The bus will arrive at the beach by 9:05 am. To calculate the arrival time of the bus, we need to add the travel time to the departure time.
First, we need to convert the departure time of 8:30 am to minutes.
8:30 am = 8 x 60 + 30 = 510 minutesThen, we add the travel time of 35 minutes to the departure time:
510 + 35 = 545 minutesFinally, we convert the arrival time back to hours and minutes:
545 ÷ 60 = 9 with a remainder of 5So the bus will arrive at 9:05 am.
Learn more about Time:
https://brainly.com/question/26046491
#SPJ4
a) What is the mean proportional between 3 and 12?
b) What is the geometric mean of 3 and 12?
Answer:
a. 6
b. 6
Step-by-step explanation:
A. mean proportion
3:x::x:12
product of mean = product of extreme
3 x 12 = x^2
x^2= 36
now take square root on both sides
x = 6
as sqaure root will cancel the square on x and square root of 36 is 6.
B. the geometric mean is the product of all
the numbers in a set, with the root of how many numbers there are. here, there are two numbers, so a square root is used. the value of the geometric mean of 3 and 12 is 6.
Hope's it helps...
juan mcdonald is willing to pay $900 for a new ipad. he offers to pay $800 for an ipad at the apple store. it costs apple $700 to produce this ipad. a voluntary economic transaction between juan and apple occur because would be better off due to the transaction. a. will not; only apple b. will; both juan and apple c. will not; only juan d. will; neither juan nor apple
In the following question, option B, Juan McDonald is willing to pay $900 for a new iPad. he offers to pay $800 for an iPad at the apple store. it costs apple $700 to produce this iPad. A voluntary economic transaction between "Juan and Apple" will occur because it would be better off due to the transaction.
What is a voluntary economic transaction? Voluntary economic transactions involve willing buyers and willing sellers, and they usually involve the exchange of goods and services in return for money. In a free-market economy, people have the freedom to make voluntary economic transactions, and government intervention is minimal. What are the benefits of voluntary economic transactions? The benefits of voluntary economic transactions include the following: They are beneficial to both parties involved in the transaction.
The buyer obtains what they require, while the seller obtains the money they require. The exchange of goods and services for money encourages individuals to create, produce, and sell more. The economy is stimulated by increased economic activity, which leads to more job creation, more employment opportunities, and more revenue for the government. Juan McDonald is willing to pay $900 for a new iPad. He offers to pay $800 for an iPad at the Apple store. It costs Apple $700 to produce this iPad.A voluntary economic transaction between Juan and Apple will occur because it would be better off due to the transaction. So, the answer is option B: will; both Juan and Apple.
For more such questions on transaction
https://brainly.com/question/25263462
#SPJ11
Y=5x+17 Y=-2x+4 solve with substitution
Answer:
x = -13/7, y = 54/7
Step-by-step explanation:
- Set equations equal to each other
[tex]5x + 17 = -2x +4[/tex]
Add 2x to both sides
[tex]7x +17 = 4[/tex]
Subtract 17 from both sides
[tex]7x = -13[/tex]
divide both sides by 7
[tex]x = -13/7[/tex]
Then substitute x into one of the equations. I picked the first one.
[tex]y = 5 (-13/7) + 17[/tex]
I multiplied 5 by -13 to get -65/7. Then I turned 17 into sevenths: 17 x 7 = 119, so that's 119/7. 119 + -65 = 54, so 54/7 for y.
Let me know if this helped by hitting thanks or brainliest. If not, please comment and I'll get back to you ASAP!
what is the variance inflation factor measuring? (select all that apply) group of answer choices the variance of the error term how much the explanatory variables are associated with one another the variance of the coefficient estimates the collinearity of the explanatory variable
The Variance Inflation Factor (VIF) measures the degree of correlation or the collinearity of the explanatory variables.
VIF quantifies how much each explanatory variable is correlated with a linear combination of the other variables in a multiple regression model. This can help identify variables that are redundant, irrelevant, or harmful to the model's accuracy. The VIF is calculated for each explanatory variable by dividing the variance of the regression coefficient estimates by the variance of the regression coefficient estimates when that variable is excluded from the model.
