Peter and Myra are on their school's activity planning committee. They are polling each
homeroom class to find how many students are in after-school clubs. In Peter's class, 9 out of
the 20 students are in clubs. In Myra's class, 12 out of the 24 students are in clubs. Do the
two classes have the same ratio of students in clubs to total students?
yes
No

Answers

Answer 1

Answer: No

Step-by-step explanation: because 12 out of 24 is 1/2 while 9/20 is a bit off of one half therefore no

Answer 2
No cause if you simplify 12/24 it’s 1/2 and 9/20 can’t be simplified (not the same ratio)

Related Questions

Solve:

2a + 6 = 12

a =

Answers

Answer:

8

Step-by-step explanation:

because hhhhhh

gghhhh

jkkkkk

lllll

vvvvv

dddfff

oooooo

eeeerer

kkkkkk

lllll.ssss

x =_______ y =_______ 12. Find the values of x and y.

Answers

Answer:

Below in bold.

Step-by-step explanation:

Opposite  angles of a quadrilateral i a circle are supplementary so

x = 180 - 112 = 68 degrees.

y  = 180 - 81 = 99 degrees.

Assume that y varies directly with x. If y = 24 when
x = 6, find y when x = -4.
y=
Check

Answers

Step-by-step explanation:

that means nothing else than

y = k×x

24 = k×6

k = 24/6 = 4

y = k×-4 = 4×-4 = -16

Study the illustration. Write the ratio
of flowers to bees. Complete the sentence.
For every 5 flowers there are _______
bees.

Answers

Answer: 6 bees

Step-by-step explanation:

The picture has 12 bees and 10 flowers. Thus, the ratio of flowers to bees is 10 to 12, which simplifies to 5 to 6.

Therefore, for every 5 flowers, there are 6 bees.

What is the remainder when f(x) = 2x^3 – 12x^2 + 11x + 2 is divided by x – 5? Show your work.

Answers

Answer:

7

Step-by-step explanation:

given a polynomial divide by (x - a) then the remainder is f(a)

here f(x) is divided by (x - 5) , so remainder is

f(5) = 2(5)³ - 12(5)² + 11(5) + 2

     = 2(125) - 12(25) + 55 + 2

     = 250 - 300 + 57

     = - 50 + 57

    = 7

 

A sphere and a cylinder have the same radius and height. The volume of the cylinder is . Amie found the volume of the sphere. Her work is shown below. What is Amies error

Answers

Amie's error while measuring the volume of a sphere is that Amie should have multiplied 54 by 2/3. Thus, the first option is the right choice.

In the question, we are given that a sphere and a cylinder have the same radius and height.

We assume the radius of the sphere to be r, and its height to be h.

Now, the height of a sphere is its diameter, which is twice the radius.

Thus, the height of the sphere, h = 2r

Given that the sphere and the cylinder have the same radius and height, the radius of the cylinder is r, and its height is 2r.

The volume of a sphere is given by the formula, V = (4/3)πr³, where V is its volume, and r is its radius.

Thus, the volume of the given sphere using the formula is (4/3)πr³.

The volume of a cylinder is given by the formula, V = πr²h, where V is its volume, r is its radius, and h is its height.

Thus, the volume of the given cylinder using the formula is πr²(2r) = 2πr³.

Now, to compare the two volumes we take their ratios, as

Volume of the sphere/Volume of the cylinder

= {(4/3)πr³}/{2πr³}

= 2/3.

Thus, the volume of the sphere/the volume of the cylinder = 2/3,

or, the volume of the sphere = (2/3)*the volume of the cylinder.

Given the volume of the cylinder to be 54 m³, Amie should have multiplied 54 by 2/3 instead of adding the two.

Thus, Amie's error while measuring the volume of a sphere is that Amie should have multiplied 54 by 2/3. Thus, the first option is the right choice.

Learn more about volumes at

https://brainly.com/question/12398192

#SPJ4

For the complete question, refer to the attachment.

The random variable x represents the number of computers that families have along with the corresponding probabilities. Find the mean and standard deviation for the random variable x. Group of answer choices mean: 1.39; standard deviation: 0.80 mean: 1.18; standard deviation: 0.64 mean: 1.39; standard deviation: 0.64 mean: 1.18; standard deviation: 1.30

Answers

The value of the Mean & Standard deviation is 1.30 and 1.18.

