Solution :
A). As the time passes the temperature of the coffee tends to acquire the temperature of the room, so the limiting value of the temperature of the coffee is 20°C. i.e.
[tex]$\lim_{t \to \infty} T(t)=20$[/tex]
B). And limiting value of rate of cooling is given by :
[tex]$\lim_{t \to \infty} \ \frac{dT}{dt} =\lim_{t \to \infty} \ [k(T-T_{room})] $[/tex]
[tex]$=k . \lim_{t \to \infty} (T-T_{room})$[/tex]
[tex]$=k .[ \lim_{t \to \infty} T-\lim_{t \to \infty} T_{room}]$[/tex]
[tex]$=k.[T_{room}-T_{room}]$[/tex]
= k. 0
= 0
C). Given, [tex]$\frac{dT}{dt} = -1, $[/tex] when T(t) = 70° using this in the given equation,
-1 = k.(70-20)
k = -0.02
D). By Euler method, we get
[tex]$T_{n+1}=T_n + h \ f(t_n, T_n)$[/tex]
[tex]$t_{n+1}=t_n +h$[/tex]
where, [tex]$f(t,T) =k(T-T_{room})$[/tex]
= -0.02(T - 20)
We have [tex]$T_0 = 90^\circ$[/tex] at t = 0 and h = 2.
So [tex]$t_1 = 0+2 = 2$[/tex]
∴ [tex]$T_1=T_0 + h \ f(t_0,T_0)$[/tex]
= 90+2[-0.02(90-20)]
= 87.2
At [tex]$t_2 = 2+2 = 4$[/tex]
[tex]$T_2=T_1 + h \ f(t_1,T_1)$[/tex]
= 87.2+2[-0.02(87.2-20)]
= 84.51
At [tex]$t_3 = t_2+2 = 4+2=6$[/tex]
[tex]$T_3=T_2 + h \ f(t_2,T_2)$[/tex]
= 84.51+2[-0.02(84.51-20)]
= 81.93
At [tex]$t_4 = t_3+4 = 6+2=8$[/tex]
[tex]$T_4=T_3 + h \ f(t_4,T_4)$[/tex]
= 81.93+2[-0.02(81.93-20)]
= 79.45
At [tex]$t_5 = t_4+2 = 8+2=10$[/tex]
[tex]$T_5=T_4 + h \ f(t_4,T_4)$[/tex]
= 79.45+2[-0.02(79.45-20)]
= 77.07
So after 10 minutes, the temperature of the coffee will be 77.07°C.
What is the simplest form of the expression?
✓4502 +502 + 425
Assume all variables are positive.
Answer:
A. [tex] 8x\sqrt{5} [/tex]
Step-by-step explanation:
Given:
[tex] \sqrt{45x^2} + \sqrt{5x^2} + 4x\sqrt{5} [/tex]
Required:
Simplify
[tex] \sqrt{9*5*x^2} + \sqrt{5*x^2} + 4x\sqrt{5} [/tex]
[tex] 3x\sqrt{5} + x\sqrt{5} + 4x\sqrt{5} [/tex]
Add like terms
[tex] 8x\sqrt{5} [/tex]
Draw a model to show 3/4 of 16.
Answer:
Draw a box and split it into four pieces. Write 4 in each of those pieces. Put a "{" or "}" around 3 of them. Next to it write. 4 x 3 OR 4 + 4 + 4 = 12
Step-by-step explanation:
Draw a box and split it into four pieces. Write 4 in each of those pieces. Put a "{" or "}" around 3 of them. Next to it write. 4 x 3 OR 4 + 4 + 4 = 12
Hope that helps!
Can anyone tell me what 9/2 simplified completely is??
Answer:
You can't simplify 9/2, but 9/2 as a mixed number is 4 1/2
hope this helped
Step-by-step explanation:
Answer:
You can't simplify 9/2, but 9/2 as a mixed number is 4 1/2
Step-by-step explanation:
3(x - 5) = 15
Unknown variable
Answer: x = 20/3 = 6.667
Step-by-step explanation:
Solve : 3x-20 = 0
Add 20 to both sides of the equation :
3x = 20
Divide both sides of the equation by 3:
x = 20/3 = 6.667
7 19/22-1 8/11 how do you subtract fractions?