If the VIF is greater than 1, it indicates that the variance of the regression coefficient estimate for that variable is inflated by the presence of the other variables, which reduces the model's accuracy. Therefore, a VIF greater than 1 is considered to be an indication of collinearity or multicollinearity in the explanatory variables. The VIF measures the degree of correlation or the collinearity of the explanatory variables, and it can identify variables that are redundant, irrelevant, or harmful to the model's accuracy.
Learn more about Variance Inflation Factor (VIF) here: https://brainly.com/question/28941844
#SPJ11
find bases for the null spaces of the matrices given in exercises 9 and 10. refer to the remarks that follow example 3 in section 4.2.
In summary, to find the null spaces of the matrices given in exercises 9 and 10, use the Gauss-Jordan elimination method and refer to the Remarks that follow example 3 in section 4.2 of the text. This will give the dimension of the null space and the number of free variables.
In exercises 9 and 10, the null space of the given matrices can be found by solving the homogeneous linear system of equations. In order to do this, use the Gauss-Jordan elimination method. Refer to example 3 in section 4.2 of the text for a detailed explanation. Afterwards, use the Remarks that follow the example to determine the dimension of the null space and the number of free variables.
The null space of a matrix is the set of all vectors that produce a zero vector when the matrix is multiplied by the vector. Therefore, to find the null space of a matrix, the homogeneous linear system of equations needs to be solved. The Gauss-Jordan elimination method involves adding multiples of one row to another to get a row with all zeroes. After this is done for all the rows, the equations can be solved for the free variables. The number of free variables will determine the dimension of the null space. Refer to example 3 in section 4.2 of the text for more details.
The Remarks that follow the example are important when determining the dimension of the null space and the number of free variables. In the Remarks, it is mentioned that the number of free variables is equal to the number of columns with a zero row. Therefore, after using the Gauss-Jordan elimination method to get the row with all zeroes, the number of columns with a zero row can be counted. This will give the dimension of the null space and the number of free variables.
for such more questions on Gauss-Jordan elimination
https://brainly.com/question/20536857
#SPJ11
This is a modification of A7 - Quadratic Approximation. Create a Matlab function called myta which takes four arguments in the form myta(f,n,a,b). Heref is a function handle, n is a nonnegative integer, and a and b are real numbers. The Matlab function should find the nth Taylor Polynomial to f(x) at x = a and plug in x = b, then it should return the absolute value of the difference between this value and f(b). The the nth Taylor Polynomial to f (x) is the function g(x) = f(a) + f'(a)(x – a) += f'(a)(x – a)? + 1 1 f''(a)(x – a)3 + + f(n)(a)(x – a)". 1 3! n! 3 Here are some samples of input and output for you to test your code. When you submit your code the inputs will be different. Here vpa is being used to show lots of digits
As we have defined the Matlab function called myta which takes four arguments in the form myta(f,n,a,b).
The purpose of the function is to find the nth Taylor polynomial of the function f(x) at x = a and evaluate it at x = b. Then, it should return the absolute value of the difference between this value and f(b).
Now that we have the nth Taylor polynomial of f(x) at x = a, we can evaluate it at x = b and calculate the absolute difference between this value and f(b).
function result = myta(f,n,a,b)
syms x; % define x as symbolic variable
g = f(a); % initialize g as f(a)
for i=1:n % iterate from 1 to n
deriv = diff(f,x,i-1); % calculate the ith derivative of f
term = deriv*(x-a)^(i-1)/factorial(i-1); % calculate the ith term of the Taylor series
g = g + term; % add the ith term to g
end
result = abs(g - f(b)); % calculate the absolute difference between g(b) and f(b)
end
This code calculates the absolute difference between g(b) and f(b) using the "abs" function and assigns it to the output variable "result".
To know more about function here
https://brainly.com/question/28193995
#SPJ4
Find the value of x.
Answer:
x=1.9
Step-by-step explanation:
[tex]\frac{x}{4.6} =\frac{4.6}{11}[/tex]
[tex]11x=21.16[/tex]
[tex]X=1.9[/tex]
what is the value of y in the solution to the system of equations below.
y=-x+6
2x-y=-9
Answer:
I gave a couple solutions as I wasn't sure if you were asking for graphing purposes or substituting y=-x+6 into the second equation 2x-y=-9. So I gave both solutions just in case.
for the first equation y=-x+6, y intercept is (0,6)
for equation two 2x-y=-9, y intercept is (0,9)
In both of the equations the x value is 1.
