Answer:
b
Step-by-step explanation:
hope his helped
Answer:
the answer is
B. They both have a positive correlation, but Graph 2 has a stronger association.
Step-by-step explanation:
Solve (540x45) +(540x 55) using suitable property. And mention the name of the
property used
Answer:
the answer is 54,000
Step-by-step explanation:
(540 × 45) + (540 × 55)
=24300 + 27700
=54000
Find k so the product of the roots is -4 if 3x² + 5x + 3k = 0
Answer:
k = - 4
Step-by-step explanation:
given a quadratic equation in standard form
ax² + bx + c = 0 ( a ≠ 0 ) , then the product of the roots is [tex]\frac{c}{a}[/tex]
3x² + 5x + 3k = 0 ← is in standard form
with a = 3 and c = 3k , then
[tex]\frac{c}{a}[/tex] = - 4 , that is
[tex]\frac{3k}{3}[/tex] = - 4 ( multiply both sides by 3 to clear the fraction )
3k = - 12 ( divide both sides by 3 )
k = - 4
50 Points! Multiple choice algebra question. Thank you!
It will take approximately 7 weeks for the insect population to surpass 16,000. Option D.
Algebra problemTo determine the number of weeks it will take for the population to surpass 16,000, we need to find the value of t when P exceeds 16,000. Let's set up the equation:
16,000 = 15,000 + 2500 x sin(πt/52)
Subtracting 15,000 from both sides:
1,000 = 2500 x sin(πt/52)
Dividing both sides by 2500:
0.4 = sin(πt/52)
To solve for t, we need to find the inverse sine of both sides of the equation:
πt/52 = arcsin(0.4)
t = (52/π) x arcsin(0.4)
t ≈ (52/π) x 0.4115
t ≈ 6.6 weeks
Therefore, it will take approximately 7 weeks for the insect population to surpass 16,000.
More on algebraic expressions can be found here: https://brainly.com/question/2945451
#SPJ1
A woodworker wants to build a jewelry box in the shape of a rectangular prism with a total volume of 61.3 cubic inches. The woodworker is going to use a very expensive exotic wood to build the box. He wants to choose the dimensions of the box so that the bases of the prism are squares and the box's surface area is minimized. What dimensions should he choose for the box? Round answers to 4 decimal places
Answer: the woodworker should choose the dimensions of the box to be approximately 3.825 inches by 3.825 inches by 1.603 inches, with a total surface area of approximately 33.512 square inches.
Step-by-step explanation:
Let the side length of the square base be x, and the height of the prism be h. Then the volume of the prism is:
V = x^2h
We're given that V = 61.3 cubic inches, so:
x^2h = 61.3
We want to minimize the surface area of the box, which consists of the area of the two square bases (2x^2) plus the area of the four rectangular faces (4xh). So the total surface area is:
A = 2x^2 + 4xh
We can solve the first equation for h:
h = 61.3/x^2
Substituting this into the equation for A, we get:
A = 2x^2 + 4x(61.3/x^2)
A = 2x^2 + 245.2/x
To minimize A, we take the derivative and set it equal to zero:
dA/dx = 4x - 245.2/x^2 = 0
4x = 245.2/x^2
x^3 = 61.3
x = (61.3)^(1/3)
x ≈ 3.825
So the length of each side of the square base should be approximately 3.825 inches. We can use the equation for h to find the height:
h = 61.3/x^2
h ≈ 1.603
So the height of the prism should be approximately 1.603 inches.
Therefore, the woodworker should choose the dimensions of the box to be approximately 3.825 inches by 3.825 inches by 1.603 inches, with a total surface area of approximately 33.512 square inches.
if the area of a square is a^2 +10a +25 which of the following binomials represents the length of each of it sides
The binomials represents the length of each of it sides = a + 5.
The given expression is;
a² + 10a + 25
It represents the area of square.
Since area of square = (side)²
Therefore,
(side)² = a² + 10a + 25
= a² + 5a + 5a + 25
= a(a+5) + 5(a+5)
= (a+5)(a+5)
= (a+5)²
⇒(side)² = (a+5)²
Taking square root both sides
Hence
side of square = a + 5
To learn more about square visit:
https://brainly.com/question/24129362
#SPJ1
Will give brainliest if correct
Explain your answer please!