According to the statement

we have a given that the random variable x represents the number of computers that families have along with the corresponding probabilities.

And we have to find the mean and standard deviation from the given data which is related to the probabilities values

So, according to the given data

The formula to compute the mean is:

Mean = summation [x*p(x)]

Compute the mean as follows:

Mean = summation [x*p(x)]

Mean = summation [0*0.49 + 1* 0.05 + 2*0.32 + 3*0.07 + 4*0.07]

Mean = 0 +0.05 + 0.64 + 0.21 + 0.28

Mean = 1.18

The mean of the random variable x is 1.18.

And after calculating the variance from the formula get

The value of standard deviation is 1.30

So, The value of the Mean & Standard deviation is 1.30 and 1.18.

Learn more about mean and standard deviation here https://brainly.com/question/14650840

#SPJ4

Which of the following is an equivalent form of the equation of the graph shown in the xyxyx, y-plane above, from which the coordinates of vertex AAA can be identified as constants in the equation

Answers

The equivalent form of the equation y=[tex]x^{2} -2x-15[/tex]given is y=(x+3)(x-5).

Given an equation y=[tex]x^{2}[/tex]-2x-15 and we are required to find the equivalent form of the equation.

Equation is like a relationship between two or more variables that are expressed in equal to form. Equation of two variables look like ax+by=c. It may be linear equation, quadratic equation, cubic equation or any other equation  depending on the powers of the variable.

To find the equivalent equations we are required to form factors of the equation. Equivalent equation are those equations which when solved gives the same solution as the equation when solved gives.

y=[tex]x^{2}[/tex]-2x-15

y=[tex]x^{2}[/tex]-5x+3x-15

y=x(x-5)+3(x-5)

y=(x+3)(x-5)

Hence the equivalent form of the equation y= [tex]x^{2}[/tex]-2x-15 given is

y=(x+3)(x-5).

Learn more about equation at https://brainly.com/question/2972832

#SPJ4

Question is incomplete as question should includes the equation

y= [tex]x^{2}[/tex]-2x-15.

Which triangles are similar to ABC? Explain.

Answers

NMP, the mesures of the sides of NMP are half the length of the mesures of the sides on ABC

Answer: △JKL & △ MNP

Step-by-step explanation:

△JKL is similar because:

5 x 1.6 = 8

2.5 x 1.6 = 4

3.75 x 1.6 = 6

△MNP is also similar because:

4 x 2 = 8

2 x 2 = 4

3 x 2 = 6

Which graph models the pH of this solution?

Answers

The graph that models the pH of this solution is graph A.

What is a graph?

It should be noted that a graph is a diagram such as a series of one or more points, lines, line segments, curves, or areas which represents the variation of a variable in comparison with that of one or more other variables.

The pH is a measure of how acidic or basic water is. It should be noted that the range goes from 0 - 14, with 7 being neutral. The pHs of less than 7 indicate acidity, while a pH of greater than 7 indicates a base. The pH is really a measure of the relative amount of free hydrogen and hydroxyl ions that are in the water.

In this case, x represents the concentration of the hydrogen ions. The first graph illustrates this.

Learn more about graph on:

https://brainly.com/question/19040584

#SPJ1

Complete question:

The ph of a particular solution is given by pH=-log(x-2) where x represents the concentration of the hydrogen ions in the solution in moles per liter. Which graph models the ph of this solution?

You work at a pioneer historical site. On this site you have handcarts. One cart has a handle that connects to the center of the wheel. We have to maintain the handle of the cart at an angle of no more than 20° with the ground so the contents do not spill out. The distance from where the handle rests on the ground to the point where the wheel is sitting on the ground is 45 inches. The distance of the center of the wheel to the end of the handle is approximately 48 inches.



a. Identify the parts of the handcart wheel that would represent congruent chords and congruent central angles. Explain why.
b. Find the radius of the wheel.
c. If the measure of the arc from to around the outside of the wheel were changed to 72°, what is the new angle the handle makes with the ground? Will the contents remain in the handcart at that angle? Will the handle rest on the ground?
d. If a pioneer pulling the handcart held the handle at a height of 48 inches off the ground, would the contents of the cart spill out the back? How high can the pioneer lift the handle off the ground before the contents started spilling out?