Solving for y without graphing. Y=9+2x
and x=-1
Step-by-step explanation:substitute i
HOWEVER, if you are saying that the top equation is the value of y, then you substitute it into the bottom equation. 2x--x+6=-9 which would be x=-5
It really depends on what is expected of the question. I wasn't sure which one, so I gave a couple different approaches. If you could give more information, such as, are you graphing, that would be great. I'll keep an eye out for any comments.
Proving Triangle Similarity
The proof is completed using two column proof as follows
Statement Reason
QT ⊥ PT Given
∠ QRP ≅ ∠ SRT = 90 definition of perpendicularity
∠ QPR ≅ ∠ STR Given
Δ PQR is similar to Δ TSR AA similarity theorem
What is AA similarity theorem?The AA similarity theorem, also known as the Angle-Angle Similarity Theorem, states that if two triangles have two corresponding angles that are congruent, then the triangles are similar.
In the given triangle, the two angles given to be equal are
∠ QRP ≅ ∠ SRT = 90 and ∠ QPR ≅ ∠ STRHence the triangles are similar
Learn more about AA similarity theorem at:
https://brainly.com/question/26462153
#SPJ1
Answer:
:)
Hopefully this helps you guys :)
good luck :D
Can you help me with this question please.
Answer:
[tex]x = 4\sqrt{3}[/tex]
Step-by-step explanation:
The triangle is right-angled
In a right-angled triangle, the following equality holds
[tex]\tan x = \dfrac{\text{Side Opposite x}}{\text{Side adjacent to x}}\\\\\tan 30 = \dfrac{4}{x}\\\\[/tex]
[tex]\tan 30 = \dfrac{1}{\sqrt{3}}\\\\\dfrac{1}{\sqrt{3}} = \dfrac{4}{x}\\\\[/tex]
Cross multiply:
[tex]1 \times x = 4 \times \sqrt{3}\\\\x = 4\sqrt{3}[/tex]
What value of z should we use when making a 93% confidence interval for p? A. 1.48 B. It's impossible to make a 93% CI. C. 2.70 D. 1.81
The value of z that should be used when making a 93% confidence interval for p is Z=1.81 that is option D.
The z score is a measure of how many standard deviations a raw score is below or above the population mean. It will be positive if the value is more than the mean and negative if it is less than the mean. It is often referred to as the standard score. It represents the number of standard deviations an entity has from the mean.
To utilise a z-score, both the mean and the population standard deviation must be known. The z score calculates the likelihood of a score occuring within a standard normal distribution. It also allows us to compare scores from various samples. A table for the values of, representing the values of the cumulative distribution function of the normal distribution, is known as a
At 93% confidence, the significance level is,
ɑ= 1-0.93
ɑ= 0.07
Divide alpha by 2,
ɑ/2= 0.07/2= 0.035
Now, from the ‘normal probability’ table, the z value corresponding to the inverse probability of 0.035 is 1.81.
As a result, the z value is 1.81 at 93% confidence level.
z= 1.81
The value for z score is 1.81
Learn more about Confidence interval :
https://brainly.com/question/27325376
#SPJ4
A triangle has a side that is 5 inches long that is adjacent to an angle of 61. In addition, the side oppositethe 61 angle is 4,8 inches long. There are two triangles with these measurements. For each one,determine the other two angles of the triangle and the length of the third side..acute:(a) The triangle in which the angle opposite the 5-inch side-The angle between the two given sides measuresnearest tenth of a degree.)The third angle measuresThe remaining side is approximatelyan inch.)(b) The triangle in which the angle opposite the 5-inch side is obtuse:The angle between the two given sides measuresnearest tenth of andegree.)WThe third angle measuresThe remaining side is approximatelyan inch.)degrees. (Round to thedegrees. (Round to the nearest tenth of a degree.)Ainches long. (Round to the nearest tenth ofdegrees. (Round to thedegrees. (Round to the nearest tenth of a degree.)inches long. (Round to the nearest tenth of an inch
The two remaining angles are 58°, and the length of the third side of the triangle is 6.5 inch.
