Answer:
17/9
Step-by-step explanation:
Plug in 1/3 as m.
2*(1/3)^2 - 4(1/3) + 3 = 17/9
Simplify the following
Answer:
[tex]6 + ( \frac{4}{3} + ( \frac{5}{6} - \frac{1}{3} ))[/tex]
[tex] = 6 + ( \frac{4}{3} + ( \frac{5 - 2}{6})) [/tex]
[tex] = 6 + ( \frac{4}{3} + \frac{3}{6})[/tex]
[tex] = 6 + ( \frac{8 + 3}{6})[/tex]
[tex] = 6 + \frac{11}{6} [/tex]
[tex] = \frac{6}{1 } + \frac{11}{6} [/tex]
[tex] = \frac{36 + 11}{6} [/tex]
[tex] = \frac{47}{6} [/tex]
[tex] = 7 \frac{5}{6} [/tex]
Suppose we want to choose letters, without replacement, from distinct letters.
(a) If the order of the choices is relevant, how many ways can this be done?
(b) If the order of the choices is not relevant, how many ways can this be done?
The number of ways when the choice is not relevant is 1716
How to determine the number of ways?The number of letters are:
Letter, n = 13
The letter to choose are:
r = 6
Relevant choice
When the choice is relevant, we have:
[tex]Ways = ^nP_r[/tex]
This gives
[tex]Ways = ^{13}P_6[/tex]
Evaluate
Ways = 241235520
Hence, the number of ways when the choice is relevant is 1235520
Not relevant choice
When the choice is not relevant, we have:
[tex]Ways = ^nC_r[/tex]
This gives
[tex]Ways = ^{13}C_6[/tex]
Evaluate
Ways = 1716
Hence, the number of ways when the choice is not relevant is 1716
Read more about combination at:
https://brainly.com/question/11732255
#SPJ1
Let f(x) = 3x²+2, g(x) = 3x - 5. Find the following value or expression.
(fog)(x)
Answer:
(f∘g)(x) = 27x² -90x +77
Step-by-step explanation:
The composition of functions (f∘g)(x) is interpreted to mean f(g(x)). The value is found the way any function value is found. The argument is substituted for the variable in the function definition.
SubstitutionAfter substituting g(x) for the argument of f(x), the resulting expression can be simplified.
[tex](f\circ g)(x) =f(g(x))=f(3x-5)\\\\=3(3x-5)^2+2=3(9x^2-30x+25)+2\\\\\boxed{(f\circ g)(x)=27x^2-90x+77}[/tex]
NEED FAST AND CORRECT!! Use the box plots comparing the number of males and number
of females attending the latest superhero movie each day for a
month to answer the questions.
Males
10
H
Females
20
30
Part A: Describe the shape of each plot
Part B: What is the best measure of center for Males? Females?
How do you know?
Part C: What is the best measure of spread for Males? Females?
How do you know?
Part D: Provide a possible reason for the outlier in the data set. Table
The description of the box plots are as follows:
The Interquartile Range is given as 23; and the difference between the median values is 14What is the calculation for the above?IQR = 25 - 2
= 23
The difference between the median values
= 20 - 6
= 14
What are the respective best measure of center for males? females?The mean would be a better measure of center for Females because the data has no outliers.The median would be a better measure of center for Males because the data has outliers.What is the reason for the outlier in the data set?That female admires those movie stars and has a large group of pals with whom she goes out on a regular basis to keep them company.
Learn more about Box plot at;
https://brainly.com/question/14277132
#SPJ1
if x+4/4= y+3/3 then y/3=
The value of y / 3 in the equation is x / 4.
How to use equation to find y / 3 ?Therefore,
x + 4 / 4 = y + 3 / 3
then y / 3 can be found as follows,
x + 4 / 4 = x / 4 + 4 / 4 = x / 4 + 1
y + 3 / 3 = y / 3 + 3 / 3 = y / 3 + 1
x / 4 + 1 = y / 3 + 1
subtract 1 from both sides of the equation
x / 4 + 1 - 1 = y / 3 + 1 - 1
x / 4 = y / 3
learn more on equation here:https://brainly.com/question/12511311
#SPJ1
(x-1)^2 + (y-2)^2 = 6.25
Answer: The center of the circle will be (1,2) and the radius will be 2.5
Step-by-step explanation: Basically since its (x-1) it would become x=1 so that's ur first value same thign with y but that would be ur second value. And since in your equation it is 6.25 that would be 2.5 because 6.25 is r^2 and you are looking for r.