Answers

Answer:

a)  see below

b)  radius = 16.4 in (1 d.p.)

c)  18°. Yes contents will remain. No, handle will not rest on the ground.

d)  Yes contents would spill.  Max height of handle = 32.8 in (1 d.p.)

Step-by-step explanation:

Part a

A chord is a line segment with endpoints on the circumference of the circle.  

The diameter is a chord that passes through the center of a circle.

Therefore, the spokes passing through the center of the wheel are congruent chords.

The spokes on the wheel represent the radii of the circle.  Spokes on a wheel are usually evenly spaced, therefore the congruent central angles are the angles formed when two spokes meet at the center of the wheel.

Part b

The tangent of a circle is always perpendicular to the radius.

The tangent to the wheel touches the wheel at point B on the diagram.  The radius is at a right angle to this tangent.  Therefore, we can model this as a right triangle and use the tan trigonometric ratio to calculate the radius of the wheel (see attached diagram 1).

[tex]\sf \tan(\theta)=\dfrac{O}{A}[/tex]

where:

[tex]\theta[/tex] is the angleO is the side opposite the angleA is the side adjacent the angle

Given:

[tex]\theta[/tex] = 20°O = radius (r)A = 45 in

Substituting the given values into the tan trig ratio:

[tex]\implies \sf \tan(20^{\circ})=\dfrac{r}{45}[/tex]

[tex]\implies \sf r=45\tan(20^{\circ})[/tex]

[tex]\implies \sf r=16.37866054...[/tex]

Therefore, the radius is 16.4 in (1 d.p.).

Part c

The measure of an angle formed by a secant and a tangent from a point outside the circle is half the difference of the measures of the intercepted arcs.

If the measure of the arc AB was changed to 72°, then the other intercepted arc would be 180° - 72° = 108° (since AC is the diameter).

[tex]\implies \sf new\: angle=\dfrac{108^{\circ}-72^{\circ}}{2}=18^{\circ}[/tex]

As the handle of the cart needs to be no more than 20° with the ground for the contents not to spill out, the contents will remain in the handcart at an angle of 18°.

The handle will not rest of the ground (see attached diagram 2).

Part d

This can be modeled as a right triangle (see diagram 3), with:

height = (48 - r) inhypotenuse ≈ 48 in

Use the sin trig ratio to find the angle the handle makes with the horizontal:

[tex]\implies \sf \sin (\theta)=\dfrac{O}{H}[/tex]

[tex]\implies \sf \sin (\theta)=\dfrac{48-r}{48}[/tex]

[tex]\implies \sf \sin (\theta)=\dfrac{48-45\tan(20^{\circ})}{48}[/tex]

[tex]\implies \theta = 41.2^{\circ}\:\sf(1\:d.p.)[/tex]

As 41.2° > 20° the contents will spill out the back.

To find the maximum height of the handle from the ground before the contents start spilling out, find the height from center of the wheel (setting the angle to its maximum of 20°):

[tex]\implies \sin(20^{\circ})=\dfrac{h}{48}[/tex]

[tex]\implies h=48\sin(20^{\circ})[/tex]

Then add it to the radius:

[tex]\implies \sf max\:height=48\sin(20^{\circ})+45\tan(20^{\circ})=32.8\:in\:(1\:d.p.)[/tex]

(see diagram 4)

------------------------------------------------------------------------------------------

Circle Theorem vocabulary

Secant: a straight line that intersects a circle at two points.

Arc: the curve between two points on the circumference of a circle

Intercepted arc: the curve between the two points where two chords or line segments (that meet at one point on the other side of the circle) intercept the circumference of a circle.

Tangent: a straight line that touches a circle at only one point.

See photo to answer!

Answers

The length of AB of the triangle is 13 units.

How to find the side of a triangle?

The side AB of the triangle can be found using cosine law,

Therefore,

c² = a² + b² - 2ab cos C

c² = 7² +  8² - 2 × 7 × 8 cos 120

c² = 49 + 64 - 112 cos 120

c²= 113 - (-56)

c² = 113 + 56

c² = 169

c = √169

c = 13 units

Therefore, the value of AB is 13 units

learn more on triangle here: https://brainly.com/question/3642070

#SPJ1

Consider the following pair of equations:

y = x + 4
y = −2x − 2

Explain how you will solve the pair of equations by substitution. Show all the steps and write the solution in (x, y) form.