A catering service offers 11 appetizers, 7 main courses, and 4 desserts. A customer is to select 9 appetizers, 5 main courses, and 2 desserts for a banquet. In how many ways can this be done?
Based on the various meals offered by the catering service, the ways that the order can be done is 6,930 ways..
How many ways can the food be served?This can be found as:
= (11! / (9!2!)) x (7! / (5!2!)) x (4! / (2!2!)
= 55 x 21 x 6
= 6,930 ways
In conclusion, the order can be made in 6,930 ways.
Find out more on permutations at https://brainly.com/question/1216161.
#SPJ1
Take a two digit number represented by ab, such that neither a nor b is zero and a is not equal to b. Reverse the digits and add the result to the original number. Divide this sum by a+b. What is the quotient?
Answer:
11
Step-by-step explanation:
We can have any. two numbers that represent a and b
It CANT BE THIS FOLLOWING
A AND B CANT BE ZERO SO WE CAN USE MULTIPLES OF 10
A CANT BE EQUAL TO B SO WE CANT USE MULTIPLES OF 11( ALL THE WAY UP TO 99 BUT WE CANT USE ANY NUMBER AFTER THAT SINCE NUMBERS THAT COME AFTER 99 ARE THREE DIGIT NUMBER)
Let use 5 and 6.
56
Reverse the digits
65
add 56 to 65
121
Divide this by 6+5=11
The answer is 11 This vary for all answers let use 1,7
17 then reverse
71 then add 71 and 17
88 then divide by 1+7=8
11
The quotient is 11.
Step-by-step explanation:
Given:
A two-digit number,'ab'.
Where a and b are non-zero and are unequal to each other.
To find:
Quotient after dividing the sum of the given digit and its reverse with(a+b).
Solution:
The given digit = [tex]ab = (10a+b)[/tex]
[tex]Where:\\a \neq b, a\neq 0,b\neq 0[/tex]
On reversing the given digit =[tex]ba = (10b +a)[/tex]
Now adding the given digit and its reverse:
[tex]= ab +ba = (10a+b)+(10b+a)\\=(11a+11b)=11(a+b)[/tex]
Diving the sum with (a+b):
[tex]=\frac{11(a+b)}{(a+b)}=11[/tex]
The quotient is 11.
Learn more about algebra here:
brainly.com/question/953809?referrer=searchResults
https://brainly.com/question/21261790?referrer=searchResults
Select the correct answer from each drop-down menu .
Answer:
Fountain= 147.65 square yards
path= 28.28 square yards
Step-by-step explanation:
pi*47 <---square root cancels out the square
=147.65
pi*56=175.93
175.93-147.65=28.28
Can you solve question 6 and 8 i need it for my math homework
True or False Directions: Determine whether each statement below is correct or incorrect. Justify your response with a calculation, a description using complete English sentences, or a combination of both. If a statement is incorrect, make sure to include what the error is and state what the student should have done to evaluate the integral correctly in your explanation. All calculations must be done by hand and proper notation must be used. Correct responses with insufficient justification or that rely on technology will earn no credit.
A. [8 pts) Morgan claims that the improper integral * 4.re -2- dr converges to 1. esca 8
B. (8 pts] Avery is asked to compute dr and provides the following argument. (3 - 4.) 8 (3 - 4.0) (3 - 4.r) (-1) (3) lo dr =
Answer:
(A) true.
(B). False.
Step-by-step explanation:
(A). F(x) = 4xe^-2x.
Let's make the assumption that 2x = b -----------------------(1).
Therefore, taking the differentiation with respect to x, we have;
2x dx = db.
The next thing thing to do is to integrate, taking the upper limit to be infinity and the lower limit to be zero:
∫( b e^-b db).
Changing the Lim. infinity = 2.
= ∫( b e^-b db). ----------------------------(2).
The step (2) above can be solve with Integrations by part;
Lim. 2 ---> infinity [ b e^-b + ∫( 1 e^-b db|
( | = Upper boundary = 2 and the lower boundary = 0).
