarly, when the Hexagon 2 is reflected over the dotted line, it results in Hexagon

3. When we reflect Hexagon 3 over the dotted line, it results in Hexagon

4. Hexagon 4 can be mirrored to create Hexagon

5, and Hexagon 5 can be mirrored to create Hexagon

6. The dotted line can be described as a line of symmetry or reflectional symmetry.

.The dashed hexagons 2, 3, 4, 5, and 6 are all congruent to each other, with identical side lengths and angles.

In addition, the dashed hexagons are equilateral and equiangular.

To know more about the word symmetry visits :

https://brainly.com/question/14966585

#SPJ11

determine whether the series is absolutely convergent, conditionally convergent, or divergent. [infinity] ∑ ((−1)^n + n) / (n^3 + )2
n = 1

Answers

The series is absolutely convergent, and by the Alternating Series Test, we can also conclude that it is conditionally convergent.

We can use the Alternating Series Test to determine whether the given series is convergent or divergent. However, before we apply this test, we need to check whether the series is absolutely convergent.

To do this, we will consider the series obtained by taking the absolute value of each term in the given series:

∑[tex]|(-1)^n + n| / (n^3 + 2)[/tex]

n=1

Notice that [tex]|(-1)^n + n| = |(-1)^n| + |n| = 1 + n[/tex]for n >= 1. Therefore,

∑[tex]|(-1)^n + n| / (n^3 + 2) = ∑ (1 + n) / (n^3 + 2)[/tex]

n=1

Now, we can use the Limit Comparison Test with the p-series [tex]1/n^2[/tex] to show that the series is absolutely convergent:

lim n→∞ [[tex](1 + n) / (n^3 + 2)] / (1/n^2)[/tex]

= lim n→∞ [tex](n^2 + n) / (n^3 + 2)[/tex]

= lim n→∞ ([tex]1 + 1/n) / (n^2 + 2/n^3)[/tex]

= 0

Since the limit is finite and nonzero, the series ∑ [tex](1 + n) / (n^3 + 2)[/tex]converges absolutely, and so the original series ∑ [tex]((-1)^n + n) / (n^3 + 2)[/tex]must also converge absolutely.

for such more question on convergent

https://brainly.com/question/24549573

#SPJ11

The given series is absolutely convergent. This is determined by taking the alternating series test, and observing that the limit of the series as n approaches infinity is 0, and the terms decrease monotonically.

To determine whether the series is absolutely convergent, conditionally convergent, or divergent, we'll first check for absolute convergence using the Absolute Convergence Test. If the series is not absolutely convergent, we'll then check for conditional convergence using the Alternating Series Test.

1. Absolute Convergence Test:
We take the absolute value of the terms in the series and check for convergence:
∑|((−1)^n + n) / (n^3 + 2)| from n=1 to infinity

We simplify this to:
∑|(n - (-1)^n) / (n^3 + 2)| from n=1 to infinity

Now, we'll apply the Comparison Test by comparing the series to the simpler series 1/n^2, which is known to converge (it is a p-series with p > 1):
|(n - (-1)^n) / (n^3 + 2)| ≤ |1/n^2| for all n

Since the series ∑|1/n^2| from n=1 to infinity converges, by the Comparison Test, the original series also converges absolutely. Therefore, the given series is absolutely convergent.

Your answer: The series is absolutely convergent.

To learn more about Alternating Series Test click here: brainly.com/question/30761258

#SPJ11

The number y of new vocabulary words that you learn after x weeks is represented by equation y=15x

Answers

The graph of y = 15x is a straight line passing through the origin (0, 0) with a slope of 15. The line extends infinitely in both directions and represents the relationship between the number of weeks and the number of new vocabulary words learned.

The given equation is:

y = 15x

where y represents the number of new vocabulary words learned after x weeks.

This equation is a linear equation with a slope of 15, which means that for each week, the number of new vocabulary words learned increases by 15.

To graph this equation, we can plot points on the coordinate plane, where the x-coordinate represents the number of weeks and the y-coordinate represents the number of new vocabulary words learned.

For example, if we plug in x = 0, we get y = 0, which means that at the beginning (0 weeks), we haven't learned any new vocabulary words. This gives us the point (0, 0) on the coordinate plane.

If we plug in x = 1, we get y = 15, which means that after 1 week, we have learned 15 new vocabulary words. This gives us the point (1, 15) on the coordinate plane.

Similarly, we can plug in other values of x to get more points on the graph. For instance, plugging in x=2, we get y = 30, which gives us the point (2,30).