The correct option is A, the relative frequency is 0.03
How to find the relative frequency?To find the relative frequency for a given outcome, we need to take the quotient between the number of times that we got that outcome, and the total number of times that the experiment is done.
Here the outcome is "wants fruit smooties"
And for the total "number of times that the experiment is done" we need to count the number of students
We know:
Total number = 500
Number of 8th grades who want a fruit smoothies = 17
Relative frquency = 17/500 = 0.03
The correct option is the first one.
Learn more about relative frequency:
https://brainly.com/question/3857836
#SPJ1
PLease help need in 5 MIN please!!!
The measure of an interior angle is 140°.
The number of sides that this polygon has is 9 sides.
How to determine the measure of an exterior angle?In Mathematics and Geometry, the measure of the sum of the angles of a convex quadrilateral, pentagon, and a nonagon is equal to 360 degrees. This ultimately implies that, the sum of all the exterior angles of a regular polygon must add up to 360 degrees.
Mathematically, the exterior angle of a regular polygon can be calculated by using this mathematical equation:
Exterior angle = 360/number of sides
40 = 360/number of sides
Number of sides = 360/40
Number of sides = 9 sides.
Additionally, the measure of each interior angle of a regular polygon can be calculated by using this mathematical equation:
Interior angles = [180 × (n - 2)]/n
Interior angles = [180 × (9 - 2)]/9
Interior angles = 1,260/9
Interior angles = 140°
Read more on regular polygon here: brainly.com/question/20911145
#SPJ1
Reflections of Shapes
Graph the image of the figure using the transforma
1) reflection across the x-axis
A graph of the image of the figure after a reflection across the x-axis is shown below.
What is a reflection over the x-axis?In Mathematics and Geometry, a reflection over or across the x-axis is represented by this transformation rule (x, y) → (x, -y).
This ultimately implies that, a reflection over or across the x-axis would maintain the same x-coordinate while the sign of the y-coordinate changes from positive to negative or negative to positive.
By applying a reflection over or across the x-axis to triangle GLQ, we have;
(x, y) → (x, -y)
G (3, 4) → (3, -(4)) = G' (3, -4)
L (1, 2) → (1, -(2)) = L' (1, -2).
Q (4, -1) → (4, -(-1)) = Q' (4, 1)
Read more on reflection here: brainly.com/question/27912791
#SPJ1
Discuss how the concept of statistical independence underlies statistical hypothesis testing in general.
Based on statistical analysis, are we justified in asserting that two variables are statistically dependent? Why or why not?
Explain why researchers typically focus on statistical independence rather than statistical dependence.
Answer: The concept of statistical independence is fundamental to statistical hypothesis testing. In hypothesis testing, we aim to assess whether there is evidence to support a claim or hypothesis about the relationship between variables in a population. The concept of statistical independence allows us to quantify the degree to which variables are related or dependent on each other.
Statistical independence refers to the absence of a relationship between two variables. When two variables are statistically independent, the occurrence or value of one variable provides no information or predictive power about the occurrence or value of the other variable. In other words, knowledge about one variable does not affect our ability to predict or infer the other variable.
Hypothesis testing involves comparing observed data to a null hypothesis, which assumes that there is no relationship or effect between the variables of interest. By assuming statistical independence under the null hypothesis, we establish a baseline against which we can evaluate the observed data and determine whether it provides evidence to reject or accept the null hypothesis.
When conducting statistical analysis, we use various statistical tests and measures to assess the likelihood of observing the data if the null hypothesis were true. If the observed data is highly unlikely under the assumption of independence (i.e., the p-value is below a predetermined significance level), we reject the null hypothesis and conclude that there is evidence of a relationship or dependence between the variables.
However, it's important to note that statistical analysis alone cannot definitively prove or establish causal relationships or dependence between variables. Statistical dependence refers to the presence of a relationship or association between variables, but it does not provide information about the direction or underlying mechanisms of the relationship.