Lim. 2 ----> infinity [ 2 e^-2 - 0] - lim. 2 --> infinity [ 0 - 1].
Lim 2 ---> infinity [ 2/e^2 + 1].
Let 2/e^2 = j.
The, lim 2 ---> infinity j + 1.
To solve this, there is need to make use of L'hospital rule,
j = Lim 2 ---> infinity [ 1 /e^2] = 0.
Thus, j = 0. And 0 + 1 = 1.
(PROVED TO BE TRUE).
(B). Taking limit from 1 (upper) to 0( lower). Assuming that b = 3 - 4x.
Therefore, -4dx = db.
∫( 8 /(3 - 4x)^3 dx.
Taking the upper boundary = -1 and the lower boundary = 3.
∫ ( - 2db/ b^3.
= 2 ∫ ( - db/ b^3.
= 2 [ b^-3 + 2) / -3 + 1.
= 2 | - 1/ 2 db
= 8/9.
Not true.
A genetic experiment with peas resulted in one sample of offspring that consisted of 427 green peas and 161 yellow peas.
a. Construct a 90% confidence interval to estimate of the percentage of yellow peas.
b. Based on the confidence interval, do the results of the experiment appear to contradict the expectation that 25% of the offspring peas would be yellow?
No, the confidence interval includes 0.25, so the true percentage could easily equal 25%
O Yes, the confidence interval does not include 0.25, so the true percentage could not equal 25%
a. Construct a 90% confidence interval. Express the percentages in decimal form.
Using the z-distribution, we have that:
a) The confidence interval is: (24.33%, 30.37%).
b) The correct option is: No, the confidence interval includes 0.25, so the true percentage could easily equal 25%.
What is a confidence interval of proportions?A confidence interval of proportions is given by:
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which:
[tex]\pi[/tex] is the sample proportion.z is the critical value.n is the sample size.In this problem, we have a 90% confidence level, hence[tex]\alpha = 0.9[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.9}{2} = 0.95[/tex], so the critical value is z = 1.645.
The other parameters are given as follows:
[tex]n = 427 + 161 = 588, \pi = \frac{161}{588} = 0.2735[/tex]
Then the bounds of the interval are:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2735 - 1.645\sqrt{\frac{0.2735(0.7265)}{588}} = 0.2433[/tex]
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2735 + 1.645\sqrt{\frac{0.2735(0.7265)}{588}} = 0.3037[/tex]
As a percentage, the interval is: (24.33%, 30.37%).
25% is part of the interval, hence the correct statement is:
No, the confidence interval includes 0.25, so the true percentage could easily equal 25%.
More can be learned about the z-distribution at https://brainly.com/question/25890103
#SPJ1
The admission fee at an amusement park is $1.50 for children and $4 for adults. On a certain day, 316 people entered the park, and the admission fees collected totaled 924.00 dollars. How many children and how many adults were admitted
Answer: pretty sure
There were 108 children and 175 adults.
(1 point)
Carlos measured the rainfall amounts, in inches, in his town for one week. The amounts were
0.1, 0.5, 0, 0.32, 0, 0, 1.5, and 0. What is the outlier in this set of data?
Oo
00.1
O 0.32
O 1.5
:
Knowing the average monthly rainfall for a location is helpful when you're packing for a ... Add together all of the monthly rainfall totals in your sample data. ... in inches because rainfall is generally measured in inches in the United States. ... is to maintain the linear relationship of the formula, since there is no 0 BC or 0 AD
Which ordered pair is a solution of the inequality?
y > 4x - 5
Answer:
(1,1)
Step-by-step explanation:
There are 8 marbles in a bag, all of different colors. In how many orders can 4 marbles be chosen? In other words, what is the
number of permutations of picking 4 marbles from the bag?
A
1680
B
70
С
40320
I got 70
Combination=n!/((n-r)!r!)
=8!/((8-4)!*4!)
=8*7*6*5*4!/(4!*4!)
