Scenario
Consider a coin of massm placed on a rotating surface a
distance R from the axis of rotation. The surface rotates with a
period T. There are some locations on the surface where the coin
can be placed and the force of static friction will not allow the com
to slip. At other locations, the coin will slip because static friction or
not strong enough to present the coin from slipping. The coefficient
of static fraction between the coin and the surface is u

Answers

Answer 1

The coefficient of the static friction(ц) between the coin and the surface is v²/gR.

The mass of the coin = m kg

The distance of the coin from the axis of rotation = R meter

Let the speed of the rotating surface = v m/sec

We know that an object moving in a circular motion on a circular path of radius R, experiences a centrifugal force which acts outwards from the axis of rotation. This force is determined by the following formula,

F = mv²/R

This force is balance by the static friction force on the coin.

Static friction force on the coin = mg × static friction(ц)

mv²/R = mg × static friction(ц)

Static friction(ц) = v²/gR

To know more about static friction, here

https://brainly.com/question/24882156

#SPJ4


Related Questions

if you flew a spaceship straight into jupiter, aiming toward jupiter's center, the spaceship would ________.

Answers

If you flew a spaceship straight into Jupiter, aiming toward its center, the spaceship would experience increasing atmospheric pressure, temperature, and density as it descends. Initially, the spacecraft would encounter the outer layers of Jupiter's atmosphere, which is primarily composed of hydrogen and helium. As it progresses further, it would experience more intense pressure, leading to the hydrogen gas transitioning into a liquid state.

Eventually, the spacecraft would reach a layer where metallic hydrogen is present, which is due to the extremely high pressure and temperature conditions deep within Jupiter's interior. The intense conditions in this region would likely cause the spacecraft to be crushed and destroyed by the immense pressure and heat.

Throughout the descent, the spacecraft would also encounter strong winds and powerful storms, such as the Great Red Spot, which could further challenge its integrity and ability to withstand Jupiter's harsh environment. Overall, the spaceship's journey into Jupiter would be a perilous one, and it would ultimately be destroyed by the planet's extreme conditions.

To know more about spaceship click this link-

https://brainly.com/question/14198872

#SPJ11

yusef pushes a chair across the room, using 9 w of power to do 45 j of work. how much time does it take him to push the chair?

Answers

Explanation:

Power = work / time

  9      =  45/ t

t = 45/9 = 5 seconds

An object has a height of 0.064 m and is held 0.240 m in front of a converging lens with a focal length of 0.140 m. (Include the sign of the value in your answers.)
(a) What is the magnification?
(b) What is the image height?
m

Answers

(a) To find the magnification, we first need to determine the image distance (q). We can use the lens formula:
1/f = 1/p + 1/q


where f is the focal length (0.140 m), p is the object distance (0.240 m), and q is the image distance. Rearranging the formula to solve for q:
1/q = 1/f - 1/p
1/q = 1/0.140 - 1/0.240
1/q = 0.00714
q = 1/0.00714 ≈ 0.280 m
Now, we can find the magnification (M) using the formula:
M = -q/p
M = -0.280/0.240
M = -1.17
The magnification is -1.17.
(b) To find the image height (h'), we can use the magnification formula:
h' = M × h
where h is the object height (0.064 m). Plugging in the values:
h' = -1.17 × 0.064
h' ≈ -0.075 m
The image height is approximately -0.075 meters. The negative sign indicates that the image is inverted.

To know more about magnification visit:

https://brainly.com/question/21370207

#SPJ11

Light is incident in air at an angle θa on the upper surface of a transparent plate, the surfaces of the plate being plane and parallel to each other.
(a) Prove that θa = θa'

Answers

When light is incident in air at an angle θa on the upper surface of a transparent plate with plane and parallel surfaces, it undergoes refraction.

Let's call the angle of refraction inside the plate θb. Then, when the light exits the plate, it refracts again, and we'll call the angle at which it exits θa'. We want to prove that θa = θa'.

We can use Snell's Law for this proof:

n1 * sin(θ1) = n2 * sin(θ2)

At the upper surface (air-plate interface), we have:

n_air * sin(θa) = n_plate * sin(θb)  [Equation 1]

At the lower surface (plate-air interface), we have:

n_plate * sin(θb) = n_air * sin(θa')  [Equation 2]

Since both [Equation 1] and [Equation 2] have n_plate * sin(θb) in common, we can set them equal to each other:

n_air * sin(θa) = n_air * sin(θa')

Since n_air is the same in both terms, we can divide both sides by n_air:

sin(θa) = sin(θa')

And thus, θa = θa' because the sine of two angles is equal when the angles are equal.

So we have proven that θa = θa' in this scenario.

To learn more about interface, refer below:

https://brainly.com/question/14235253

#SPJ11

At what distance from a 15W point source of electromagnetic waves is the magnetic field amplitude 0.60μT ?
Express your answer to two significant figures and include the appropriate units.

Answers

The magnetic field amplitude of the electromagnetic wave from the 15W point source is 0.60 μT at a distance of 2.10 m.

To solve this problem, we can use the equation for the magnetic field amplitude (B) of an electromagnetic wave at a certain distance (r) from the source:

B = (μ0/4π) * (2πf) * (r^-1) * E

where μ0 is the permeability of free space (4π x 10^-7 T·m/A), f is the frequency of the wave, E is the electric field amplitude, and r is the distance from the source.

We are given that the source has a power output of 15W, but we do not know the frequency of the wave or the electric field amplitude. However, we do know that the magnetic field amplitude at a certain distance is 0.60 μT. So we can rearrange the equation to solve for r:

r = (μ0/4π) * (2πf) * (E/B)

We can assume that the frequency of the wave is constant, so we can combine the constants in the equation and substitute the values:

r = (1.26 x 10^-6 m) * (E/B)

We need to find the value of r that makes B = 0.60 μT. Let's assume that E is also constant and solve for r:

r = (1.26 x 10^-6 m) * (E/0.60 x 10^-6 T)

r = 2.10 m.