Source
StylesFormatFontSize

Answers

Answer:

(-2, 2)

Step-by-step explanation:

Given system of equations:

[tex]\begin{cases}y=x+4\\y=-2x-2 \end{cases}[/tex]

To solve by substitution, substitute the first equation into the second equation:

[tex]\implies x+4=-2x-2[/tex]

Add 2x to both sides:

[tex]\implies x+4+2x=-2x-2+2x[/tex]

[tex]\implies 3x+4=-2[/tex]

Subtract 4 from both sides:

[tex]\implies 3x+4-4=-2-4[/tex]

[tex]\implies 3x=-6[/tex]

Divide both sides by 3:

[tex]\implies \dfrac{3x}{3}=\dfrac{-6}{3}[/tex]

[tex]\implies x=-2[/tex]

Substitute the found value of x into the first equation and solve for y:

[tex]\implies y=-2+4[/tex]

[tex]\implies y=2[/tex]

Therefore, the solution to the given system of equations is (-2, 2).

Learn more about systems of equations here:

https://brainly.com/question/27868619

https://brainly.com/question/27868564

Substitute y value from first eqn in second equation

y=-2x-2x+4=-2x-23x=-6x=-2

Put in first one

y=-2+4=2

(-2,2) is the solution

Please please help me. It’s due right now! it would mean a lot :))<3 Pls show work!!!

Answers

Answer: 9 triangles.

Step-by-step explanation:

Just make a dot in the middle and make lines and connect each line to an edge or bend.

Y=16 x 10^8k , where k is an integer. find an expression, in terms of k , for y^5/4

Answers

The requried simplified expression for  [tex]y^{5/4}[/tex]  is given by [tex]y^{5/4}= 32 * 10^{10k}[/tex]

To find an expression for [tex]y^{5/4}[/tex] in terms of k, we'll substitute the given value of y into the expression and then apply the exponent (5/4).

Given: [tex]y = 16 *10^{8k}[/tex]

Now, let's calculate [tex]y^{5/4}[/tex]:

[tex]y^{5/4} = (16 *10^{8k})^{5/4}[/tex]

To apply the exponent (5/4), we raise each factor to the power of (5/4):

[tex]y^{5/4}= 16^{5/4} * (10^{8k})^{5/4}[/tex]

Since [tex](10^8)^k[/tex] is [tex]10^{(8k)}[/tex], we have:

[tex]y^{5/4}= 16^{5/4}* 10^{8k * 5/4)[/tex]

[tex]y = 16*10^{8k}[/tex]

[tex]y^{5/4}= 2^5 * 10^{10k}[/tex]

Finally, we can write the expression in terms of k:

[tex]y^{5/4}= 32 * 10^{10k}[/tex]

Learn more about expression here:
https://brainly.com/question/17808599

#SPJ4

If 3 square feet of fabric costs $3.75. what would 7 square feet cost?

Answers

Answer:

8.75

Step-by-step explanation:

3.75/3=1.25

1.25=1 square feet

1.25(7)=8.75

For the geometric series 1 - 2/3 + 4/9 - 8/27....
find s8

Answers

Answer:

Step-by-step explanation:

The sum of an alternating geometric series SUM((-1)^n*ar^n) = a/(1+r). The given series has r=2/3 and a=1. The sum will be 1/(1+2/3)= 3/5

Hello,

We have s0 = 1 and q = -2/3

[tex]S _{n} = S _{0} \times q {}^{n} = 1 \times ( - \frac{2}{3} ) {}^{n} [/tex]

[tex]S _{8} = ( - \frac{2}{3} ) {}^{8} = \frac{2 {}^{8} }{3 {}^{8} } = \frac{256}{6 561} [/tex]

Write y=5x-9 in standard form
Will give brainliest!

Answers

Answer:

5x - y = 9

Step-by-step explanation:

the equation of a line in standard form is

Ax + By = C ( A is a positive integer and B, C are integers )

given

y = 5x - 9 ( subtract 5x from both sides )

- 5x + y = - 9 ( multiply through by - 1 )

5x - y = 9 ← in standard form

2+8+32+128…..,n=9
Evaluate each geometric series described

Answers

The value of 2+8+32+128…..,n=9 is 174762

How to evaluate the series?