=8*7*6*5/(4*3*2)
=70 ways
Help!!!
d - ⅔d = -⅚n
Answer:
n = -5/2d or d = -5n/2
Step-by-step explanation:
The eccentricity of the conic section shown is
Answer:
1
Step-by-step explanation:
This is a U shaped graph, so the shape is a parabola
Eccentricity of any parabola is 1.
Answer:
Step-by-step explanation:
Just for some extra confrontation indeed the correct answer is 1.
Giving a test to a group of students, the grades and gender are summarized below
A B C Total
Male 4 11 15 30
Female 12 19 16 47
Total 16 30 31 77
If one student is chosen at random,
Find the probability that the student was male AND got a "A".
Answer:
id
Step-by-step explanation:
Answer:
0.052
Step-by-step explanation:
[tex]P=\frac{4}{77}=.052[/tex]
The perimeter of a rectangular sheet is 100 cm. if the length is 35 cm, find its breadth. Also find the area.
Answer:
breadth: 15, area: 525
Step-by-step explanation:
Answer:
Breadth = 15cm
Area = 525cm^2
Step-by-step explanation:
We know that the perimeter of a rectangluar sheet is 100cm, and we know that the length is 35cm. We are then being asked to find the breadth and the area.
Use the information that we know to solve the breadth, get b alone :
Length = 35cm
2(l + b) = 100
Substitute :
2(35 + b) = 100
Divide 2 from both sides :
35 + b = 50
Subtract 35 from both sides :
b = 15cm
Now for the area :
Area = Length * Breadth
Substitute :
A = 35 * 15
A = 525cm^2
1.The time taken to complete a motorcycle race is normally distributed, with an average time (µ) of 2.5 hours and a standard deviation (sigma) of 0.5 hours.
What is the probability that a randomly selected cyclist will take between 2.35 and 2.45 hours to complete the race?
Using the normal distribution, there is a 0.0781 = 7.81% probability that a randomly selected cyclist will take between 2.35 and 2.45 hours to complete the race.
Normal Probability DistributionThe z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The z-score measures how many standard deviations the measure is above or below the mean. Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.The mean and the standard deviation are given, respectively, by:
[tex]\mu = 2.5, \sigma = 0.5[/tex].
The probability that a randomly selected cyclist will take between 2.35 and 2.45 hours is the p-value of Z when X = 2.45 subtracted by the p-value of Z when X = 2.35, hence:
X = 2.45:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{2.45 - 2.5}{0.5}[/tex]
Z = -0.1
Z = -0.1 has a p-value of 0.4602.
X = 2.35:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{2.35 - 2.5}{0.5}[/tex]
Z = -0.3
Z = -0.3 has a p-value of 0.3821.
0.4602 - 0.3821 = 0.0781.
0.0781 = 7.81% probability that a randomly selected cyclist will take between 2.35 and 2.45 hours to complete the race.
More can be learned about the normal distribution at https://brainly.com/question/4079902
#SPJ1
You roll a 6-sided die.
What is P(2)?
Write your answer as a fraction or whole number.
Answer: The probability of rolling a 2 on a 6-sided die is 1/6.
Step-by-step explanation:
The probability of getting 2 on the die P(2) is 1/6.
What is probability?Probability is the chance of occurrence of a certain event out of the total no. of events that can occur in a given context.
Given, We roll a six-sided die,
So, Sample space N(S) = 1, 2, 3, 4, 5, 6 = 6.
N(2) = 1
∴ The probability of getting the number 2 when we throw a die is
P(2) = N(2)/N(S).
P(2) = 1/6.
learn more about probability here :
https://brainly.com/question/743546
#SPJ2
Find the Simple Intrest on
#60,000.00 for 3 years at
5% per annum
Answer:
the ans is 9000
Step-by-step explanation:
simple interest= 60000*3*5/100
Which of the following is the constant in the equation below:
16x + 42 = 78
16x
16
42
78
which number can be placed in the box to the
1 x 0 < 7 /
multiplying a fractions that
we
multiplying a fraction by all sake the
tolgatan greater than the
Les resep vieg traction greater than it
Answer:
A
Step-by-step explanation:
For the equation to be true, any number that would be multiplied by 7/5 should give us a number that is less than 7/5.
This means any number we are going to use to multiply 7/5 must not be less than 1.