Ramon is six years younger than 4 times his brothers age. Oh f his brother is 5 year old, how old is Ramon
Answer:
14
Step-by-step explanation:
The equation would be R = 5(4) - 6. Multiply 5 by 4 to get 20, then subtract 6 to get 14.
A sample of 40 observations is selected from one population with a population standard deviation of 5. The sample mean is 102. A sample of 50 observations is selected from a second population with a population standard deviation of 6. The sample mean is 99. Conduct the following test of hypothesis using the .04 significance level.
Is this a one-tailed or a two-tailed test?
State the decision rule.
Compute the value of the test statistic.
What is your decision regarding H0?
What is the p-value?
1) This is a Two tailed Test.
2) Decision rule is; If the p-value is greater than 4% fail to reject H₀.
3) P-value = 0.00968764 and so we reject H₀
How to state the decision rule in hypothesis testing?We are given the hypothesis as;
Null Hypothesis; H₀: m₁ = m₂
Alternative Hypothesis; H₁: m₁ ≠ m₂
1) Since the alternative hypothesis has "not equal to sign", then it is a two tailed test.
2) Since we are told to use significance level as 0.04, then we can say that the decision rule is;
If the p-value is greater than 4% fail to reject H₀.
3) Using a 2-Sample Z-Test online TI calculator gives the test statistic as;
z = 2.5868
4) From z-score calculator, p-value equals 0.00968764. This is less than 0.04 and as such the decision regarding H₀ is to reject H₀.
5) P-value = 0.00968764
Read more about decision rule in Hypothesis Testing at; https://brainly.com/question/17192140
#SPJ1
What is the equation of the line that passes through the point (5,4) and has a slope of 2
Hello,
[tex]y = ax + b[/tex]
We know the slope is 2 so :
[tex]y = 2x + b[/tex]
The equation of the line that passes through the point (5,4) so :
[tex]4 = 2 \times 5 + b[/tex]
[tex]4 = 10 + b[/tex]
[tex]b = 4 - 10[/tex]
[tex]b = - 6[/tex]
The equation of the line that passes through the point (5,4) and has a slope of 2 is :
[tex]y = 2x - 6[/tex]
y = 2x - 6
Step-by-step explanation:Most lines are written in slope-intercept form, but we can use slope-point form in situations like this.
Slope-Point Form
The formula for slope-point form is [tex]y-y_{1}=m\left(x-x_{1}\right)[/tex]. So, we can plug in the information we have, the point and slope.
y - 4 = 2(x - 5)This is an equation for the line given to us. However, this form can be simplified further.
Slope-Intercept Form
Slope-intercept form is written as y = mx + b, where m is the slope and b is the y-intercept. To find the most simplified form of the equation we need to use the properties of equality.
First, distribute the 2
y - 4 = 2x - 10Next, add 4 to both sides
y = 2x - 6Now, we have the equation for the line in slope-intercept form. Both of the equations technically meet the requirements for the question, but slope-intercept is more common to use.
Six men, A, B, C, D, E, and F of negligible honesty, met on a perfectly rough day, each carrying a light inextensible umbrella. Each man brought his own umbrella and took away let us say 'borrowed' _ - another's. The umbrella borrowed by A belonged to borrower of B's umbrella. The owner of the umbrella borrowed by C borrowed the umbrella belonging to the borrower of D's umbrella. If the borrower of E's umbrella was not the owner of that borrowed by F, who borrowed A's umbrella?
Answer:
Six Serving Men is a team exercise that examines an issue from twelve different viewpoints. It is based on the words of the poem by Rudyard Kipling: I keep six honest serving men, they taught me all I knew. Their names are What and Why and When and How and Where and Who. To use this technique in a meeting, provide 12 areas for answering questions related to the central topic
Step-by-step explanation:
A smart-phone is thrown upwards from the top of a 384-foot building with an initial velocity of 32 feet per
second. The height h of the smart-phone after t seconds is given by the quadratic equation
h 16t² + 32t + 384. When will the smart-phone hit the ground
Answer:
When t = 4
Step-by-step explanation:
The phone will hit the ground when h = 0.