The series is given as:

2+8+32+128…..,n=9

Start by calculating the common ratio (r)

r = 8/2

r = 4

The sum of the series is then calculated as:

[tex]S_n = \frac{a *(r^n - 1)}{r -1}[/tex]

This gives

[tex]S_9 = \frac{2 *(4^9 - 1)}{4 -1}[/tex]

Evaluate the difference

[tex]S_9 = \frac{2 *( 262143)}{3}[/tex]

Evaluate the quotient

[tex]S_9 = 174762[/tex]

Hence, the value of 2+8+32+128…..,n=9 is 174762

Read more about series at:

https://brainly.com/question/7882626

#SPJ1

The quadratic parent function has been reflected down, stretched vertically by a factor of 1/3

Answers

1a) f(x) = -1/3(x + 12)² + 9

1b) f(x) = -1/3x² - 8x - 39

Lets simplify it,

Expand by FOIL (First Outside Inside Last)

Standard Form: ax² + bx + c = 0

Transformations Graph: f(x) = a(bx - c)² + d

Reflected down and vertically stretched by 1/3:   a = -1/3

Shifted vertically by 9 units:   d = 9

Shifted horizontally by -12 units:   c = -12

Vertex Form:

 f(x) = a(bx - c)² + d

 f(x) = -1/3(x + 12)² + 9

Standard Form:

f(x) = -1/3(x + 12)² + 9

f(x) = -1/3(x² + 24x + 144) + 9

f(x) = -1/3x² - 8x - 48 + 9

f(x) = -1/3x² - 8x - 39

Learn more about Quadratic Function on:

https://brainly.com/question/11064204

#SPJ4

A population of a particular yeast cell develops with a constant relative growth rate of 0.4311 per hour. The initial population consists of 3.9 million cells. Find the population size (in millions of cells) after 5 hours. (Round your answer to one decimal place.)

Answers

A population of a particular yeast cell develops with a constant relative growth rate of [tex]0.4311[/tex] per hour. The initial population consists of [tex]3.9[/tex]million cells. Find the population size (in millions of cells) after 5 hours. Population size after [tex]5hrs[/tex]  is  [tex]33.6million[/tex].

How can we find the population size ?

The projection of population growth in yeast is given by

[tex]N=N_{0} e^{rt}[/tex]

Where [tex]N_{0}[/tex]=initial population which is [tex]3.9million[/tex]

[tex]r[/tex]=intrinsic rate of natural increases which is [tex]0.4311million per hour[/tex]

N is population size

Substitute the values

[tex]N=N_{0} e^{rt}\\N=3.9(e^{0.4311*5} )\\\\N=33.6 million[/tex]

Learn more about population size here :

https://brainly.com/question/28045705

#SPJ4

Select the correct answer.
Which statement correctly compares functions f and g?

Answers

i think the answer is c

Answer:

C

Step-by-step explanation:

Exponential functions have 2 things in common

-They increase infinitely once they approach a certain point

-They don't decrease anymore once they approach a certain point


A chemist wants to make 45 ml of a 17% acid solution by mixing a 13% acid solution and a 19 % acid solution. How many milliliters of each solution should the chemist use?

Answers

Answer:

22 millilitres of 13% solution

23 millilitres of 19% solution

Step-by-step explanation:

A + B = 45

13A + 19B = 45 x 17 = 765

-13A - 13B + 13A + 19B = -650 + 765 = 115

5B = 115

B = 23

22 + 23 = 45

A = 22

Help all of these are confusing me

Answers

Answer:

see explanation

Step-by-step explanation:

the equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k ) are the coordinates of the vertex and a is a multiplier

here (h, k ) = (1, - 4 ) and a = 1 , then

y = (x - 1)² - 4 → b

------------------------------------

given 3 sides of a triangle then an angle may be found using the cosine law. → b

if the 3 sides are a, b, c then

cosA = [tex]\frac{b^2+c^2-a^2}{2bc}[/tex] ← allowing ∠ A to be found

--------------------------------------

cosC = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{4}{5}[/tex] → a

-----------------------------------------

since the triangles are similar then the ratios of corresponding sides are in proportion, that is

[tex]\frac{AB}{DE}[/tex] = [tex]\frac{BC}{EF}[/tex] ( substitute values )