In order to determine the other two angles of each triangle as well as the length of the third side, we need to use the Cosine Rule. According to the Cosine Rule, for any triangle with sides of length a, b, and c, and angles of A, B, and C, the following equation holds:
[tex]c^2 = a^2 + b^2 - 2ab cos(C)[/tex]
For the first triangle, we are given that the side of length 5 is adjacent to an angle of 61°. Therefore, a = 5, C = 61°. Using the information provided, we can also determine that b = 4.8. Substituting these values into the Cosine Rule equation, we get:
[tex]c^2 = (5)^2 + (4.8)^2 - 2(5)(4.8) cos(61°)[/tex]
We can solve this equation to get c = 6.5. Therefore, the length of the third side in the first triangle is 6.5. Additionally, we can use the Triangle Angle Sum theorem to determine the other two angles. According to this theorem, the sum of the three angles of a triangle is 180°. Therefore, for the first triangle, the two remaining angles are 180 - 61 - (180 - 61) = 58°.
For the second triangle, we use the same process, but with the given side lengths reversed. That is, we set a = 4.8, b = 5, and C = 61°. Again, substituting these values into the Cosine Rule equation, we get:
[tex]c^2 = (4.8)^2 + (5)^2 - 2(4.8)(5) cos(61°)[/tex]
We can solve this equation to get c = 6.5. Therefore, the length of the third side in the second triangle is also 6.5. We can use the Triangle Angle Sum theorem again to determine the other two angles. Again, for the second triangle, the two remaining angles are 180 - 61 - (180 - 61) = 58°.
In conclusion, for each triangle, the two remaining angles are 58°, and the length of the third side is 6.5 inch.
Learn more about cosine rule: https://brainly.com/question/21568111
#SPJ11
Which of the following algorithms sorts data by recursively splitting the array into smaller sub-arrays, until eventually reaching single-element sections, and then joins the sub-arrays back together in sorted order? A Heap Sort B Quick Sort Merge Sort (D Radix Sort
B) Quick Sort is algorithms sorts data by recursively splitting the array into smaller sub-arrays, until eventually reaching single-element sections, and then joins the sub-arrays back together in sorted order
What is Merge Sort Algorithm?Merge Sort is an effective algorithm for sorting the data items of a list or an array. This algorithm's fundamental idea is to break the unsorted list into many sub-lists until every sub-list contains only one item.
The merging procedure then recombines all of the sublists, resulting in a sorted list. Divide-and-conquer is the name given to this merging process. Merge Sort divides the original list into N sublists, each of which contains one element.
The Merge Sort algorithm is faster than other sorting algorithms when it comes to time complexity. The time complexity of Merge Sort is O (n log n), which is better than Bubble Sort and Insertion Sort.
It is a more efficient sorting algorithm than other algorithms, such as bubble sort, which has a higher time complexity of O (n²).
Therefore, we can say that Merge Sort is the most efficient algorithm to sort an array in ascending or descending order.
Learn more about Merge Sort Algorithm at
https://brainly.com/question/13152286
#SPJ11
Find the distance between A and B.
A. 4 (square root of 7) units
B. 11 units
C. (Square root of 14) units
D. (Square root of 130) units
Answer:
I think it's answer is no.B
Determine the overall resistance of a 100-meter length of 14 AWA (0.163 cm diameter) wire made of the following materials. a. copper (resistivity = 1.67x10-8 O•m) b. silver (resistivity = 1.59x10-8 O•m) c. aluminum (resistivity = 2.65x10-8 O•m) d. iron (resistivity = 9.71x10-8 O•m)
On the material was used, the 100-meter flex of 14 AWA wire's entirety would range. If the silver and copper cable are in 0.0013 and 0.0014, aluminum spans 0.002 and 0.004, and iron is between 0.007 and 0.008
What is a case of resistance?A force that works to slow something down or halt its progress: The air/wind drag slowed the vehicle down. the extent to which a material obstructs an electric charge from passing through it: There is little reluctance in copper.
The resistance (R) of a wire is given by the formula:
R = (ρ x L) / A
where:
ρ is the resistivity of the material
L is the length of the wire
A is the wire's cross-sectional size.
The cross-sectional area (A) of a wire with diameter d is given by the formula:
A = π x (d/2)²
where pi is a number in mathematics. (approximately equal to 3.14).