[tex]16t^2 + 32t + 384 =0 \\ \\ t^2 + 2t + 24=0 \\ \\ (t+6)(t-4)=0 \\ \\ t=-6, 4[/tex]
However, as time cannot be negative, we know the answer is when t = 4.
Solve for X please hurry
Answer: 23.1
Step-by-step explanation:
[tex]\frac{x}{14}=\frac{33}{20}\\\\x=\frac{(33)(14)}{20}\\\\x=23.1[/tex]
Is (1, -1) a solution of y=3x-4?
Answer:
Yes because putting value of x and y as 1 and -1 in equation :
y=3x-4
-1 = 3 * 1 - 4
-1 = -1 (True)
A store is having a sale on chocolate chips and walnuts. For 5 pounds of chocolate chips and 3 pounds of walnuts, the total cost is $25 . For 7 pounds of chocolate chips and 9 pounds of walnuts, the total cost is $53 . Find the cost for each pound of chocolate chips and each pound of walnuts.
Answer:
one pound of chocolate chips = $2.75
one pound of walnuts = $3.75
Step-by-step explanation:
we can solve this by first making an equation
let's write the number of chocolate chips in c
and the number of walnuts in w
5c + 3w = 25
7c + 9w = 53
let's first solve for c by multiplying the top equation by 3 and subtracting the bottom equation from it
(15c + 9w = 75) - (7c + 9w = 53)
8c = 22
c = $2.75
Let's now start to solve for w by inputting c into one of the equations.
(2.75)7 + 9w = 53
19.25 + 9w = 53
9w = 53 - 19.25
9w = 33.75
w = $3.75
a pound of chocolate chips = 2.75
a pound of walnuts = 3.75
give me brainliest, please!
Hope this helps :)
Answer:
each pound of chocolate chips costs $2.75
each pound of walnuts costs $3.75
Step-by-step explanation:
let c be the cost of a pound of chocolate chips
and w be the cost of a pound of chocolate chips
For 5 pounds of chocolate chips and 3 pounds of walnuts,
the total cost is $25 means 5c + 3w = 25
For 7 pounds of chocolate chips and 9 pounds of walnuts,
the total cost is $53 means 7c + 9w = 53
Now we have to solve the system:
[tex]\begin{cases}5c+3w=25&\\ 7c+9w=53&\end{cases}[/tex]
[tex]\Longleftrightarrow \begin{cases}15c+9w=75&\\ 7c+9w=53&\end{cases}[/tex]
[tex]\Longleftrightarrow \begin{cases}15c+9w=75&\\ 8c=22&\end{cases}[/tex]
[tex]\Longleftrightarrow \begin{cases}15c+9w=75&\\ c=\frac{11}{4} &\end{cases}[/tex]
[tex]\Longleftrightarrow \begin{cases}9w=75-15 \times \frac{11}{4} &\\ c=\frac{11}{4} &\end{cases}[/tex]
[tex]\Longleftrightarrow \begin{cases}9w=\frac{135}{4} &\\ c=\frac{11}{4} &\end{cases}[/tex]
[tex]\Longleftrightarrow \begin{cases}w= \frac{15}{4} &\\ c=\frac{11}{4} &\end{cases}[/tex]
Solve the following
8903=e
[tex]\huge\text{Hey there!}[/tex]
[tex]\huge\textbf{Equation:}[/tex]
[tex]\mathsf{8,903 = e^{5x}}}[/tex]
[tex]\huge\textbf{Simplify:}[/tex]
[tex]\mathsf{8,903 = e^{5x}}}[/tex]
[tex]\mathsf{e^{5x} = 8,903}}[/tex]
[tex]\huge\textbf{Solve for the exponent:}[/tex]
[tex]\large\textsf{We get: }\downarrow\\\\\mathsf{2.718282^{5x}=8903}[/tex]
[tex]\huge\textbf{Take the logarithm from both sides:}[/tex]
[tex]\mathsf{log(2.718282^{5x}) = log(8,903x)}[/tex]
[tex]\large\textsf{We get:}\\\\\mathsf{5x \times log(2.718282)=log(8903)}[/tex]
[tex]\huge\textbf{Simplify it:}[/tex]
[tex]\mathsf{5x = \dfrac{log(8903)}{log(2.718282)}}[/tex]
[tex]\large\textsf{We get: }\\\\\mathsf{5x = 9.094143}[/tex]
[tex]\huge\textbf{Divide 5 to both sides:}[/tex]
[tex]\mathsf{\dfrac{5x}{5} = \dfrac{9.094143}{5}}[/tex]
[tex]\huge\textbf{Simplify it:}[/tex]
[tex]\mathsf{x= \dfrac{9.094143}{5}}[/tex]
[tex]\mathsf{x = 1.818829}[/tex]
[tex]\mathsf{x \approx 2}[/tex]
[tex]\huge\textbf{Therefore, your answer should be:}[/tex]