[tex]\frac{x}{6}[/tex] = [tex]\frac{10}{4}[/tex] ( cross- multiply )

4x = 6 × 10 = 60 ( divide both sides by 4 )

x = 15 → b

Answer:

bbab

Step-by-step explanation:

There are a few algebraic, geometric, and trig relations you are expected to remember. These come into play in this set of questions.

vertex form for equation of a parabola: y = a(x -h)² +k, has vertex at (h, k)Sine Law relates triangle sides and their opposite angles: a/sin(A) = b/sin(B)Cosine Law relates triangle sides and the angle between two of them: c² = a² +b² -2ab·cos(C)SOH CAH TOA reminds you of trig relations in a right trianglerelationships of corresponding sides and angles in congruent and similar triangles: angles are congruent; sides are congruent or proportional.

When solving any problem, the first step is to understand what is being asked. The second step is to identify the relevant information and relationships that can help you answer.

1)

You are asked for the equation of a parabola with a given vertex. The vertex form equation will be useful. We can assume a scale factor ('a') of 1.

For vertex (h, k) = (1, -4) and a=1, the vertex form equation is ...

  y = a(x -h)² +k

  y = 1(x -1)² +(-4)

  y = (x -1)² -4

2)

You are given 3 sides and want to find an angle. The useful relation in this case is the Cosine Law. (If you wanted to use the Sine Law, you would already need to know an angle.)

3)

The mnemonic SOA CAH TOA reminds you that the cosine relation is ...

  Cos = Adjacent/Hypotenuse

The side adjacent to angle C is marked 4; the hypotenuse is marked 5. The desired ratio is ...

  cos(C) = 4/5

4)

The measure x is also the measure of side AB. The similarity statement lists those letters as the first two. It also lists the letters DE as the first two. The other given side in ΔABC is BC, corresponding to side EF in the smaller triangle. Corresponding sides are proportional, so we have ...

  AB/DE = BC/EF

  x/6 = 10/4

We can find the value of x by multiplying this equation by 6:

  x = 6(10/4) = 60/4

  x = 15

Please note that BC is the shortest side in ΔABC. This means x > 10. There is only one such answer choice. (No math necessary.)

HELP, WILL GIVE BRAINLEST..
Factor the GCF: -6x³y + 9x²y2 - 12xy³ (5 points)
O 3xy(-2x² + 3xy - 4y²)
O-3xy(2x² + 3xy - 4y²)
O-3xy(2x2-3xy + 4y²)
O-3(2x³y - 3x²y² + 4xy³)

Answers

Answer:

[tex]\sf -3xy\left(2x^2-3xy+4y^2\right)[/tex]

Step-by-step explanation:

[tex]\sf -6x^3y+9x^2y^2-12xy^3[/tex]

To factor the GCF of 6x³y + 9x²y2 - 12xy³ let's apply the exponent rule:-

[tex]\boxed{\sf a^{b+c}=a^ba^c}[/tex]

[tex]\boxed{\sf x^3y=xx^2y,\:x^2y^2=xxyy,\:xy^3=xyy^2}[/tex]

[tex]\sf -6xx^2y+9xxyy-12xyy^2[/tex]

Rewrite,

-6 as 2 * 39 as 3 * 3-12 as 4 * 3

[tex]\sf 2\cdot \:3xx^2y+3\cdot \:3xxyy+4\cdot \:3xyy^2[/tex]

Now, factor out the common term [tex]\sf -3xy[/tex]:-

[tex]\sf -3xy\left(2x^2-3xy+4y^2\right)[/tex]

__________________________

Anthony is rowing a boat upstream. The following equation models his speed: f(x) = 3x2 − 6x − 13, where x is the velocity of the boat relative to land. What is the domain of the function?

Answers

The domain of f(x) is all real numbers

Let k be a positive integer. In how many ways can one select three distinct numbers from the set {1,2,..., 3k} such that their sum is divisible by 3

Answers

Reduce the numbers in the list modulo 3 to get the set

{1, 2, 0, 1, 2, 0, …, 1, 2, 0}

containing [tex]k[/tex] copies each of 1, 2, and 0.