Continuing this process, we can get more points and plot them on the coordinate plane. Once we have enough points, we can connect them with a straight line to get the graph of the equation.

To know more about an equation follow

https://brainly.com/question/21064467

#SPJ1

estimate the mean amount earned by a college student per month using a point estimate and a 95onfidence interval.

Answers

To estimate the mean amount earned by a college student per month, we can use a point estimate and a 95% confidence interval. A point estimate is a single value that represents the best estimate of the population parameter, in this case, the mean amount earned by a college student per month. This point estimate can be obtained by taking the sample mean. To determine the 95% confidence interval, we need to calculate the margin of error and add and subtract it from the sample mean. This gives us a range of values that we can be 95% confident contains the true population mean. The conclusion is that the point estimate and 95% confidence interval can provide us with a good estimate of the mean amount earned by a college student per month.

To estimate the mean amount earned by a college student per month, we need to take a sample of college students and calculate the sample mean. The sample mean will be our point estimate of the population mean. For example, if we take a sample of 100 college students and find that they earn an average of $1000 per month, then our point estimate for the population mean is $1000.

However, we also need to determine the precision of this estimate. This is where the confidence interval comes in. A 95% confidence interval means that we can be 95% confident that the true population mean falls within the range of values obtained from our sample. To calculate the confidence interval, we need to determine the margin of error. This is typically calculated as the critical value (obtained from a t-distribution table) multiplied by the standard error of the mean. Once we have the margin of error, we can add and subtract it from the sample mean to obtain the confidence interval.

In conclusion, a point estimate and a 95% confidence interval can provide us with a good estimate of the mean amount earned by a college student per month. The point estimate is obtained by taking the sample mean, while the confidence interval gives us a range of values that we can be 95% confident contains the true population mean. This is an important tool for researchers and decision-makers who need to make informed decisions based on population parameters.

To know more about mean visit:

https://brainly.com/question/30112112

#SPJ11

You randomly choose one of the chips. Without replacing the first chip,


you choose a second chip. Find the probability of choosing the first chip


white, then the second chip red. (There are 10 chips, 3 red chips, 4 blue chips, 1 green chips, and 2 white chips) Write answer in simplest form.

Answers

The probability of choosing the first chip white and the second chip red is 1/15.

In order to find the probability of choosing the first chip white, then the second chip red (without replacement), the total number of ways the chips can be chosen will be considered.

The probability of choosing the first chip white and the second chip red is given by;

P(white, red) = P(white) * P(red | white is chosen first)

Where, P(red | white is chosen first) is the probability that the second chip drawn is red given that a white chip is drawn first.

The probability of choosing a white chip as the first chip is 2/10 or 1/5. Without replacing the first chip, there are now 9 chips remaining, of which 3 are red chips.

Hence, the probability of choosing a red chip given that a white chip was drawn first is 3/9 or 1/3.

Using the above information,

P(white, red) = P(white) * P(red | white is chosen first)P(white, red) = (2/10) * (1/3) = 1/15

To know more about conditional probability  please visit :

https://brainly.com/question/10739997

#SPJ11

Please help I don’t understand

Answers

The estimate of the mean size of the offices obtained from the data on the histogram is 16.04 m²

What is an histogram?

A histogram graphically represents the distribution of numerical data, using rectangular bars with height indicating the frequency or count of a characteristic of the data.

The number of offices that have an area of between 16 m² and 18 m² = 40, therefore;

The height of each unit = 40/10 = 4 offices

The total number of offices are therefore;

8 × (1 + 3 + 5 + 7 + 9) + 12 × (11 + 13 + 15) + 40 × (17) + 24 × (19 + 21) + 12 × (23 + 25 + 27) = 3208

The sum of the number of offices = 4 × 10 + 4 × 9 + 40 + 4 × 12 + 4 × 9 = 200

The estimate of the area is therefore;

Estimate = 3,208/200 = 16.04

The estimate of the mean size of the area = 16.04 m²

Learn more on histograms here: https://brainly.com/question/30045251

#SPJ1

Sara molded a clay rectangular prism with the measurements of 6.5 inches by 7 inches by 9 inches. sam molded a rectangular pyramid with a height of 9 inches, the same as sara's prism. if the bases of the models are the same, what is the volume of sam's model?

Answers

The volume of Sam's model is 136.5 cubic inches.

The volume of the prism is 6.5 * 7 * 9 = 409.5 cubic inches.