Researchers typically focus on statistical independence rather than statistical dependence because independence is the default assumption when testing hypotheses. By assuming independence, researchers can rigorously evaluate whether the observed data provides evidence to reject the null hypothesis and support the claim of a relationship or effect between variables. Additionally, focusing on independence allows researchers to identify and investigate deviations from independence, which can reveal meaningful patterns, relationships, or dependencies that may exist in the data.
The formula P = 2 L + 2 W is used when calculating: a. area of a rectangle c. area of a circle b. perimeter of a rectangle d. circumference of a circle
Answer:
Perimeter of a rectangle
Step-by-step explanation:
You have to combine all of the sides which results in 2 lengths and 2 widths being combined (2l+2w)
Consider the function f(x)=x^3+16x^2+60x+40. If there is a remainder of −5 when the function is divided by (x−a), what is the value of a?
The value of "a" is approximately -3.784 when the function f(x) is divided by (x - a) and leaves a remainder of -5.
To find the value of "a" when the function f(x) = x^3 + 16x^2 + 60x + 40 is divided by (x - a) and leaves a remainder of -5, we can use the Remainder Theorem.
According to the Remainder Theorem, if a polynomial f(x) is divided by (x - a), the remainder is equal to f(a).
In this case, the remainder is -5, so we have f(a) = -5.
Substituting a into the function, we get:
f(a) = a^3 + 16a^2 + 60a + 40 = -5
Now, we need to solve this equation to find the value of "a."
a^3 + 16a^2 + 60a + 40 = -5
Rearranging the equation:
a^3 + 16a^2 + 60a + 45 = 0
To find the exact value of "a," we can use numerical methods such as factoring, synthetic division, or using a graphing calculator. Unfortunately, the solution to this equation is not straightforward and requires numerical approximations.
Using numerical methods or a graphing calculator, we find that the value of "a" is approximately -3.784.
Therefore, the value of "a" is approximately -3.784 when the function f(x) is divided by (x - a) and leaves a remainder of -5.
For more such questions on function f(x) , Visit:
https://brainly.com/question/1523847
#SPJ11
6. The circle graph gives the percentage
of students who favor the different lunch
menus offered by the school cafeteria.
Find mKL and mLMJ. (6 POINTS)
J
Chicken Fingers
Corn Dogs
31%
30%
M
C
K
Spaghetti
15%
Pizza
24%
L
The circle graph percentage is solved and the measure of ∠KL = 54° and the measure of ∠LMJ = 198°
Given data ,
Let the circle graph gives the percentage of students who favor the different lunch menus offered by the school cafeteria
Now , the measures of the angles are given by
The measure of ∠KL = 15 %
15 % ( 360 ) = 54°
Therefore , the measure of ∠KL = 54°
And , the measure of ∠LMJ = ( 24 % + 21 % ) of 360
The measure of ∠LMJ = 198°
Hence , the circle graph percentage is solved
To learn more about circle click :
https://brainly.com/question/28391204
#SPJ1
What value of a would make the system of equations
ax + 3y =4
2x + 6y =8
Write a rule for the nth term of the geometric sequence a1=5 and r=2
Answer:
[tex]a_{n}=a_{1} r^{n-1}[/tex]
[tex]a_{n}=5 (2)^{n-1}[/tex]
Circle A is transformed into Circle B using a sequence of two transformations. The first transformation is a dilation centered at (6,0).
Circle B is dilation of 6 unit left and 4 unit down to the center of circle A.
We have to given that;
Circle A is transformed into Circle B using a sequence of two transformations.
And, The first transformation is a dilation centered at (6,0).
Here, Center of circle A is,
⇒ A = (6, 0)
And, Center for circle B is,
⇒ B = (0, - 4)
Hence, We get;
⇒ B = (6 - 6, 0 - 4)
⇒ B = (0, - 4)
Hence, Circle B is dilation of 6 unit left and 4 unit down to the center of circle A.
Learn more about the transformation visit:
https://brainly.com/question/30097107
#SPJ1
Suppose it is known that 879 of young Americans earn a hig of 1600 young Americans is selected.
a) Describe the distribution of the proportion of people in t high school diploma.
chool diploma. A random sample
same who have earned their
b) What is the probability that at least 88% of the sample of 1600 young Americans will have earned their high school diploma?
(a) The distribution of the proportion of people in t high school diploma = 0.0158.