For a 100-meter length of 14 AWA wire with diameter 0.163 cm, we first need to convert the diameter to meters:
d = 0.163 cm = 0.00163 m
The cross-sectional area of the wire is then:
A = π x (0.00163/2)² = 2.087 x 10⁻⁶ m²
Using this value of A and the given resistivities, we can calculate the resistance for each material:
For copper:
R_copper = (1.67 x 10⁻⁸ O•m x 100 m) / (2.087 x 10⁻⁶ m²) = 0.00134 Ω
For silver:
R_silver = (1.59 x 10⁻⁸ O•m x 100 m) / (2.087 x 10⁻⁶ m²) = 0.00128 Ω
For aluminum:
R_aluminum = (2.65 x 10⁻⁸ O•m x 100 m) / (2.087 x 10⁶ m²) = 0.00199 Ω
For iron:
R_iron = (9.71 x 10⁻⁸ O•m x 100 m) / (2.087 x 10⁻⁶ m²) = 0.00735 Ω
Therefore, the overall resistance of the 100-meter length of 14 AWA wire made of these materials would depend on which material was used. If copper or silver were used, the resistance would be relatively low, around 0.0013-0.0014 Ω. If aluminum were used, the resistance would be higher, around 0.002 Ω. If iron were used, the resistance would be much higher, around 0.007 Ω.
To know more about Resistance visit:
https://brainly.com/question/17563681
#SPJ1
ax+by=ac
make 'a' as the subject
The required equation in terms of 'a' is: a = (ac - by)/x.
What is Subject in equation?The number being calculated is the formula's subject. On one side of the equals symbol, it is identifiable as the letter on its own.
According to question:To make 'a' the subject of the equation:
Ax + by = ac
we can start by isolating 'a' on one side of the equation.
Ax = ac - by
Then, we can divide both sides by 'x':
a = (ac - by)/x
Therefore, the equation in terms of 'a' is:
a = (ac - by)/x
To know more about equation visit:
brainly.com/question/28243079
#SPJ1
Complete questiion:
Find the subject of the equation ax+by=ac.
Simplify the expression 3(x+2)+5x and find the value of x=2
Answer:
12.
Step-by-step explanation:
Given: 3(x + 2) + 5x
Put in x:
3(2 + 2) + (5 x 2)
(3 x 4) + 10
12 + 10
= 12.
find the volume v of the solid obtained by rotating the region bounded by the given curves about the specified line. calculatot
Therefore, the volume of the solid obtained by rotating the region bounded by the curves y = x^2, y = 0, x = 0, and x = 1 about the line x = 2 is (5/6)π cubic units.
To find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line, we use the method of cylindrical shells. The formula for the volume of a cylindrical shell is given as,
Volume = 2πrh * Δx
Where, r is the distance of the shell from the axis of rotation, h is the height of the shell, and Δx is the thickness of the shell. The factor 2π accounts for the entire circumference of the shell.
Example problem: Find the volume of the solid generated by rotating the region bounded by the curves y = x^2, y = 0, x = 0, and x = 1 about the line x = 2.
Solution:
Step 1: Draw the graph of the region to be rotated
Step 2: Identify the shell radius and height
For a shell at position x, the radius is given by r = 2 - x (the distance of the line x = 2 from the axis of rotation)
The height of the shell is given by h = x^2 (the difference between the top and bottom curves)
Step 3: Write the volume formula
Volume = 2πrh * Δx
Step 4: Integrate to find the total volume
The limits of integration are from 0 to 1 since the curves intersect at (0,0) and (1,1).
[tex]∫ 2π(2 - x)(x^2) dx from 0 to 1[/tex]
= [tex]2π [∫ 2x^2 - x^3 dx from 0 to 1][/tex]
= [tex]2π [(2/3) - (1/4)][/tex]
= 2π [5/12][tex]2π [5/12][/tex]
= (5/6)π cubic units
for such more questions on integration
https://brainly.com/question/22008756
#SPJ11
Consider the following exponential probability density function. f(x) = 1/3 4 e^-x/3 for x > 0 a. Write the formula for P(x < x_0). b. Find P(x < 2). c. Find P(x > 3). d. Find P(x < 5). e. Find P(2 <.x <5).