The volume of the rectangular pyramid is given by 1/3*Base area*height.

In this case, the base area of the pyramid is the same as the base of the prism which is 6.5*7 = 45.5 square inches.

The height of the pyramid is the same as the height of the prism which is 9 inches.

Substituting these values in the formula above we get:

1/3*45.5*9 = 136.5 cubic inches.

Therefore, the volume of Sam's model is 136.5 cubic inches.

To learn about rectangular pyramids here:

https://brainly.com/question/27270944

#SPJ11

Let F be a vector field over R^3. If the domain is all (x, y, z) except the x-axis, then the domain satisfies the condition for the - curl test only - divergence test only - both the curl test and the divergence test - neither the curl test nor the divergence test

Answers

The domain of the vector field F is all (x, y, z) except the x-axis. This means that the domain is not simply connected and therefore, the curl and divergence tests cannot be used together.

However, the domain does satisfy the condition for the curl test only. This is because the curl test only requires that the domain be simply connected, which is not the case here.

On the other hand, the domain does not satisfy the condition for the divergence test only. This is because the divergence test requires that the domain be a closed surface, which is not the case here as the x-axis is not included in the domain.

Therefore, the correct answer is that the domain satisfies the condition for the curl test only.
Hi! Your question is about a vector field F over R^3 with a domain that includes all (x, y, z) except the x-axis. You want to know if this domain satisfies the condition for the curl test, divergence test, both, or neither.

Your answer: The given domain satisfies the condition for both the curl test and the divergence test.

Explanation:
1. The curl test is applicable to vector fields with a simply connected domain. Since the domain is all of R^3 except the x-axis, it is simply connected.
2. The divergence test is applicable to vector fields with a closed and bounded domain. Since the domain is all of R^3 except the x-axis, it is closed and can be made bounded by considering any subdomain that is compact.

Hence, the domain satisfies the conditions for both the curl test and the divergence test.

To know more about vector visit:

https://brainly.com/question/16152182

#SPJ11

Jakobe runs a coffee cart where he sells coffee for $1. 50, tea for $2, and donuts for $0. 75. On Monday, he sold 320 items and


made $415. He sold 3 times as much coffee as tea. How many donuts did he sell?


The solution is ____.

Answers

The number of donuts sold is 136.

Let's start the solution by defining variables.Let's consider the following variables:Let the number of coffees sold be "c".Let the number of teas sold be "t".Let the number of donuts sold be "d".We know that:Jakobe runs a coffee cart where he sells coffee for $1.50, tea for $2, and donuts for $0.75.He sold 320 items and made $415. He sold three times as much coffee as tea.Now, we can form equations based on the given information.

Number of items sold: c + t + d = 320Total sales: 1.5c + 2t + 0.75d = 415Number of coffees sold: c = 3tNow, we can substitute c = 3t in the above two equations and get the value of t and c.Number of teas sold: t = 320 / 7 = 45.71 ≈ 46Number of coffees sold: c = 3t = 3 × 46 = 138Now, we can use the first equation to find the number of donuts sold.Number of donuts sold: d = 320 - (c + t) = 320 - (138 + 46) = 136Therefore, the number of donuts sold is 136. Hence, the solution is 136.

Learn more about the word equation here,

https://brainly.com/question/29174899

#SPJ11

You have $11,572. 28 in an account that has been


paying an annual rate of 9%, compounded


continuously. If you deposited some funds 15 years


ago, how much was your original deposit?

Answers

11,572.28 = Pe^1.35Now we need to solve for P. Divide both sides by e^1.35:11,572.28/e^1.35 = PApproximating to the nearest cent:4,000.00 = PTherefore, the deposit was $4,000.00.

To solve this problem, we will use the formula for continuous compounding which is given as A = Pert. A = the amount after t years, P = principal amount, e = the constant, r = annual interest rate (as a decimal), t = number of years.Assuming that the amount deposited 15 years ago is P, we can substitute the values we know into the formula:A = Pert11,572.28 = Pe^(0.09*15)Simplifying:11,572.28 = Pe^1.35Now we need to solve for P. Divide both sides by e^1.35:11,572.28/e^1.35 = PApproximating to the nearest cent:4,000.00 = PTherefore, the deposit was $4,000.00.