(b) the probability that at least 88% of the sample of 1600 young Americans will have earned their high school diploma is extremely small.
Given that,
(a) Based on the central limit theorem, the normal distribution may be used to approximate the fraction of persons in the sample who have a high school diploma.
The mean proportion of individuals in the population who have earned their high school diploma can be estimated as
⇒ 879/1600 = 0.5494.
The standard deviation can be estimated as the square root of (0.5494*(1-0.5494)/1600)
=0.0158
b) To find the probability that at least 88% of the sample of 1600 young Americans will have earned their high school diploma,
We need to use the normal distribution with a mean of 0.5494 and a standard deviation of 0.0158.
We can standardize the value of 88% to the corresponding z-score:
z = (0.88 - 0.5494) / 0.0158
= 20.99
Using a standard normal distribution table or calculator, we find that the probability of a z-score this large or larger is essentially zero,
So the probability that at least 88% of the sample will have earned their high school diploma is extremely small.
Learn more about the probability visit:
https://brainly.com/question/13604758
#SPJ1
Given y=4x+2, find the domain value if the range value is 4
The domain value that corresponds to a range value of 4 is,
⇒ x = 1/2
Given that;
Function is,
y = 4x + 2
Since, the equation equal to the range value:
4 = 4x + 2
Then, we can solve for "x":
4 - 2 = 4x
2 = 4x
x = 1/2
Now that we have the value of "x", we can find the corresponding value of "y" by substituting it into the given equation:
y = 4x + 2
y = 4(1/2) + 2
y = 4 + 2
y = 6
Therefore, the domain value that corresponds to a range value of 4 is,
⇒ x = 1/2
Learn more about the function visit:
https://brainly.com/question/11624077
#SPJ1
Can someone please answer and provide an explanation for these?
The measure of the indicated angles using available arc angles which subtends angles at the circumference are:
(5). ? = 103, (6). ? = 80°, (7). ? = 32°, and (8). ? = 110°
What is angle subtended by an arc at the centerThe angle subtended by an arc of a circle at it's center is twice the angle it substends anywhere on the circles circumference. Also the arc measure and the angle it subtends at the center of the circle are directly proportional.
So;
(5). m∠JBL + 92° = 180° {sum of opposite interior angles of a cyclic quadrilateral}
m∠JBL = 88°
arc angle (JK + LK) = 2(88)
arc angle JK = 176 - 70 = 106°
arc angle (JK + JB) = 2(?)
? = (106 + 100)/2
? = 103
(6). arc angle QR = 360° - are. QSR
arc angle QR = 360 - (80 + 120) = 160°
arc angle QR = 2(?)
? = 160/2
? = 80°
(7). arc angle GH = 2(m∠GFH)
m∠GFH = 116/2
m∠GFH = 58
m∠FGH = 90° {angle in a semi circle is a right angle}
? = 180 - (58 + 90)
? = 32°
(8). arc angle DCF = 360 - arc angle DEF
arc DCF = 360 - (68 + 72)
arc DCF = 220
arc DCF = 2(?)
? = 220/2
? = 110°
Therefore, the measure of the indicated angles using available arc angles which subtends angles at the circumference are: (5). ? = 103, (6). ? = 80°, (7). ? = 32°, and (8). ? = 110°
Read more about angle here:https://brainly.com/question/24423151
#SPJ1
If Margo walks 1/4 mile in 1/12 of an hour, what is her unit rate
To find the unit rate, we need to determine how much distance Margo covers in one unit of time. We can do this by dividing the distance by the time.
Distance = 1/4 mile
Time = 1/12 hour
Unit rate = Distance ÷ Time
Unit rate = (1/4 mile) ÷ (1/12 hour)
We can simplify this division by multiplying both the numerator and denominator by the least common multiple of 4 and 12, which is 12.
Unit rate = (1/4 mile) ÷ (1/12 hour) x (12/12)
Unit rate = (3/4 mile) ÷ 1 hour
Unit rate = 3/4 mile per hour
Therefore, Margo's unit rate is 3/4 mile per hour. This means that she can cover a distance of 3/4 mile in one hour of walking.
Answer:
3mph
Step-by-step explanation:
1/12 of an hour will be 5 min. In 5 min she can walk 1/4 mile then in one hour she can walk 1/4 x 12. This means her rate will be 3 miles per hour.