The probability that x is less than 2 is approximately 0.4866. The probability that x is greater than 3 is approximately 0.3528. The probability that x is less than 5 is approximately 0.6321. The probability that x is between 2 and 5 is approximately 0.1455.
The given probability density function is an exponential distribution with a rate parameter of λ = 1/3. The formula for P(x < x_0) is the cumulative distribution function (CDF) of the exponential distribution, which is given by:
F(x_0) = ∫[0,x_0] f(x) dx = ∫[0,x_0] 1/3 * 4 * e^(-x/3) dx
a. Write the formula for P(x < x_0):
Using integration, we can solve this formula as follows:
F(x_0) = [-4e^(-x/3)] / 3 |[0,x_0]
= [-4e^(-x_0/3) + 4]/3
b. Find P(x < 2):
To find P(x < 2), we simply substitute x_0 = 2 in the above formula:
F(2) = [-4e^(-2/3) + 4]/3
≈ 0.4866
Therefore, the probability that x is less than 2 is approximately 0.4866.
c. Find P(x > 3):
To find P(x > 3), we can use the complement rule and subtract P(x < 3) from 1:
P(x > 3) = 1 - P(x < 3) = 1 - F(3)
= 1 - [-4e^(-1) + 4]/3
≈ 0.3528
Therefore, the probability that x is greater than 3 is approximately 0.3528.
d. Find P(x < 5):
To find P(x < 5), we simply substitute x_0 = 5 in the above formula:
F(5) = [-4e^(-5/3) + 4]/3
≈ 0.6321
Therefore, the probability that x is less than 5 is approximately 0.6321.
e. Find P(2 < x < 5):
To find P(2 < x < 5), we can use the CDF formula to find P(x < 5) and P(x < 2), and then subtract the latter from the former:
P(2 < x < 5) = P(x < 5) - P(x < 2)
= F(5) - F(2)
= [-4e^(-5/3) + 4]/3 - [-4e^(-2/3) + 4]/3
≈ 0.1455
Therefore, the probability that x is between 2 and 5 is approximately 0.1455.
To learn more about probability
https://brainly.com/question/30034780
#SPJ4
Choose the true statement 
Answer: First one (the one you selected in the photo)
Step-by-step explanation:
If you need help draw a number line.
-8 is not equal to 8, as one is negative and the other is positive.
On a number line, -8 is to the left, meaning it is less, so the second one is false.
This means the first one is correct.
Can someone please help me with this?
The measure of the side MR is given as 20
How to solve for the side MRWe have to first find the value of the angle
∠TQR = 180 - (35 + 25)
= 180 - 60
= 120 degrees
180 - 120 = 60 degrees
angle TPR = 90 degrees
next we have to find ∠PTQ
= 180 - (90 + 60)
= 180 - 150
= 30 degrees
given that TMN = TQR
TNP = PTQ
So if TMN = 35 degrees since TQR = 35 degrees
PTQ = 30, so TNP = 30 degrees
The measure of QR = 4 since MN = 4
NP = pq
np = 6
Hence the measure of MR
= 4 + 6 + 6 + 4
= 20
Read more on angles here:https://brainly.com/question/25770607
#SPJ1
you roll a fair 6 66-sided die. what is p(not 5 ) p(not 5)start text, p, (, n, o, t, space, 5, end text, )?
when we Roll a fair 6 66-sided die. then the probability of P (not 5) is 65/66
The concept used a die is a tool used for games and gambling. The die is a cube with six faces, each of which has a different number of dots from one to six. The roll of a die is a random event, which means that it is unpredictable, and each roll is independent of any other roll.
Let's solve the question that is P(not 5)
Since the die is fair, we have 66 sides on the die. Each of the sides has a probability of 1/66 of being rolled. P(not 5) means that we need to determine the probability of rolling a number that is not 5.
We know that a 66-sided die has 65 numbers other than 5.
Therefore, the probability of rolling a number that is not 5 is 65/66.
P(not 5) = 65/66
So, the probability of not rolling a 5 is p(not 5) = 65/66.
To learn more about Rolling a fair die: https://brainly.com/question/30271275
#SPJ11
What is an equation of the line that passes through the point (4,1) and is perpendicular to the line 2x-y= 4?