Take any 3 elements from the list. Their sum is divisible by 3 if those elements' residues also sum to 3 ≡ 0 (mod 3). To get a sum of 0, we must make one of the following choices:

3 elements each with the same residue, so

0 + 0 + 0 ≡ 0 (mod 3)

1 + 1 + 1 ≡ 3 ≡ 0 (mod 3)

2 + 2 + 2 ≡ 6 ≡ 0 (mod 3)

1 element each with different residues, so

0 + 1 + 2 ≡ 3 ≡ 0 (mod 3)

There are

[tex]\dbinom k3 \dbinom k0 \dbinom k0 = \dfrac{k(k-1)(k-2)}6[/tex]

ways of choosing 3 elements with a given residue and 0 elements with any other residue, hence

[tex]3\dbinom k3\dbinom k0\dbinom k0 = \dfrac{k(k-1)(k-2)}2[/tex]

ways of choosing any 3 elements with the same residue, and there are

[tex]\dbinom k1 \dbinom k1 \dbinom k1 = k^3[/tex]

ways of choosing any 3 elements with distinct residues.

So, the total number of ways of making the selection is

[tex]3\dbinom k3\dbinom k0^2 + \dbinom k1^3 = \boxed{\dfrac32 k^3 - \dfrac32 k^2 - k}[/tex]

Question 6
10 pts
Which is a counterexample for the following biconditional: "A figure is a quadrilateral if and only if it
is a polygon"?

Answers

Answer:

Trapezium, Rhombus, Kite, etc.

Step-by-step explanation:

A four - sided figure.

The name of a counterexample for the following biconditional: "A figure is a quadrilateral if and only if it is a polygon" is Triangle.

Used the concept of the polygon that states,

In geometry, a polygon can be defined as a flat or plane, two-dimensional closed shape bounded by straight sides.

Given the condition is,

"A figure is a quadrilateral if and only if it is a polygon"

Now, we know that;

If a polygon is a quadrilateral, then it has four sides, and if a polygon has four sides, then it is a quadrilateral.

Hence, Triangle is a counterexample for the biconditional "A figure is a quadrilateral if and only if it is a polygon."

To learn more about quadrilaterals visit:

https://brainly.com/question/11037270

#SPJ7

Someone please help meeeeeee

Answers

Answer:

a ≈ 16.5 cm , b ≈ 23.8 cm

Step-by-step explanation:

using the Law of Sines in Δ ABC

[tex]\frac{a}{sinA}[/tex] = [tex]\frac{b}{sinB}[/tex] = [tex]\frac{c}{sinC}[/tex]

we require to calculate ∠ C

∠ C = 180° - (42 + 75)° = 180° - 117° = 63°

Then to find a

[tex]\frac{a}{sinA}[/tex] = [tex]\frac{c}{sinC}[/tex] ( substitute values )

[tex]\frac{a}{sin42}[/tex] = [tex]\frac{22}{sin63}[/tex] ( cross- multiply )

a × sin63° = 22 × sin42° ( divide both sides by sin63° )

a = [tex]\frac{22sin42}{sin63}[/tex] ≈ 16.5 cm ( to the nearest tenth )

similarly to find b

[tex]\frac{b}{sinB}[/tex] = [tex]\frac{c}{sinC}[/tex] ( substitute values )

[tex]\frac{b}{sin75}[/tex] = [tex]\frac{22}{sin63}[/tex] ( cross- multiply )

b × sin63° = 22 × sin75° ( divide both sides by sin63° )

b = [tex]\frac{22sin75}{sin63}[/tex] ≈ 23.8 cm ( to the nearest tenth )

Answer:

Step-by-step explanation:

Sine rule of Law of sine:

    [tex]\sf \boxed{\bf\dfrac{a}{Sin \ A}=\dfrac{b}{Sin \ B}=\dfrac{c}{Sin \ C}}[/tex]

Side 'a' faces ∠A.

Side 'b' faces ∠B.

Side 'c' faces ∠C.

We have to find ∠C using angle sum property of triangle.