Learn more about electromagnetic wave at: https://brainly.com/question/13803241

#SPJ11

light travels at 186,283 miles every second. how many feet per hour does light travel? round your answer to one decimal place, if necessary.

Answers

To find out how many feet per hour light travels, we need to convert miles per second to feet per hour. There are 5280 feet in a mile and 60 minutes in an hour, so we can use the following formula:

186,283 miles/second * 5280 feet/mile * 60 seconds/minute * 60 minutes/hour = 671,088,960,000 feet/hour

Therefore, light travels at approximately 671 billion feet per hour.

This is an incredibly fast speed, and it is important to note that nothing can travel faster than the speed of light. The speed of light has a profound impact on our understanding of the universe and has led to many scientific breakthroughs, including the theory of relativity. Understanding the properties of light and how it interacts with matter is crucial for fields such as optics, astronomy, and physics.

To know more about properties of light click this link-

brainly.com/question/9601852

#SPJ11

Consider an electron in the N shell.
1-What is the largest orbital angular momentum this electron could have in any chosen direction? Express your answers in terms of ℏ.
Lz,max = _________ ℏ

Answers

For an electron in the N shell, the maximum value of the orbital angular momentum (L) in any chosen direction (z) is given by the formula: Lz, max = ℏ where ℓ is the maximum value of the azimuthal quantum number for the N shell, which is n-1.

1. The principal quantum number (n) determines the energy level and corresponds to the shell number. In this case, n = N.
2. The azimuthal quantum number (l) determines the shape of the orbital and ranges from 0 to n - 1. For the maximum orbital angular momentum, we should choose the largest value of l, which is l = N - 1.
3. The magnetic quantum number (m_l) determines the orientation of the orbital in space and ranges from -l to +l.
The largest orbital angular momentum (Lz, max) occurs when m_l = l, which is equal to N - 1. Therefore, Lz, max = (N - 1) ℏ.

You can learn more about electrons at: https://brainly.com/question/12001116

#SPJ11

the brass bar and the aluminum bar in the drawing are each attached to an immovable wall. at 24.3 °c the air gap between the rods is 1.67 x 10-3 m. at what temperature will the gap be closed?

Answers

Since aluminum has a higher coefficient of thermal expansion, it will reach its expansion limit first. Therefore, the gap will close at -72.27°C.

To solve this problem, we need to use the coefficient of thermal expansion for each material. Brass has a coefficient of 18.7 x 10^-6 m/m°C, while aluminum has a coefficient of 23.1 x 10^-6 m/m°C.
Assuming that both bars are initially at the same temperature, the gap between them will increase or decrease depending on which bar expands or contracts more. Since aluminum has a higher coefficient of thermal expansion, it will expand more than brass as the temperature increases.
To find the temperature at which the gap is closed, we can use the formula ΔL = αLΔT,
where ΔL is the change in length, α is the coefficient of thermal expansion, L is the original length, and ΔT is the change in temperature.

We know that the gap between the bars is 1.67 x 10^-3 m at 24.3 °C. Let's assume that the gap is closed when the bars touch each other. In other words, ΔL = -1.67 x 10^-3 m.

Let's also assume that the bars are each 1 meter long.
For aluminum:
-ΔL = αLΔT
-1.67 x 10^-3 m = (23.1 x 10^-6 m/m°C)(1 m)ΔT
ΔT = -72.27°C

For brass:
ΔL = αLΔT
1.67 x 10^-3 m = (18.7 x 10^-6 m/m°C)(1 m)ΔT
ΔT = 89.12°C

It's important to note that this calculation assumes that the bars are free to expand and contract. However, since they are attached to an immovable wall, there may be additional stresses and strains that could affect the outcome.

To know more about thermal expansion visit:

https://brainly.com/question/30242448

#SPJ11

A certain molecule can be treated as having only a double degenerate state using at 360 cm' above the non-degenerate ground state. The approximate temp. (k) at which 15% of the molecules will be in the upper state is: (a) 500 (b) 150 (C)200 (d) 300

Answers

The approximate temp. (k) at which 15% of the molecules will be in the upper state is 200 (Option C).

To find the approximate temperature at which 15% of the molecules will be in the upper state, we can use the Boltzmann distribution formula:

n_upper/n_total = exp(-ΔE / kT)

Where n_upper is the number of molecules in the upper state, n_total is the total number of molecules, ΔE is the energy difference between the states (360 cm⁻¹), k is the Boltzmann constant (0.695 cm⁻¹ K⁻¹), and T is the temperature in Kelvin.

Since we're looking for the temperature at which 15% of the molecules will be in the upper state, n_upper/n_total = 0.15. Plugging this into the formula, we get:

0.15 = exp(-360 / (0.695 × T))

Solving for T, we get an approximate temperature of:

T ≈ 200 K

Therefore, the correct answer is (C) 200.

You can learn more about molecules at: brainly.com/question/30465503

#SPJ11

A wire carries a current. If both the wire radius is halved and the current is doubled, the electron drift velocity changes by a factor of: A.2 B.4 C.1/4 D.1/8 E.8

Answers

The electron drift velocity is defined as the average velocity of electrons moving through a wire due to an applied electric field. Therefore, the answer is C.1/4.

This velocity depends on the wire's cross-sectional area, the current passing through it, and the number density of free electrons in the wire.

When the wire radius is halved, the cross-sectional area of the wire is reduced by a factor of 4 (since the area of a circle is proportional to the square of its radius). This means that the wire can accommodate fewer electrons, and so the number density of free electrons in the wire increases by a factor of 4.
When the current passing through the wire is doubled, the force on the electrons is increased, and so the electrons move faster. The relationship between current, force, and electron drift velocity is given by the equation v = (I/neA), where v is the electron drift velocity, I is the current, n is the number density of free electrons, e is the charge of an electron, and A is the cross-sectional area of the wire.
Plugging in the new values, we get:
v' = (2I)/(4neA/2)
v' = (2I)/(2neA)
v' = I/neA
This means that the electron drift velocity does not change when the wire radius is halved and the current is doubled.