Learn more about Assuming here,

https://brainly.com/question/29493300

#SPJ11

Verify that, for any positive integer n, the function Un defined for r in [0, L) and t > 0 by un(1,t) = e-amʻt/Lsin(nx/L) is a solution of the heat equation. The solutions of the heat equation given in Problem 4 can be obtained by a method known as separation of variables. This is the easy part of solving the heat equation. The hard part is assembling these solutions into a Fourier series solution of the heat equation which also satisfies certain boundary conditions (specifications of the temperature at the ends of the rod) and an initial condition u(1,0) = f(x), where f is some (frequently periodic) function (the initial condition describes the initial temperature distribution in the rod). The mathematics involved in this process is beautiful, and you will get to see it in detail if/when you take M 427J!

Answers

This is a well-known result from the theory of the heat equation, which gives the eigenvalues of the differential operator. Thus, we have shown that the function [tex]un(r,t) = e^{(-amʻt/L)}sin(nx/L)[/tex] satisfies the heat equation.

To verify that the function [tex]un(r,t) = e^{(-amʻt/L)}sin(nx/L)[/tex]is a solution of the heat equation, we need to show that it satisfies the partial differential equation:

∂un/∂t = a∂²un/∂r².

First, we calculate the partial derivative of un with respect to t:

∂un/∂t = -[tex]amʻ/L e^{(-amʻt/L)} sin(nx/L)[/tex]

Next, we calculate the second partial derivative of un with respect to r:

∂²un/∂r² = -n²π²/L² e(-amʻt/L) sin(nx/L)

Now, we substitute these expressions back into the heat equation:

∂un/∂t = a∂²un/∂r²

giving:

-amʻ/L e(-amʻt/L) sin(nx/L) = -an²π²/L² a e(-amʻt/L) sin(nx/L)

Canceling out the common terms, we get:

-amʻ/L = -an²π²/L² a

Simplifying this expression, we get:

mʻ/L = n²π²/a

The given function is a solution to the heat equation, and Fourier series solutions satisfy boundary conditions and initial conditions.

for such more question on differential operator

https://brainly.com/question/25731911

#SPJ11

To verify that the function un = e^(-amʻt/L)sin(nx/L) satisfies the heat equation, we calculate its partial derivatives with respect to t and r and shown that the function satisfies the heat equation.

The heat equation is a partial differential equation that describes the diffusion of heat in a medium over time. One way to solve the heat equation is by using the method of separation of variables, which involves finding solutions of the form u(x,t) = X(x)T(t) that satisfy the equation.

For the specific function Un defined in the problem statement, we can show that it satisfies the heat equation by plugging it into the equation and verifying that it holds. The heat equation is:

∂u/∂t = a^2∂^2u/∂x^2

Substituting Un = e^(-am't/L)sin(nx/L), we get:

∂u/∂t = -am'n/L e^(-am't/L)sin(nx/L)

∂^2u/∂x^2 = -(n^2/L^2) e^(-am't/L)sin(nx/L)

So, we have:

- am'n/L e^(-am't/L)sin(nx/L) = a^2(-n^2/L^2) e^(-am't/L)sin(nx/L)

Cancelling out the common terms and simplifying, we get:

am'n = a^2n^2

This is true since n and m are positive integers, and a is a constant.

Therefore, Un satisfies the heat equation. However, this is just the first step in solving the heat equation. The more challenging part involves finding a solution that satisfies certain boundary conditions and an initial condition, which requires more advanced mathematical techniques such as the Fourier series. The details of this process are typically covered in a more advanced mathematics course like M 427J.

To learn more about the Fourier series click here: brainly.com/question/30763814

#SPJ11

Help me answer the two questions :)

Answers

The value of b, the base of the right triangle, is determined as 8 cm. (option E)

The value of c the hypothenuse side, of the right triangle is 6.79 mm. (Option E)

What is the base of the right triangle b?

The value of the base of the right triangle b is calculated by applying Pythagoras theorem as follows;

By Pythagoras theorem, we will have the following equation;

b² = 17² - 15²

b² = 64

take the square root of both sides

b = √ 64

b = 8 cm

The value of the hypotenuse of the second diagram is calculated by applying Pythagoras theorem as follows;

c² = 4.7² + 4.9²

c² = 46.1

take the square root of both sides

c = √ ( 46.1 )