60/12 = 5
12 x 1/4 = 12/4 = 3
Select all expressions that are squared of linear expressions
a) 9x*2 - 36
b) p*2 - 6p + q
c) (1/2x + 4)*2
d) (2d + 8)(2d-8)
e) x*2 + bx + 36
f) x*2 + 36
Part B
Select all the equations that are equivalent to x*2 + 6x = 16
a) (x+3)*2 = 16
b) (x + 3) *2 =0
c) x*2 + 6x + 9 = 0
d) (x+3*2) = 15
e) x*2 + bx + 9 = 25
f) x*2 + 6x + 9 = 16
A. The expressions that are squared of linear expressions are: c) (1/2x + 4)²; f) x² + 36. B. The equivalent expressions are: a) (x+3)² = 16; f) x² + 6x + 9 = 16.
How to Find Equivalent Equations and Expressions that are Squared of Linear Expressions?Part A: For the expressions that are squared of linear expressions:
a) 9x² - 36: This expression is not a squared linear expression because it contains a constant term (-36).
b) p² - 6p + q: This expression is not a squared linear expression because it contains a quadratic term (-6p) and a constant term (q).
c) (1/2x + 4)²: This expression is a squared linear expression because it represents the square of a linear expression, (1/2x + 4).
d) (2d + 8)(2d-8): This expression is not a squared linear expression because it represents the product of two linear expressions, (2d + 8) and (2d - 8).
e) x² + bx + 36: This expression is not a squared linear expression because it contains a quadratic term (x²) and a constant term (36).
f) x² + 36: This expression is a squared linear expression because it represents the square of the linear expression (x) and a constant term (36).
Part B: For the equations that are equivalent to x² + 6x = 16:
a) (x+3)² = 16: This equation is equivalent because it represents the square of the linear expression (x+3) equal to 16.
b) (x + 3)² = 0: This equation is not equivalent because it represents the square of the linear expression (x+3) equal to zero, not 16.
c) x² + 6x + 9 = 0: This equation is not equivalent because it represents a quadratic equation with a constant term (9), not x² + 6x = 16.
d) (x+3²) = 15: This equation is not equivalent because it represents the square of the linear expression (x+3²) equal to 15, not 16.
e) x² + bx + 9 = 25: This equation is not equivalent because it represents a quadratic equation with a constant term (9) and a different right-hand side (25), not x² + 6x = 16.
f) x² + 6x + 9 = 16: This equation is equivalent because it represents the square of the linear expression (x+3) equal to 16.
Learn more about square of linear expressions on:
https://brainly.com/question/31902264
#SPJ1
You wish to test the following at a significance level of
.
You obtain a sample of size
in which there are 106 successful observations.
For this test, we use the normal distribution as an approximation for the binomial distribution.
For this sample...
The test statistic (
) for the data =
(Please show your answer to three decimal places.)
The p-value for the sample =
(Please show your answer to four decimal places.)
The p-value is...
greater than
less than (or equal to)
(Recall that when p(-value) is low, the null must go; when p(-value) is high, the null must fly)
Base on this, we should ....
fail to reject the null hypothesis
accept the null hypothesis
reject the null hypothesis
As such, the final conclusion is that...
The sample data suggest that the population proportion is significantly greater than 0.59 at the significant level of
= 0.01.
The sample data suggest that the population proportion is not significantly greater than 0.59 at the significant level of
= 0.01
The sample data suggest that the population proportion is not significantly greater than 0.59 at the significant level of 0.01.
How to explain the sampleIn this case, the test statistic is calculated as follows:
z = (106/150 - 0.59) / sqrt(0.59(1-0.59)/150)
= 1.55
The p-value is calculated as the area under the standard normal curve to the right of the test statistic. In this case, the p-value is calculated as follows:
p-value = p(Z > 1.55)
= 0.123
Since the p-value is greater than the significance level of 0.01, we fail to reject the null hypothesis. Therefore, we cannot conclude that the population proportion is significantly greater than 0.59 at the significant level of 0.01.