For more such question on electron

https://brainly.com/question/371590

#SPJ11

The electron drift velocity in a wire is directly proportional to the current and inversely proportional to the wire radius.

If the wire radius is halved, the electron drift velocity will be doubled, and if the current is doubled, the electron drift velocity will also be doubled. Therefore, the overall change in the electron drift velocity would be a factor of 4, and the correct answer is B.4.
If both the wire radius is halved and the current is doubled, the electron drift velocity changes by a factor of A.2 B.4 C.1/4 D.1/8 E.8.
To answer this, let's consider the formula for current (I) in a wire:
I = n * A * e * v
where:
- I = current
- n = number of free electrons per unit volume
- A = cross-sectional area of the wire
- e = charge of an electron
- v = electron drift velocity
When the wire radius is halved, the cross-sectional area (A) is reduced by a factor of 4, because A = π * r^2.
When the current is doubled, I = 2 * I₀, where I₀ is the initial current.
Now, let's compare the initial and new situations:
I₀ = n * A₀ * e * v₀
2 * I₀ = n * (A₀ / 4) * e * v₁
Divide the second equation by the first:
2 = (1/4) * (v₁ / v₀)
Solve for the ratio of the new drift velocity (v₁) to the initial drift velocity (v₀):
v₁ / v₀ = 8
So, the electron drift velocity changes by a factor of 8 (Option E).

Visit here to learn more about electron drift velocity:

brainly.com/question/1599996

#SPJ11

x-ray telescope mirrors are very similar to optical telescope mirrors.true or false?

Answers

deloer je n'ai pas mla reponse a tas question

Therefore, the statement that "X-ray telescope mirrors are very similar to optical telescope mirrors" is FALSE since they are used for capturing and detecting different wavelengths of light. Optical telescopes detect and focus visible light while X-ray telescopes capture and detect high-energy X-ray radiation.

X-ray telescope mirrors are not very similar to optical telescope mirrors. The two are different because they have different types of wavelengths of light they detect. While optical telescopes reflect and focus visible light to produce images, X-ray telescopes capture and detect high-energy X-ray radiation that is outside the visible spectrum.

What are X-ray telescopes?

X-ray telescopes are scientific instruments that are designed to observe objects in space that emit X-ray radiation. The mirrors of X-ray telescopes are made of a special type of glass or metal that can reflect and focus X-rays in the same way that optical telescopes focus and reflect light. The main function of X-ray telescopes is to gather high-energy X-rays that are emitted by objects in space such as black holes, neutron stars, and other exotic celestial bodies. They can also be used to study the X-ray properties of galaxies, stars, and other astronomical objects.

to know more about X-ray telescopes visit:

https://brainly.com/question/14683213

#SPJ11

a signal consists of the frequencies from 50 hz to 150 hz. what is the minimum sampling rate we should use to avoid aliasing?

Answers

To avoid aliasing, the minimum sampling rate we should use is 2 times 150 Hz, which is 300 Hz. So, we should use a sampling rate of at least 300 Hz to avoid aliasing in this signal.

According to the Nyquist-Shannon sampling theorem, the minimum sampling rate required to avoid aliasing is twice the highest frequency component of the signal. In this case, the highest frequency component is 150 Hz. Therefore, the minimum sampling rate required to avoid aliasing is:

2 x 150 Hz = 300 Hz

So, we would need to sample the signal at a rate of at least 300 Hz to avoid aliasing.

To know more about aliasing:

https://brainly.com/question/29851346

#SPJ11

A 550 N physics student stands on a bathroom scale in an 850 kg (including the student) elevator that is supported by a cable. As the elevator starts moving, the scale reads 450 N. Find the acceleration (magnitude and direction) of the elevator, What is the acceleration is the scale reads 670 N? (c) If the scale reads zero, should the student worry?

Answers

If the scale reads zero, this means there is no normal force acting on the student, and they are in free-fall. The student should indeed be worried, as the elevator is likely in a state of mechanical failure and is falling freely.

The first step is to draw a free-body diagram for the student and the elevator. There are two forces acting on the elevator-student system: the force of gravity (weight) and the force of tension from the cable. When the elevator is moving, there is also an additional force of acceleration.

(a) To find the acceleration of the elevator when the scale reads 450 N, we need to use Newton's second law, which states that the net force acting on an object is equal to its mass times its acceleration: F_net = ma. In this case, the net force is the difference between the weight and the tension: F_net = weight - tension. So we have:

F_net = ma
weight - tension = ma

Substituting the given values:

550 N - 450 N = (850 kg)(a)

Solving for a:

a = 1.18 m/s^2, upward (because the elevator is moving upward)

(b) To find the acceleration of the elevator when the scale reads 670 N, we use the same formula:

F_net = ma
weight - tension = ma

Substituting the given values:

550 N - 670 N = (850 kg)(a)

Solving for a:

a = -0.14 m/s^2, downward (because the elevator is moving downward)

(c) If the scale reads zero, it means that the tension in the cable is equal to the weight of the elevator-student system, so there is no net force and no acceleration. The student does not need to worry, but they may feel weightless for a moment if the elevator is in free fall.

(a) When the scale reads 450 N, we can determine the acceleration of the elevator using the following steps:

1. Calculate the net force acting on the student: F_net = F_gravity - F_scale = 550 N - 450 N = 100 N.
2. Use Newton's second law (F = ma) to find the acceleration: a = F_net / m_student, where m_student = 550 N / 9.81 m/s² ≈ 56.1 kg.
3. Solve for the acceleration: a = 100 N / 56.1 kg ≈ 1.78 m/s², downward.

(b) If the scale reads 670 N, follow the same steps as before, but replace F_scale with the new reading:

1. Calculate the net force: F_net = F_gravity - F_scale = 550 N - 670 N = -120 N.
2. Solve for the acceleration: a = F_net / m_student = -120 N / 56.1 kg ≈ -2.14 m/s², upward.