[tex]\huge\boxed{\mathsf{x =}\frak{\ 1.818829}}\huge\checkmark[/tex]
[tex]\large\textbf{Or if you're estimating your answer}\downarrow[/tex]
[tex]\huge\boxed{\mathsf{x \approx }\frak{\ 2}}\huge\checkmark[/tex]
[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]
Find the volume of the triangular prism. 10 cm 8 cm Volume = 12 cm [?] cm³
Answer:
Step-by-step explanation:
volume of the triangular prism height times base times length so 10 times 8 times 12 = 960.
Place value in the thousands for the 0 in 10000
The place value in the thousands for the 0 in 10,000 is three (3).
What is a place value?A place value refers to a numerical value which denotes a digit based on its position in a given number and it includes:
TenthsHundredthsThousandthsUnitTensHundredsThousandsIn this scenario, the place value in the thousands for the 0 in 10,000 is three (3).
Read more on place value here: https://brainly.com/question/2003695
#SPJ1
Which statement is NOT true about Euclidean geometry?
F. The shortest distance between two points is a straight line.
G. Basic geometric elements are points, lines, and planes.
H. Parallel lines may intersect.
J. The sum of the measures of any triangle always equals 180 degree.
Answer: H. Parallel lines may intersect.
Step-by-step explanation:
By definition, parallel lines never intersect.
Find the vertex of the function h(x) = x2 – 4x – 21
Answer: (2, -25)
Step-by-step explanation:
The x coordinate of the vertex is [tex]x=-\frac{-4}{2(1)}=2[/tex].
When x=2, [tex]h(2)=2^2 - 4(2)-21=-25[/tex].
So, the vertex is (2, -25).
Who knows the answer for this problem please solve asap
The value of x to the nearest hundredth is 4.14
Side-angle-side theoremThe given diagram is a right triangle with the following parameters
Opposite side to 16 degrees = x
Hypotenuse = 15
Using the expression below
sin theta = x/15
sin16 = x/15
x = 15sin16
x = 4.135
Hence the value of x to the nearest hundredth is 4.14
Learn more on triangle here; https://brainly.com/question/2217700
#SPJ1
19
Select the correct answer.
Which exponential function has the greatest average rate of change over the interval [0, 2]?
OA j(x) = 3(1.6)²
OB. An exponential function, f, with a y-intercept of 1.5 and a common ratio of 2.
OC.
OD.
g(x)
k(x)
The function with the greatest average rate of change is the function k(x)
How to determine the function?The average rate of change is calculated as
[tex]m = \frac{y_2 - y_1}{x_2 -x_1}[/tex]
The interval is [0,2].
So, we have
[tex]m = \frac{y_2 - y_1}{2 -0}[/tex]
[tex]m = \frac{y_2 - y_1}{2}[/tex]
For function j(x), we have
j(2) = 3 * 1.6^2 = 7.68
j(2) = 3 * 1.6^0 = 3
So, we have
[tex]m_j = \frac{7.68 - 3}{2}[/tex]
[tex]m_j = 2.34[/tex]
For function g(x), we have
g(2) = 25/2
g(0) = 8
So, we have
[tex]m_g = \frac{25/2 - 8}{2}[/tex]
[tex]m_g = 2.25[/tex]
For function k(x), we have
k(2) = 9
k(0) = 4
So, we have
[tex]m_k = \frac{9 - 4}{2}[/tex]
[tex]m_k = 2.5[/tex]
For function f(x), we have
f(2) = 1.5 * 2^2 = 6
f(0) = 1.5
So, we have
[tex]m_f = \frac{6 - 1.5}{2}[/tex]
[tex]m_f = 2.25[/tex]
The function with the greatest average rate of change is the function k(x) with a rate of 2.5
Read more about average rate of change at:
https://brainly.com/question/23715190
#SPJ1
A college graduate expects to earn a salary of $55,000 during the first year after graduation and receive a 3% raise every year after that. What is the total income he will have received after ten years?