Learn more about sample on
https://brainly.com/question/24466382
#SPJ1
Raphael and his four friends are having lunch. They agree to split the bill evenly at the end after adding a 20% tip. If the total bill is $85.60, how much will each person end up paying? A. $25.68 B. $20.54 C. $18.68 D. $17.12
The total amount to each person end up paying $20.54.
To find the total amount each person will pay, first calculate the 20% tip on the total bill and then divide the sum by the number of people.
To split the bill evenly among Raphael and his four friends, we first need to find the total cost including the 20% tip.
The tip is 20% of the original bill, which is equivalent to 0.20 x $85.60 = $17.12.
Therefore, the total cost of the bill with the tip is $85.60 + $17.12 = $102.72.
To split this evenly among the five people, we divide by 5:
$102.72 ÷ 5 = $20.54
So each person will end up paying $20.54.
20% of $85.60 is ($85.60 * 0.20) = $17.12
Add the tip to the total bill:
$85.60 + $17.12 = $102.72
Divide the total amount by the number of people (5): $102.72 / 5 = $20.54
Therefore, the answer is B. $20.54.
For similar question on total amount:
https://brainly.com/question/11807738
#SPJ11
How many different ways can president, vice president, and secretary be chosen from a group of 24 individuals?
The number of ways to choose a president, vice president and secretary from a set of 24 individuals is given as follows:
12,144 ways.
What is the permutation formula?The number of possible permutations of x elements from a set of n elements is given by:
[tex]P_{(n,x)} = \frac{n!}{(n-x)!}[/tex]
The permutation formula is used when the order in which the elements are chosen is important, which is the case for this problem. The order is important as there are different roles, that is, president, vice president and secretary.
For this problem, 3 people are chosen from a set of 24, hence the number of ways is given as follows:
P(24,3) = 24!/21! = 12144.
More can be learned about the permutation formula at https://brainly.com/question/12468032
#SPJ1
AABC is similar to ADEF.
Find x.
D
A
6
B
8
PADEF = 60
[?]
X =
We can solve for x by equating the two ratios:
a/b = 6/8 = 3/4
We can conclude that x is equal to 3/4.
To find the value of x in the given scenario, where triangles AABC and ADEF are similar, we can use the concept of corresponding sides in similar triangles.
From the given information, we know that the lengths of sides AB and DE are in proportion with each other, as the triangles are similar. Let's denote the length of AB as a and the length of DE as b. Similarly, let's denote the length of BC as c and the length of EF as d.
Since the corresponding sides are in proportion, we can set up the following equation:
AB/DE = BC/EF
Substituting the given values, we have:
a/b = 6/8
To find the value of x, we need to determine the ratio of the corresponding side lengths. Dividing both sides of the equation by 6, we get:
a/6 = b/8
Cross-multiplying, we have:
8a = 6b
Now, we can solve for x by equating the two ratios:
a/b = 6/8 = 3/4
We can conclude that x is equal to 3/4.
For more such questions on ratios, click on:
https://brainly.com/question/13513438
#SPJ11
Interquartile range 4, 6, 6 11 12, 13, 13, 13, 14
The required interquartile range of the given data set is 7.
To find the interquartile range (IQR), we first need to order the data set from least to greatest:
4, 6, 6, 11, 12, 13, 13, 13, 14
Next, we calculate the first quartile (Q1) and the third quartile (Q3).
Q1 is the median of the lower half of the data set. Since there are 9 numbers, the lower half consists of the first four numbers: 4, 6, 6, 11. The median of these numbers is the average of the middle two, which is (6 + 6) / 2 = 6.
Q3 is the median of the upper half of the data set. The upper half consists of the last four numbers: 12, 13, 13, 14. The median of these numbers is the average of the middle two, which is (13 + 13) / 2 = 13.
Now that we have Q1 = 6 and Q3 = 13, we can calculate the interquartile range (IQR) as the difference between Q3 and Q1:
IQR = Q3 - Q1 = 13 - 6 = 7
Therefore, the interquartile range of the given data set is 7.
Learn more about the interquartile range here:
https://brainly.com/question/29173399
#SPJ1
Evaluate and simplify the expression g(a+5) - g(5) completely when g(t)=2t^2.
Answer:
The simplified expression for g(a+5) - g(5) is 2a^2 + 20a.