To know more about acceleration visit:-

https://brainly.com/question/30660316

#SPJ11

Steel train rails are laid in 12.0-m-long segments placed end to end. The rails are laid on a winter day when their temperature is −2.0°C. (a) How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is 33.0°C? (b) If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 33.0°C?

Answers

a) approximately 23.995 m of space should be left between adjacent rails for them to touch on a summer day.

b) The stress in the rails on a summer day when their temperature is 33.0°C is approximately 8.8 MPa.

(a) To calculate the space needed between adjacent rails for them to touch on a summer day, we can use the coefficient of thermal expansion for steel, which is approximately 1.2 × 10⁻5 /°C

First, we need to calculate the change in length of each rail segment from -2.0°C to 33.0°C:

ΔL = αLΔT

ΔL = (1.2 × 10⁻⁵ /°C) × (12.0 m) × (33.0°C - (-2.0°C))

ΔL = 0.00528 m

So, each rail segment will expand by 0.00528 m on the summer day. To determine the space needed between adjacent rails, we subtract the expanded length of one rail from the original length of two rails:

Space needed = (2 × 12.0 m) - 0.00528 m

Space needed = 23.99472 m

Therefore, approximately 23.995 m of space should be left between adjacent rails for them to touch on a summer day.

(b) If the rails are originally laid in contact, they will expand by a total of 0.01056 m on the summer day. The stress in the rails can be calculated using the formula:

Stress = Young's modulus × (change in length / original length)

Assuming a Young's modulus of 200 GPa for steel, we get:

Stress = (200 × 10^9 Pa) × (0.01056 m / (12.0 m × 2))

Stress = 8.8 × 10^6 Pa

Therefore, the stress in the rails on a summer day when their temperature is 33.0°C is approximately 8.8 MPa.

To learn more about Young's modulus  here

https://brainly.com/question/13257353

#SPJ4

Which system (A−D) has the extrasolar planet that is easiest to detect from Earth?

Answers

The system with the extrasolar planet that is easiest to detect from Earth would likely be System A, as it has the largest planet with the shortest orbital period.

This would result in the planet passing in front of its host star more frequently, causing noticeable dips in the star's brightness that can be detected by telescopes on Earth. For example, a large planet close to its star will be easier to detect through the radial velocity method, which measures the wobble of the star caused by the gravitational pull of the planet. On the other hand, a smaller planet farther from its star may be easier to detect through the transit method, which measures the slight dip in the star's brightness as the planet passes in front of it.

Additionally, the planet's large size would make it easier to detect using methods such as radial velocity measurements. The detectability of an exoplanet depends on several factors, including its size, mass, orbital distance, and the method used for detection.

To know more about planet refer here :

https://brainly.com/question/30395625

#SPJ11

the helix nebula is a planetary nebula with an angular di- ameter of 16’ that is located approximately 200 pc from earth. 1. what is a planetary nebula? 2. calculate the diameter of the nebula.

Answers

1. A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from a red giant star in the last stage of its life. 2.  the diameter of the Helix Nebula is approximately 2.5 × 10^17 meters or 0.27 light years.

1. As the red giant's outer layers expand, they are blown away by strong stellar winds and radiation pressure, creating a shell of gas and dust that is illuminated by the central star's intense ultraviolet radiation. Planetary nebulae are named so because they have a round, planet-like appearance in early telescopes.

2. To calculate the diameter of the Helix Nebula, we can use the small angle formula:

angular diameter = diameter / distance

Rearranging the formula, we get:

diameter = angular diameter × distance

Substituting the given values, we get:

diameter = 16 arcmin × (1/60) degrees/arcmin × (π/180) radians/degree × 200 pc × (3.086 × 10^16 m/pc)

Simplifying, we get:

diameter ≈ 2.5 × 10^17 meters or 0.27 light years

Therefore, the diameter of the Helix Nebula is approximately 2.5 × 10^17 meters or 0.27 light years.

For more such questions on nebula

https://brainly.com/question/15431665

#SPJ11

A planetary nebula is a type of emission nebula that forms when a low or intermediate-mass star, like our Sun, reaches the end of its life and runs out of fuel to continue nuclear fusion reactions in its core. As the star dies, it expels its outer layers into space, creating a glowing shell of ionized gas and dust that is illuminated by the ultraviolet radiation from the central white dwarf. Despite their name, planetary nebulae have nothing to do with planets; they were named by early astronomers who observed them through small telescopes and thought they looked like the disc of a planet.

The angular diameter of the Helix Nebula is given as 16 arcminutes or 0.27 degrees. To calculate the physical diameter of the nebula, we need to know its distance from Earth. The question states that it is approximately 200 parsecs (pc) away.

Using the small angle formula, we can relate the angular diameter of an object (in radians) to its physical diameter (in units of distance) and its distance from the observer (also in units of distance):

Angular diameter = Physical diameter / Distance

We need to convert the angular diameter from degrees to radians:

Angular diameter in radians = (0.27 degrees / 360 degrees) x 2π radians = 0.0047 radians

Now we can rearrange the formula and solve for the physical diameter:

Physical diameter = Angular diameter x Distance

Physical diameter = 0.0047 radians x (200 pc x 3.26 light-years/pc) x (1.0 x 10^13 km/light year) = 1.8 x 10^14 km

Therefore, the diameter of the Helix Nebula is approximately 1.8 x 10^14 kilometres or about 1.2 light years.

Learn more about helix nebula, here:

brainly.com/question/18582489

#SPJ11

how is galileo's revolutionary theory related to feyerabend's overall rejection of the scientific method?

Answers

Galileo's revolutionary theory, which stated that the Earth and other planets revolve around the sun, challenged the long-held belief of the geocentric model of the universe and was met with resistance from the Catholic Church.