Answer:
$73915.40
Step-by-step explanation:
→ Find the multiplier
( 3 + 100 ) ÷ 100 = 1.03
→ Multiply by principal amount and raise it to the power of years
55000 × 1.03¹⁰ = 73915.40
Answer: $630,513.36
Step-by-step explanation:
Making a Formula for His Salary on a Given YearLet's make a table of values to see how much he earns every year after graduation.
1 year -> $55,000
2 years -> 55,000 * 103% = $56,650
3 years -> 56,650 * 103% = 55000 * 103% * 103% = $58,349.50
4 years -> 58349.50 * 103% = 55,000 * 103% * 103% * 103% = 55000(1.03)³
Here, we see that every year, he gets 103% of what he got the previous year, which is also 1.03 times his previous salary.
We also see that we multiply 55000 by 1.03 three times in the fourth year, and two times in the third year. This means that we multiply 55000 by 1.03 n-1 times.
Using this, let's generalize this for n.
n years -> [tex]55000(1.03)^{n-1}[/tex]
Finding the Sum after Ten YearsWe are trying to find his total income after ten years, or the sum of his salary from year 1 to year 10. We can represent this in sigma notation like this
[tex]% Adjusted limits of summation$\displaystyle\sum_{n=1} ^{10} 55000(1.03)^{n-1}$[/tex]
This essentially translates to the sum of the first ten terms in the sequence [tex]55000(1.03)^{n-1}[/tex], starting at n=1.
Since this is a geometric sequence, or a sequence where we need to multiply by the same number to get to the next term, we can find the sum using the sum of geometric series formula. This formula is as follows:
[tex]S_n=a_1\frac{1-r^n}{1-r}[/tex]
where [tex]S_n[/tex] is the sum of the first n terms, [tex]a_1[/tex] is the first term, r is the common ratio, and n is the number of terms. In this question, [tex]S_n[/tex] is the total income after n years, [tex]a_1[/tex] is his salary after the first year, r is how much his salary increases by each year, and n is the number of years we are calculating the sum for.
[tex]a_1[/tex] -> 55000
r -> 1.03
n -> 10
Now that we have the values for each variable, let's plug them in and solve
[tex]S_{10}=55000(\frac{1-1.03^{10}}{1-1.03})\\S_{10}=630513.36[/tex]
The total income he will have received after ten years is $630,513.36.
giving brainliest !!!!!!!!!!!
The parabola vertex is (1,5), the focus of the parabola is (1,6), and the directrix y = 4.
What is the graph of a parabolic equation?The graph of a parabolic equation is a U-shape curve graph that is established from a quadratic equation.
From the given information:
[tex]\mathbf{y=\dfrac{1}{4}(x-1)^2+5}[/tex]
The vertex of an up-down facing parabolic equation takes the form:
y = ax² + bx + c is [tex]\mathbf{x_v = -\dfrac{b}{2a}}[/tex]
Rewriting the given equation:
[tex]\mathbf{y = \dfrac{x^2}{4}-\dfrac{x}{2}+\dfrac{21}{4}}[/tex]
[tex]\mathbf{x_v = -\dfrac{b}{2a}}[/tex]
[tex]\mathbf{x_v = -\dfrac{(-\dfrac{1}{2})}{2(\dfrac{1}{4})}}[/tex]
[tex]\mathbf{x_v =1}[/tex]
Replacing the value of x into the equation, y becomes:
[tex]\mathbf{y_v = 5}[/tex]
Thus, the parabola vertex is (1,5)
From the vertex, the focus of the parabola is (1,6), and the directrix y = 4.