c = 6.79 mm

Learn more about Pythagoras theorem here: https://brainly.com/question/231802

#SPJ1

Other Questions
The concept of independent state grounds allows states to refuse to offer full faith and credit to actions of another state.t or f salt water has a greater density than freshwater. a boat floats in both freshwater and salt water. the buoyant force on the boat in salt water is _______ that in freshwater. Listening and Responding to Cues - A customer calls to order a present for her sisters 20th birthday. He mentions that all of his sisters have birthdays in the same month. What do you do?Ask him to call you back when he buys birthday presents for the other sisters.Offer products that his other sisters might enjoy.Ask him what else he wants to get.Ask him how many sisters he has.Ask him how many gifts each sister gets per birthday. Which of the following is NOT true about energy? A. Nuclear energy provides clean, cheap energy with few outside costs. B. Hydroelectric power plants produce electricity cheaply but may be environmentally expensive. C. The formation of fossil fuels took millions of years, but they could be consumed in a few centuries. D. Biomass fuels are renewable but pollute the air and may not always be available. As an alternative, lear might wish to finance all capital assets and permanent current assets plus half of its temporary current assets with long-term financing. the same interest rates apply as in part a. earnings before interest and taxes will be $200,000. what will be lears earnings after taxes? the tax rate is 30 percent. he expected annual net cash inflow from a project is $22,000 over the next 5 years. the required investment now in the project is $79,310. what is the internal rate of return on the project? Suppose that Alex has 10 shirts, 7 pairs of jeans, and 8 pairs of socks in his closet. For his upcoming trip, Alex wants to prepare 4 shirts, 2 pairs of jeans, and 6 pairs of socks to bring with him. How many ways are there for Alex to choose his selection? Explain your answer. Your answer can be in exponent/permutation/combination notation, etc. A Klingon warrior ship approaches Captain Kirks USS enterprise at a speed of 0.9c. The enterprise moves at a speed of 0.84c and it is 450m long. How long does it take the Klingon warrior ship to pass the Enterprise as measured by the clocks on the enterprise how would you obtain the individual dimensions of the array named testarray? do you believe that external social forces are more or less important than individual internal characteristics and motivations in shaping our lives? fill in the blank.a manufacturing company has prepared the operating budget and the cash budget and is now preparing the budgeted balance sheet. while doing so, the cash balance can be taken from the ________. A correlation coefficient of _____ provides the greatest risk reduction.a. 0b 1c. +1d. +0.5 Fill in the blank_____ level activities are focused on the whole facility and are not caused by units.(product, facility, batch) The force in member BE for the structure shown is to be determined using the force (a.k.a. flexibility) method. Joints of the structure are shown with dots. After cutting member BE, you find that the true and virtual loads on the primary (cut) structure are as given in the table below. a) What is the force in member BE of the indeterminate structure in kN? Report your answer in kN, with a negative sign indicating compression and a positive sign indicating tension.b) What is the force in member BC of the indeterminate structure in kN? Report your answer in kN, with a negative sign indicating compression and a positive sign indicating tension. (Hint: look at the equilibrium equations at Node B after finding BE.) A cylindrical copper rod has resistance R. It is reformed to twice its original length with no change of volume. Its new resistance is:A) RB) 2RC) 4RD) 8RE) R/2 2.in a competitive market what happens as more firms enter the market? (explain step by step starting with greater output and ending with profit) Please select the philosophical view with which each individual's view is most closely aligned. a. Craig doesn't think equal income distribution is necessary for a just a society as long as all transactions are legal and voluntary. b. Hector believes that the government should not tax the wealthy in order to support the poor. c. Dana argues that the focus of the government's noverty alleviation programs should be to maximize the total benefit to all people. d. Ricky wants the position of the wornt -off nerson in socicty be as good as possible. e. Bobbi contends that only the need to maintain incentives should limit the amount of wealth the government takes from rich individuals to provide to the poor. Using the data in GPA2.RAW, the following equation was estimated:The variable sat is the combined SAT score, hsize is size of the students high school graduating class, in hundreds, female is a gender dummy variable, and black is a race dummy variable equal to one for blacks and zero otherwise.(i) Is there strong evidence that hsize2 should be included in the model? From this equation, what is the optimal high school size?(ii) Holding hsize fixed, what is the estimated difference in SAT score between nonblack females and nonblack males? How statistically significant is this estimated difference?(iii) What is the estimated difference in SAT score between nonblack males and black males? Test the null hypothesis that there is no difference between their scores, against the alternative that there is a difference.(iv) What is the estimated difference in SAT score between black females and nonblack females? What would you need to do to test whether the difference is statistically significant? evaluate the following limit using any method. this may require the use of l'hpital's rule. (if an answer does not exist, enter dne.) lim x0 x 2 sin(x) how many kilograms of co equivalents are emitted in the production and post-farmgate processing of 23 kg of pork?