Here are some additional bullet points that could further explain their relationship:

Feyerabend believed that Galileo's success in promoting his heliocentric theory despite the prevailing scientific and religious beliefs of his time demonstrated that scientists do not always follow a strict scientific method to arrive at scientific truths.Feyerabend also argued that the history of science shows that scientific progress often comes from individuals who go against the established scientific norms, like Galileo.Feyerabend's rejection of the scientific method in favor of a more pluralistic approach to scientific inquiry is sometimes referred to as "epistemological anarchism."

Feyerabend, a philosopher of science, rejected the idea that there is a single scientific method or process that can be universally applied to all scientific inquiry.

Learn More About scientific method

https://brainly.com/question/17216882

#SPJ11

a water quality monitor wants to demonstrate that the mean chlorine concentrations in two separate water sources are different. what is his null hypothesis?

Answers

The null hypothesis in this scenario would be that there is no significant difference between the mean chlorine concentrations in the two separate water sources. This means that the water quality monitor is assuming that the two sources are essentially the same in terms of their chlorine concentrations, and any observed differences are due to chance or random variation.

To test this null hypothesis, the water quality monitor would need to collect data on the chlorine concentrations in both water sources and calculate the mean concentration for each. Then, a statistical test such as a t-test or ANOVA could be used to determine if the observed difference in means is statistically significant or not.
If the statistical test indicates that the difference in means is significant, then the water quality monitor would reject the null hypothesis and conclude that the two water sources have different chlorine concentrations. On the other hand, if the test does not indicate a significant difference, the null hypothesis would be retained, and the monitor would conclude that the two sources are similar in terms of their chlorine concentrations.
Overall, the null hypothesis plays a critical role in hypothesis testing and helps to guide the research process by providing a clear statement of what is being tested and what outcomes are expected.

For more such question on chlorine

https://brainly.com/question/10898422

#SPJ11

A heat engine absorbs 350 J of heat from a 365 °C high temperature source and expels 225 J of heat to a 20.0 °C low temperature source per cycle. What is the efficiency of the engine? 94.5 % 54.1% 35.7 % 64.3 %

Answers

The efficiency of the engine is 35.7%.

Calculate the efficiency of a heat engine, we'll use the following formula:

Efficiency = (Work done by the engine / Heat absorbed) × 100

First, we need to find the work done by the engine. Work done can be calculated using the following equation:

Work done = Heat absorbed - Heat expelled

Now, let's plug in the values given in the question:

Work done = 350 J (absorbed) - 225 J (expelled) = 125 J

Next, we'll calculate the efficiency using the formula mentioned earlier:

Efficiency = (125 J / 350 J) × 100 = 35.7 %

So, 35.7% is the efficiency of the engine.

For more questions on efficiency:

https://brainly.com/question/30276416

#SPJ11

The efficiency of the engine is 35.7%.

Calculate the efficiency of a heat engine, we'll use the following formula:

Efficiency = (Work done by the engine / Heat absorbed) × 100

First, we need to find the work done by the engine. Work done can be calculated using the following equation:

Work done = Heat absorbed - Heat expelled

Now, let's plug in the values given in the question:

Work done = 350 J (absorbed) - 225 J (expelled) = 125 J

Next, we'll calculate the efficiency using the formula mentioned earlier:

Efficiency = (125 J / 350 J) × 100 = 35.7 %

So, 35.7% is the efficiency of the engine.

Visit to know more about Efficiency:-

brainly.com/question/30276416

#SPJ11

Empty versus critical universe: a. For the above empty universe model, invert the formula for z(d) to derive an expression for distance as a function of redshift z. For this use the notation do(z), where the subscript "0" denotes the null value of 2m. b. If a distance measurement is accurate to 10 percent, at what minimum redshift Zo can one observationally distinguish the redshift versus distance of an empty universe from a strictly linear Hubble law d =cz/H, c. Using the above results from Exercise la, now derive an analogous distance ver- sus redshift formula dı(z) for the critical universe with 12m=1 (and Na=0). d. Again, if a distance measurement is accurate to 10 percent, at what minimum redshift z1 can one observationally distinguish the redshift versus distance of such a critical universe from a strictly linear Hubble law. e. Finally, again with a distance measurement accurate to 10 percent, at what minimum redshift Z10 can one observationally distinguish the redshift versus distance of a critical universe from an empty universe?

Answers

The redshift versus distance of a critical universe from an empty universe can be found by comparing the distance formulas for both cases. It is approximately 0.17.

What is the expression for distance as a function of redshift for a critical universe with 2m=1 and Na=0?In the empty universe model, the expression for distance as a function of redshift (z) can be derived by inverting the formula for z(d). Denoting the null value of 2m as do(z), the expression for distance is given by d = (c/H) ln((1 + z)/(1 + do(z))).

To observationally distinguish the redshift versus distance of an empty universe from a linear Hubble law (d = cz/H) with an accuracy of 10 percent, we need to determine the minimum redshift Zo. By comparing the two distance formulas and considering a 10 percent accuracy, we find that Zo is approximately 0.11.

For the critical universe with 2m = 1 (and Na = 0), a distance versus redshift formula can be derived using the results from Exercise la. The formula is given by dı(z) = (c/H) sin[(H/H0)∫(0 to z) dz/√(Ωm(1+z)^3 + (1-Ωm))], where H0 is the present value of the Hubble parameter.

To observationally distinguish the redshift versus distance of a critical universe from a linear Hubble law with a 10 percent accuracy, we need to determine the minimum redshift z1.

By comparing the distance formulas for the critical universe and the linear Hubble law, we find that z1 is approximately 0.052.

With a 10 percent accuracy in distance measurement, the minimum redshift Z10 at which one can observationally distinguish the redshift versus distance of a critical universe from an empty universe can be found by comparing the distance formulas for both cases. It is approximately 0.17.

Learn more about redshift

brainly.com/question/13494718

#SPJ11

a star is moving away from earth at a speed of 2.400 × 108 m/s. light of wavelength 455.0 nm is emitted by the star. what is the wavelength as measured by an earth observer?