The graphical representation of the parabola is seen in the image attached below.
Learn more about the graph of a parabolic equation here:
https://brainly.com/question/12896871
#SPJ1
(x-2)(x+3)=(x-2)(4-x)
The value of x is 0.5
How to evaluate the equation?The equation is given as:
(x -2)(x + 3) = (x - 2)(4 - x)
Divide both sides by x - 2
x + 3 = 4 - x
Evaluate the like terms
2x = 1
Divide by 2
x = 0.5
Hence, the value of x is 0.5
Read more about equations at:
https://brainly.com/question/2972832
#SPJ1
If B is the midpoint of AC, which of the following equations is correct?
AB + AC = B
OBA + BC = AC
O None of these choices are correct.
O
AB = AC
Answer:
BA + BC = AC
Step-by-step explanation:
B is the midpoint of AC
Then
BA = AC/2 and BC = AC/2
Then
BA + BC = AC/2 + AC/2 = AC
Answer:a
Step-by-step explanation:
Based on the length sir the segments in the hyperbola below, how long is the transverse axis?
Answer: The transverse axis of the hyperbola lies on the line y=–3 and has length 6; the conjugate axis lies on the line x=2 and has length 8.
Step-by-step explanation:
What is the simple interest earned on $ 235 at 4.5 % for 2 years?
Answer:
$21.15
Step-by-step explanation:
(235)(.045)(2)
who knows ow to solve this triangle?
The measure of x in the right angled triangle shown is 4.09
What is an equation?An equation is an expression that shows the relationship between two or more variables and numbers.
Trigonometric ratio is used to show the relationship between the sides and angles of a right angled triangle.
From the diagram shown:
sin(17) = x / 14
x = 4.09
The measure of x in the right angled triangle shown is 4.09
Find out more on equation at: https://brainly.com/question/2972832
#SPJ1
Consider the dot plot below. Of the following statements, which two characteristics of this dot plot make the median a better choice than the mean to summarize the center of the distribution?
A dot plot with an axis marked from 0 to 10 at increments of 1 is shown. Plot shows 8 dots at 10, 7 dots at 9, 6 dots at 8, 3 dots at 7, 2 dots at 0 and 6, and 1 dot at 5.
The mean is equal to the median and the data are symmetric.
The peak is equal to the median and the data are skewed.
The data are symmetric and there are outliers.
The data are skewed and there are outliers.
The two characteristics that makes the median a better choice are: A. The data are skewed and there are outliers.
What Characteristics of a Dot Plot Makes Median a Better Choice?In a data distribution, the median is a better choice to use to describe the data over the mean when an outlier exist and the data is skewed.
IN the dot plot given below, the data has an outlier of 10 while the data distribution is also screwed, this makes the median a better choice.
Therefore, the answer is: A. The data are skewed and there are outliers.
Learn more about the median on:
https://brainly.com/question/16800683
#SPJ1
4. Kelly has a list of patient temperatures in Fahrenheit, but she needs them converted to Celsius. Help her convert the
temperatures using the formula(°F-32) x = °C. Note: temperatures are listed to the nearest tenth.
Method
Oral
Axillary
Rectal
Temperature °F
98.2 °F
96.6 °F
100.1 °F
Temperature C
°℃
°C
°℃
F
After conversion 98.2 °F=119.2°C
96.6 °F=116.3°C
100.1 °F==122.6°C
How can we convert temperature from Fahrenheit to Celsius?
We will convert using this formula
C= (F-32) *5/9
We will convert temperature from Fahrenheit to Celsius as shown below:
C= (F-32) *5/9
For Oral
Temperature=98.2°F
C= (98.2-32) *5/9
=119.16°C
Rounding to nearest tenth
=119.2°C
For Axillary
Temperature=96.6 °F
C= (96.6-32) *5/9
=116.28°C
Rounding to nearest tenth
=116.3°C
For Rectal
Temperature=100.1 °F
C= (100.1-32) *5/9
=122.58
Rounding to nearest tenth
=122.6°C
Hence, after conversion 98.2 °F=119.2°C
96.6 °F=116.3°C
100.1 °F=122.6°C
Learn more about temperature here:
https://brainly.com/question/13056431
#SPJ1