Step-by-step explanation:
To evaluate and simplify the expression g(a+5) - g(5), we need to substitute the function g(t) = 2t^2 into the given expression.
Let's start by evaluating g(a+5):
g(a+5) = 2(a+5)^2
Expanding the expression:
g(a+5) = 2(a^2 + 10a + 25)
g(a+5) = 2a^2 + 20a + 50
Next, let's evaluate g(5):
g(5) = 2(5)^2
g(5) = 2(25)
g(5) = 50
Now we can substitute these values back into the expression g(a+5) - g(5):
g(a+5) - g(5) = (2a^2 + 20a + 50) - 50
Simplifying:
g(a+5) - g(5) = 2a^2 + 20a
Therefore, the simplified expression for g(a+5) - g(5) is 2a^2 + 20a.
For more questions on simplified expression
https://brainly.com/question/13790968
#SPJ11
factorise fully:
1) 2014² - 2013²
please explain and help
Which of the following could be used to calculate the area of the sector in the circle shown above?
The area of the sector in the circle shown above is given as follows:
32.3 in².
How to calculate the area of a circle?The area of a circle of radius r is given by the multiplication of π and the radius squared, as follows:
A = πr²
The radius of a circle represents the distance between the center of the circle and a point on the circumference of the circle, hence it is given as follows:
r = 10 in.
Then the area of the entire circle is given as follows:
A = π x 10²
A = 314 in².
The entire circumference of the circle is of 360º, while the angle is of 37º, hence the area of the sector is given as follows:
37/360 x 314 = 32.3 in².
More can be learned about the area of a circle at https://brainly.com/question/15673093
#SPJ1
Sofia and ella are both writing expressions to calculate the surface area of a rectangular prism however they wrote different expressions.
a. examine the expressions below, and determine if they represent the same value. explain why or why not.
sofia's expression
(3 cm x 4 cm ) + (3 cm x 5 cm) + (4 cm x 5 cm) + (4 cm x 5 cm)
ella's expression:
2(3 cm x 4 cm) + 2(3 cm x 5 cm) + 2(4 cm x 5 cm)
b. what fact about the surface area of a rectangular prism does ella's expression show more clearly than sofia's?
a) The two expressions do not represent the same value. b) the surface area of a rectangular prism consists of the sum of the areas of all its faces. By doubling the areas of each face
Answers to the aforementioned questionsa. To determine if Sofia and Ella's expressions represent the same value for the surface area of a rectangular prism, we can simplify their expressions and compare them.
Sofia's expression: (3 cm x 4 cm) + (3 cm x 5 cm) + (4 cm x 5 cm) + (4 cm x 5 cm)
= 12 cm² + 15 cm² + 20 cm² + 20 cm²
= 67 cm²
Ella's expression: 2(3 cm x 4 cm) + 2(3 cm x 5 cm) + 2(4 cm x 5 cm)
= 2(12 cm²) + 2(15 cm²) + 2(20 cm²)
= 24 cm² + 30 cm² + 40 cm²
= 94 cm²
The two expressions do not represent the same value. Sofia's expression calculates the surface area by adding the areas of each face once, while Ella's expression calculates the surface area by doubling the areas of each face and then summing them up.
b. Ella's expression, 2(3 cm x 4 cm) + 2(3 cm x 5 cm) + 2(4 cm x 5 cm), shows more clearly the fact that the surface area of a rectangular prism consists of the sum of the areas of all its faces. By doubling the areas of each face
Learn more about surface area at https://brainly.com/question/16519513
#SPJ1
Which function has a greater output value for x = 10? Explain your reasoning.
The function that has a greater output value for x = 10 is table B
How to determine which function has a greater output value for x = 10?From the question, we have the following parameters that can be used in our computation:
The table of values
The table A is a linear function with
A(x) = 1 + 0.3x
The table B is an exponential function with the equation
B(x) = 1.3ˣ
When x = 10, we have
A(10) = 1 + 0.3 * 10 = 4
B(10) = 1.3¹⁰ = 13.79
13.79 is greater than 4
Hence, the function that has a greater output value for x = 10 is table B
Read more about function at
https://brainly.com/question/27915724
#SPJ1