Answers

The observed wavelength is longer than the emitted wavelength due to the Doppler effect. The new wavelength is calculated using the formula: λ' = λ (1 + v/c), where λ is the emitted wavelength, v is the relative velocity of the source and observer, and c is the speed of light. Plugging in the values, the new wavelength is 469.3 nm.

When a source of light is moving relative to an observer, the wavelength of the light observed by the observer is shifted due to the Doppler effect. If the source is moving away from the observer, the observed wavelength is longer than the emitted wavelength. The amount of shift depends on the relative velocity of the source and observer. In this case, the relative velocity is 2.400 × 10^8 m/s. Using the formula for the Doppler effect, we can calculate the new wavelength as λ' = λ (1 + v/c), where λ is the emitted wavelength (455.0 nm), v is the relative velocity, and c is the speed of light. Plugging in the values, we get λ' = 469.3 nm, which is the new wavelength as measured by an earth observer.

Learn more about measured here:

https://brainly.com/question/4725561

#SPJ11

An incompressible liquid is flowing with a


velocity of 1. 4 m/s through a tube that sud-


denly narrows (there is no change in height)


and increases its velocity to 3. 2 m/s. What


is the difference in pressure between the wide


and narrow ends of the tube?


Assume that the density of the liquid is


1065 kg/m3


Answer in units of Pa.

Answers

The difference in pressure between the wide and narrow ends of the tube is 2102.96 Pa.

The difference in pressure between the wide and narrow ends of the tube if an incompressible liquid is flowing through a tube that suddenly narrows and increases its velocity is calculated as follows. We have to apply Bernoulli's equation to find the difference in pressure.Bernoulli's equation:P1 + 0.5 ρ v1^2 = P2 + 0.5 ρ v2^2P1 and P2 represent the pressure at points 1 and 2, respectively. ρ is the liquid's density, while v1 and v2 are the liquid's velocity at points 1 and 2, respectively.

The pressure difference is:P1 - P2 = (1/2) ρ (v2^2 - v1^2)P1 is the pressure at the wide end of the tube, which is equivalent to the ambient pressure, which we'll take as 1 atm. The velocity at the wide end of the tube, v1, is 1.4 m/s. The velocity at the narrow end of the tube, v2, is 3.2 m/s. Density, ρ, is equal to 1065 kg/m³, as mentioned in the question.

P1 - P2 = (1/2) ρ (v2^2 - v1^2)P1 - P2 = (1/2) (1065 kg/m³) (3.2 m/s)^2 - (1.4 m/s)^2P1 - P2 = 3028.62 Pa - 925.66 PaP1 - P2 = 2102.96 Pa.

Therefore, the difference in pressure between the wide and narrow ends of the tube is 2102.96 Pa.An incompressible liquid is a fluid that does not compress significantly and is therefore not affected by pressure changes.

learn more about velocity Refer: https://brainly.com/question/30559316

#SPJ11

The speed of light c in a vacuum is 2.997 x 108 m/s. Given that the index of refraction in benzene is 1.501, what is the speed of light Ubenzene in benzene? Ubenzene = m/s Given that the index of refraction in fluorite is 1.434, what is the speed of light Vfluorite in fluorite? Ufluorite m/s

Answers

The speed of light Ubenzene in benzene is 1.997 x 10^8 m/s, and the speed of light Vfluorite in fluorite is 2.073 x 10^8 m/s.

The speed of light in a medium is related to its index of refraction (n) by the formula: c/n = v, where c is the speed of light in a vacuum and v is the speed of light in the medium.

For benzene, given that the index of refraction is 1.501, we can calculate the speed of light Ubenzene as follows:

Ubenzene = c/nbenzene = (2.997 x 10^8 m/s)/1.501 = 1.997 x 10^8 m/s

Similarly, for fluorite, given that the index of refraction is 1.434, we can calculate the speed of light Vfluorite as follows:

Vfluorite = c/nfluorite = (2.997 x 10^8 m/s)/1.434 = 2.073 x 10^8 m/s

Therefore, the speed of light in benzene is slower than the speed of light in a vacuum, whereas the speed of light in fluorite is faster than the speed of light in a vacuum.

For more questions like Light click the link below:

https://brainly.com/question/10709323

#SPJ11

Calculate the minimal energy of photons which can be absorbed at the edges of the visible radiation range in ev.

Answers

The minimal energy of photons that can be absorbed at the edges of the visible radiation range is approximately 3.11 eV for violet light and 1.77 eV for red light.

The edges of the visible radiation range are typically defined by the wavelengths of approximately 400 nm (violet) and 700 nm (red). To calculate the minimal energy of photons that can be absorbed at these edges, we can use the energy-wavelength relationship for photons:

[tex]\[ E = \frac{hc}{\lambda} \][/tex]

where \( E \) is the energy of the photon, \( h \) is the Planck's constant[tex](\( 6.626 \times 10^{-34} \, \text{J s} \))[/tex] , \( c \) is the speed of light [tex](\( 3.00 \times 10^{8} \, \text{m/s} \)[/tex]), and [tex]\( \lambda \)[/tex]is the wavelength of the photon.

First, we convert the wavelength values to meters:

[tex]\( \lambda_{\text{violet}} = 400 \, \text{nm} = 400 \times 10^{-9} \, \text{m} \)\( \lambda_{\text{red}} = 700 \, \text{nm} = 700 \times 10^{-9} \, \text{m} \)[/tex]

Now, we can calculate the minimal energies:

[tex]\( E_{\text{violet}} = \frac{hc}{\lambda_{\text{violet}}} \)\( E_{\text{red}} = \frac{hc}{\lambda_{\text{red}}} \)[/tex]

Substituting the values:

[tex]\( E_{\text{violet}} = \frac{6.626 \times 10^{-34} \, \text{J s} \times 3.00 \times 10^{8} \, \text{m/s}}{400 \times 10^{-9} \, \text{m}} \)[/tex]

[tex]\( E_{\text{red}} = \frac{6.626 \times 10^{-34} \, \text{J s} \times 3.00 \times 10^{8} \, \text{m/s}}{700 \times 10^{-9} \, \text{m}} \)[/tex]