²/3 is less than 1.
Let's multiply and see:
⁷/5 × ⅔ < ⁷/5
14/15 < ⁷/5 (this is true because ⁷/5 is greater than 14/15)
Therefore, the answer is A.
NEEEEEEEDDDD HELPPPPPPP ASAPPPPPPPPP
The true statement about the diagram is (a) IJ ≅ JG
How to determine the true statement?From the question, we understand that:
KH bisects line IG at point J
This means that:
Line segment IG is divided into two equal parts, and point J is the middle
So, we have:
IJ ≅ JG
Hence, the true statement about the diagram is (a) IJ ≅ JG
Read more about perpendicular bisector at:
https://brainly.com/question/24753075
#SPJ1
i am a number with the prime factorization of a cube of a certain number and a square of 5 if may product is 200 what is the cube of may other prime number
need help
Answer:
The other prime number is 2.
Step-by-step explanation:
Prime factorization of a cube of a certain number and a square of 5
The number we dont know is x, so we have:
[tex]x^3 \times 5^2 = 25x^3[/tex]
The product is 200. What is the other prime number?
So
[tex]25x^3 = 200[/tex]
[tex]x^3 = \frac{200}{25}[/tex]
[tex]x^3 = 8[/tex]
[tex]x = \sqrt[3]{8}[/tex]
[tex]x = 2[/tex]
The other prime number is 2.
Which of these is equal to ⅔ × ¾ × ⅗?
Answer:
3/10
Step-by-step explanation:
Just multiply all of the numerators (top numbers) and then multiple all of the denominators (bottom numbers)
2/3x3/4x3/5 would be 18/60 Then take any number that is a factor to both 18 and 60 and divide both numbers by that factor. I could use 2 or 3 or 6 because both 18 and 60 is divisible by any of these numbers. I will choose 3. I will divide the top and bottom of 18/60 by 3 to get 6/20, now I will divide the top and bottom of that number by 2 to get 3/10
[tex]\huge\text{Hey there!}[/tex]
[tex]\huge\textbf{Equation:}[/tex]
[tex]\mathsf{\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{3}{5}}[/tex]
[tex]\huge\textbf{Simplifying:}[/tex]
[tex]\mathsf{\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{3}{5}}[/tex]
[tex]\mathsf{= \dfrac{2\times3\times3}{3\times4\times5}}[/tex]
[tex]\mathsf{= \dfrac{6\times3}{12\times5}}[/tex]
[tex]\mathsf{= \dfrac{18}{60}}[/tex]
[tex]\mathsf{= \dfrac{18\div3}{60\div 3}}[/tex]
[tex]\mathsf{= \dfrac{6}{20}}[/tex]
[tex]\mathsf{= \dfrac{6\div2}{20\div2}}[/tex]
[tex]\mathsf{= \dfrac{3}{10}}[/tex]
[tex]\huge\textbf{Therefore, your answer should be:}[/tex]
[tex]\huge\boxed{\frak{\dfrac{3}{10}}}\huge\checkmark[/tex]
[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]Find the area of the shaded region.
Answer:
3/2x²+28x+130
Step-by-step explanation:
Area of shaded region = Area of rectangle – Area of triangle
Area of rectangle:
[tex](2x + 15)(x + 10) = \\2x {}^{2} + 35x + 150[/tex]
Area of triangle:
[tex] \frac{1}{2 } \times (x + 4)(x + 10) = \\ \frac{1}{2} x {}^{2} + 7x + 20[/tex]
then subtract
Help plzzzz helppp heppppdidjjdhjrbrbfnd meeee
Answer:
The large one
Step-by-step explanation:
If she used the WHOLE thing in the large one and HALF in the smaller one then that means there is more in the large one and that it is more choclete.
Answer:
The larger one!
Step-by-step explanation:
Simplify
√(32x^3 y^4 )
Answer:
4xy^2√2x
Step-by-step explanation:
Answer:
4xy²[tex]\sqrt{2x}[/tex]
Step-by-step explanation:
√32x³y^4 can be broken down to:
√4√4√2√x²√y²√y²√x which can be simplified to be:
4xy²√2x