  ∠C + 75 + 42 = 180

         ∠C +117   = 180

                  ∠C  = 180 - 117

                 ∠C = 63°

[tex]\sf \dfrac{a}{Sin \ 42}= \dfrac{22}{Sin \ 63}\\\\ \dfrac{a}{0.67}=\dfrac{22}{0.89}\\\\[/tex]

   [tex]\sf a = \dfrac{22}{0.89}*0.67\\\\ \boxed{a = 16.56 \ cm }[/tex]

                        [tex]\sf \dfrac{b}{Sin \ B} = \dfrac{c}{Sin \ C}\\\\ \dfrac{b}{Sin \ 75}=\dfrac{22}{Sin 63}\\\\ \dfrac{b}{0.97} =\dfrac{22}{0.89}\\\\[/tex]

                             [tex]\sf b = \dfrac{22}{0.89}*0.97\\\\ \boxed{b =23.98 \ cm }[/tex]

                       

Given the right triangle, use the pythagorean theorem to find "a" (one of the legs) when c=85 and b= 53. (round answer to nearest tenth).

Answers

Answer:

a= 100.2

Step-by-step explanation:

You solve it like you ate looking for the hypotenuse

Other Questions
A polygon is shown below . Write down the sum of its exterior angles. Work out the size of angle x A sample of helium gas has a volume of 1.20 L More helium is added with no change in temperature or pressure until the final volume is 600 L. By what factor did the number of moles of helium change? increase to 4 times the original number of moles decrease to % of the original number of moles increase to 6 times the original number of moles increase to 5 times the original number of moles decrease to % of the original number of moles Caroline earn . 40 points for writing an essay on a test she also earns three points for every question ,q, she answered correctly what expression can be used to find how many points Caroline earned on the test pls help lol my grades a 62 rn & grades are almost due ! Calculate the adiabatic flame temperature of CH4(g) at 1 atm when burned with 10% excess air. The air enters at 25C and the CH4 at 300K. The reaction is: CH_(g) + 202(g) CO2(g) + 2H2O(g) for the given waveform: a) find the average voltage value b) if this voltage is applied to a 2 m resistor determine the range (min/max) of applied current all of the following are reported as current liabilities except group of answer choices accounts payable. bonds payable. notes payable. unearned revenues. what is the product of the dieckmann condensation of this diester 19 . find the particular solution to the differential equation y=3x3 that passes through (1,4.75), given that y=c 3x44 is a general solution. A charge of 0. 05 C moves a negative charge upward due to a 2 N force exerted by an electric field. What is the magnitude and direction of the electric field? 0. 03 upward 0. 03 downward 40 upward 40 downward. If bonds are issued at a discount, the stated interest rate is: a. higher than the market rate of interest. b. lower than the market rate of interest. c. too low to attract investors. d. adjusted to a lower rate of interest. A circle with a center of (0, 0) and passes through (0, -3). find the area and circumferences of this circle calculate g at 298 k for the following reactions.2kclo3(s)2kcl(s) 3o2(g) A slingshot is used to launch a stone horizontally from the top of a 20. 0 meter cliff. The stone lands 36. 0 meters away You and your friend including Rahul are on the Juhu beach mumbai. You are discussing about the hot weather at Mumbai and cold weather at mahabaleshvar and Panchgani. Write a short group discussion must you and your friend. You are Sumit. Write your answer in eight to ten dialogue A large reflecting telescope has an objective mirror with a 10.0m radius of curvature. What angular magnification does it produce when a 3.00 m focal length eyepiece is used? Draw a sketch to explain your answer. In insects, an exoskeleton is the first physical barrier against pathogens. The digestive system is protected by lysozyme, a(n) enzyme that breaks down bacterial cell walls and acts as a antibodies barrier. The major immune cells are called hemocytes, which carry out phagocytosis and cam secrete antimicrobial peptides. If the pie maker bakes a seventh pie? The marginal cost will most likely decrease to $1. 00 The marginal cost will most likely increase to $2. 00 The marginal revenue will most likely decrease to $8. 0. The marginal revenue will most likely increase to $12. 0. Given the Recursive Binary Search method below:public static int recursiveBinarySearch (int[] array, int target, int start, int end)int middle = (start + end)/2;if (target == array [middle]) {return middle;}if (end start) {return -1; // not found} if (target < array [middle]) {return recursiveBinarySearch (array, target, start,}middle 1);if (target > array [middle]) {return recursiveBinarySearch (array, target, middle + 1,end);}return -1;}Suppose array is initialized to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Complete the trace table for the method call recursiveBinarySearch (array, 3, 0, 9); (indicated by rBS (a,3,0,9) in the trace table) calculate the taylor polynomials 2 and 3 centered at =0 for the function ()=7tan().