Calculating these values:

[tex]\( E_{\text{violet}} \approx 4.97 \times 10^{-19} \, \text{J} \)[/tex]

[tex]\( E_{\text{red}} \approx 2.83 \times 10^{-19} \, \text{J} \)[/tex]

Finally, to convert the energies to electron volts (eV), we use the conversion factor:

[tex]\( 1 \, \text{eV} = 1.602 \times 10^{-19} \, \text{J} \)[/tex]

Converting the energies:

[tex]\( E_{\text{violet}} \approx \frac{4.97 \times 10^{-19} \, \text{J}}{1.602 \times 10^{-19} \, \text{J/eV}} \approx 3.11 \, \text{eV} \)[/tex]

[tex]\( E_{\text{red}} \approx \frac{2.83 \times 10^{-19} \, \text{J}}{1.602 \times 10^{-19} \, \text{J/eV}} \approx 1.77 \, \text{eV} \)[/tex]

Learn more about photons here:

https://brainly.com/question/29415147

#SPJ11

If an electron with a mass of

9. 109x10^-31kg had an momentum of 2. 000x10^-27kg m/s north what is its velocity

Answers

The velocity of the electron is 2.2x10^3 m/s north. This is calculated by dividing the momentum (2.000x10^-27 kg m/s) by the mass (9.109x10^-31 kg) of the electron.

The momentum of an object is given by the product of its mass and velocity. In this case, the momentum is provided (2.000x10^-27 kg m/s) and the mass of the electron is given (9.109x10^-31 kg). By dividing the momentum by the mass, we can find the velocity. Thus, 2.000x10^-27 kg m/s divided by 9.109x10^-31 kg equals approximately 2.2x10^3 m/s north, which is the velocity of the electron.The velocity of the electron is 2.2x10^3 m/s north. This is calculated by dividing the momentum (2.000x10^-27 kg m/s) by the mass (9.109x10^-31 kg) of the electron.

The momentum of an object is given by the product of its mass and velocity. In this case, the momentum is provided (2.000x10^-27 kg m/s) and the mass of the bis given (9.109x10^-31 kg). By dividing the momentum by the mass, we can find the velocity.

learn more about velocity here:

https://brainly.com/question/22967454

#SPJ11

If a particle has a force of 10.0 N applied to it back toward the equilibrium position when it vibrates 0.0331 m, what is the Hooke's Law constant for that particle? 0 3.31N O 30.2N 03.31N O 30.2N

Answers

The force constant is 30.2N/m

What is Hooke's law?

Hooke's law states that provided the elastic limit of an elastic material is not exceeded , the extension of the material is directly proportional to the force applied on the load.

Therefore, from Hooke's law;

F = ke

where F is the force , e is the extension and k is the force constant.

F = 10N

e = 0.331m

K = f/e

K = 10/0.331

K = 30.2N/m

Therefore the force constant is 30.2N/m

learn more about Hooke's law from

https://brainly.com/question/2648431

#SPJ1

the work done by the normal force on the mass (during the initial fall) is:

Answers

The work done by the normal force on the mass during the initial fall is : zero.

The normal force acts perpendicular to the displacement of the mass. In this case, during the initial fall, the displacement of the mass is vertical downward, while the normal force acts perpendicular to the surface supporting the mass. Since the normal force and displacement are perpendicular to each other, the work done by the normal force is zero.

Work is defined as the dot product of the force and the displacement, given by the equation:

[tex]\text{Work} = \text{force} \times \text{displacement} \times \cos(\text{angle})[/tex]

In this case, the angle between the normal force and the displacement is 90 degrees, and the cosine of 90 degrees is zero. Therefore, the work done by the normal force is zero.

To know more about the work done refer here :

https://brainly.com/question/29989410#

#SPJ11

Helium gas with a volume of 2.90 L , under a pressure of 0.160 atm and at a temperature of 45.0 ∘C, is warmed until both pressure and volume are doubled.
What is the final temperature?
How many grams of helium are there? The molar mass of helium is 4.00 g/mol.

Answers

Answer:

Explanation:

The final temperature after doubling both the pressure and volume of helium gas, initially at a volume of 2.90 L, a pressure of 0.160 atm, and a temperature of 45.0 °C, is 1272.6K and 0.071 grams of helium are present.

We know that using the combined gas law equation:

[tex]\frac{(P1 * V1)}{T1} = \frac{(P2 * V2)}{T2}[/tex]

Substituting the given values:

[tex]\frac{(0.160 atm * 2.90 L)}{318.15 K} = \frac{(2 * 0.160 atm *2* 2.90 L)}{T2}[/tex]

[tex]T2 = 318.15*4 K[/tex]

[tex]T2 = 1272.6 K\\[/tex]

Therefore the final temperature is 1272.6K.

To calculate the number of moles of helium we can use the ideal gas law equation:

PV = nRT

Substituting the given values:

(0.320 atm) * (5.80 L) = n * (0.08206 L atm / K mol) * (1272.6) K

n = 0.0177 moles

Finally, we can use the relationship between moles, mass, and molar mass:

mass = moles * molar mass

mass = 0.0177* 4 grams

mass = 0.071 grams

Therefore, there are approximately 0.071 grams of helium in the given sample.

To learn more about combined gas law,

https://brainly.com/question/13154969

.In a design for a piece of medical apparatus, you need a material that is easily compressed when a pressure is applied to it.
A) This material should have a large bulk modulus.
B) This material should have a small bulk modulus.
C) The bulk modulus is not relevant to this situation.

Answers

The material that need to be chosen should have a small bulk modulus.

Bulk modulus is a measure of a material's resistance to compression under pressure. A material with a large bulk modulus is difficult to compress, while a material with a small bulk modulus is easily compressed. In the design of medical apparatus requiring easy compression under pressure, a material with a small bulk modulus would be ideal.

For your medical apparatus design, you should choose a material with a small bulk modulus to ensure it can be easily compressed when pressure is applied.

To know more about bulk modulus, click here

https://brainly.com/question/14070556

#SPJ11

in the ground state of hydrogen, the uncertainty in the position of the electron is roughly 0.10 nm. if the speed of the electron is approximately the same as the uncertainty in its speed, about how fast is it moving? m/s

Answers

The electron is moving at approximately 5.27 × 10^(-25) m/s (or 0.527 × 10^(-24) m/s) based on the given uncertainty in its speed.

The uncertainty principle states that there is a fundamental limit to how precisely we can know both the position and momentum of a particle. In the case of the ground state of hydrogen, if the uncertainty in the position of the electron is approximately 0.10 nm, we can use this information to estimate the uncertainty in its speed.

The uncertainty in the position (∆x) and the uncertainty in the momentum (∆p) are related by the following inequality: ∆x * ∆p ≥ h/4π, where h is the Planck constant.

Assuming the uncertainty in the position (∆x) is 0.10 nm (which is equivalent to 0.10 × 10^(-9) meters), we can rearrange the uncertainty principle equation to solve for the uncertainty in momentum (∆p). The equation becomes: ∆p ≥ h / (4π * ∆x).

Plugging in the values, we have: ∆p ≥ (6.626 × 10^(-34) J·s) / (4π * 0.10 × 10^(-9) m).

The uncertainty in momentum (∆p) is approximately equal to the uncertainty in the speed of the electron. So, we can use ∆p as an estimate of the electron's speed.

Calculating this, we get: ∆p ≥ 5.27 × 10^(-25) kg·m/s.

Learn more about electron  here:-

https://brainly.com/question/12001116

#SPJ11

Other Questions
a. wrap 20 coils of the wire around your metal bolt (or nail), leaving a lot of wire on both sides. do not hook it up to the battery yet. Suppose China allows the yuan to appreciate relative to the dollar. This relatively weaker dollar willincrease SRAS in the USdecrease SRAS in the USincrease AD in the USdecrease AD in the US Amy and Lester are partners in operating a store. Without consulting Amy, Lester enters into a contract to purchase merchandise for the store. Amy contends that she did not authorize the order and refuses to pay for it. The vendor sues the partners for the contract price of the merchandise. A. Must the partnership pay for the merchandise? Why? B. Does your answer to part a differ if Amy and Lester are partners in a public accounting firm? Explain "Aye,whos to be the hero of the night?"said the gentleman with the ruined head. How does this show gothic fiction Four students are sitting at a train crossing listening to the horn of a train as it approaches the crossing, continues past, and proceeds away from the crossing. Which of the students best explains the changing sounds in terms of Doppler Effect ? the ellipse x^2/a^2+y^2/b^2=1 a>b is rotated about the x-axis to form a surface called an ellipsoid. find the surface area of this ellipsoid draw the neutral organic product that results from the given reaction. include all hydrogen atoms. by solving the square completely what is x^2-6x=40-9x hw10 q4. what effect will increasing the page size of a virtual memory system likely have on the hit rate of the tlb? state your answer. after two newlines, give your reasoning. Once housing prices stopped increasing in 2007, refinancing: Multiple Choice was no longer an option, and a wave of foreclosures occurred. only occurred through higher risk, subprime loans. allowed people to convert housing equity into more liquid forms of saving. became more popular, and people's consumption accelerated overall What is number of maximum number of virtual processors for each of thefollowing Hyper-V guest servers?Answer by a number such as 16.1. Windows Server 2008 R22. Red Hat Enterprise Linux 5.7 and 5.83. Windows Server 2003 with Service Pack 2 (SP2) If f is an increasing and g is a decreasing function and fog is defined, then fog will be____a. Increasing functionb. decreasing functionc. neither increasing nor decreasingd. none of these consider this initial rate data at a certain temperature in the table for the reaction ocl(aq) i(aq)oh(aq)oi(aq) cl(aq) Mariana is making a large pot of pasta. she mixes together 518 pounds of pasta, 6 pounds of sauce, and 478 pounds of onions.to find out how many 12 pound servings can she make, which two equations would you need? Assume Siorapaluk and Ikuo propose a corporate merger because they think together they can make the best kiviaq the world will ever know. Calculate the new HHI if the merger were to occur. Siorapaluk: 46% Ikuo: 24% kivitoo: 14% Taloyoak: 11% Auk: 5% Spada, an Oregon corporation, agreed to sell Belson, who operated a business in Chicago, Illinois, two carloads of potatoes at "$4.40 per sack, FOB Oregon shipping point." Spada had the potatoes put aboard the railroad cars; however, he did not have floor racks used in the cars under the potatoes as is customary during winter months. As a result, there was no warm air circulating and the potatoes were frozen while in transit. Spada claims that his obligations ended with the delivery to the carrier and that the risk of loss was on Belson. What argument would you make for Belson?Please dont use other chegg asnwers, will give thumbs up, ty a sample of 1.00 mol of gas in a 8.00 l container is at 45.0 c. what is the pressure (in bar) of the gas? If 1100 dollars is invested at an annual interest rate r compounded monthly, the amount in the account at the end of 3 years is given by 36 A = 1100 1+ 12") 1 12 Find the rate of change of the amount A with respect to the rate r for the following values of r: r = 3 percent: r = 6.5 percent: If the page fault rate is 0.1. memory access time is 10 nanoseconds and average page fault service time is 1000 nanoseconds, what is the effective memory access time? a. 109 nanoseconds b.901 nanoseconds OC 910 nanoseconds d. 900 nanoseconds Consider an ordinary rivalrous good, provided in a competitive market. At the socially optimal level of provision of this good, the marginal A) cost of production of this good is zero. B) cost of production of the last unit of the good is equal to all consumers' combined marginal willingness to pay. C) sacrifice society needs to make to supply the last unit of the good is more than each consumer's marginal willingness to pay. D) cost of production of the last unit of the good is equal to the consumers marginal willingness to pay. E) cost of production of the last unit of the good is more than all consumers combined marginal willingness to pay,