Answer:
Point-Slope Form: y - 1 = -1/2(x - 4) or Standard Form: y = -1/2x + 3
Step-by-step explanation:
For a line to be perpendicular, you take the negative inverse of the slope of 2x - y = 4. To do this, rearrange the y to one side and you get y = 2x - 4. The slope of the line is 2. So, taking the negative inverse would be -1/m (with m being slope of the the equation given in the problem. This would give you -1/2.
Using point slope formula, y - y1 = m(x - x1), you can plug in the point given, (4,1) and the slope you found to get y - 1 = -1/2(x - 4). For standard form, isolating the y gets you y = -1/2x + 3.
You can check your answer by using Desmos by putting in the line 2x - y = 4, the point (4,1), and the equation you got as your answer. You will see that the equation is perpendicular to 2x - y = 4 and passes through point (4,1). Your equation of the line is y - 1 = -1/2(x - 4) or y = -1/2x + 3
a) Is the value of -42 different from the value of (-4)²? What purpose do the brackets serve? b) Is the value of -23 different from the value of (-2)³? What purpose do the brackets serve?
a) The brackets serve to indicate that the exponent applies to the entire quantity within the brackets.
b) The brackets serve to indicate that the exponent applies to the entire quantity within the brackets.
What is exponent?Exponents are mathematical notation used to indicate that a quantity is being multiplied by itself a certain number of times. The exponent is usually written as a superscript to the right of the base number.For example, in the expression 2³, the base number is 2 and the exponent is 3. This means that 2 is being multiplied by itself three times, resulting in a value of 8. Exponents can also be negative or fractional, indicating that the base number is being divided by itself a certain number of times.
In the given question,
a) The value of -42 is different from the value of (-4)². The brackets serve to indicate that the exponent applies to the entire quantity within the brackets.
b) The value of -23 is different from the value of (-2)³. The brackets serve to indicate that the exponent applies to the entire quantity within the brackets.
To know more about exponents , visit:
https://brainly.com/question/5497425
#SPJ1
a tank is being filled with water at the rate of 2 3 450t gallons per hour with t > 0 measured in hours. if the tank is originally empty, how many gallons of water are in the tank after 5 hours?
The rate of filling water in the tank is 23450t gallons per hour.
Let's assume that the time taken to fill the tank is t hours.
The volume of water filled into the tank at time t is given by the expression V(t) = 23450t.
The tank is originally empty, which means its volume = 0 gallons.
After 5 hours,
t= 5 hours
The volume of water filled in is given by [tex]V(5) = 23450 * 5= 1,17,250[/tex] gallons of water.
Therefore, 1,17,250 gallons of water are filled in the tank after 5 hours.
For more information on the rate of change, refer to:
brainly.com/question/29012717
#SPJ11
An assignment of probabilities to events in a sample space must obey which of the following? They must obey the addition rule for disjoint events. They must sum to 1 when adding over all events in the sample space. The probability of any event must be a number between 0 and 1, inclusive. All of the above
An assignment of probabilities to events in a sample space must obey all of the following: They must obey the addition rule for disjoint events, They must sum to 1 when adding over all events in the sample space, and The probability of any event must be a number between 0 and 1, inclusive. Hence, the correct option is All of the above.
What is probability?Probability is the branch of mathematics that deals with the likelihood of a random event occurring. Probability is concerned with quantifying the probability of different results in a certain event.
The possibility that a specific event will occur is calculated using probability. Probability is calculated using several methods in mathematics, including axioms, probability spaces, events, random variables, and expectation values.
Learn more about Probability here: https://brainly.com/question/25839839
#SPJ11
If repeated samples of size n are taken from a normal population with an unknown variance, then the statistic ______ follows the t distribution with n-1 degrees of freedom
In summary, when repeated samples of size n are taken from a normal population with an unknown variance, the statistic t follows the t-distribution with n-1 degrees of freedom.
If repeated samples of size n are taken from a normal population with an unknown variance, then the statistic t follows the t distribution with n-1 degrees of freedom. When a sample of size n is taken from a normal population with a known variance and mean, the sample mean follows a normal distribution with a mean of μ and a variance of σ2/n. This distribution is known as the sampling distribution of the mean.
However, when the variance is unknown, the sampling distribution of the mean can no longer be calculated using the normal distribution. In this scenario, the sample mean is calculated using a t-distribution instead of a standard normal distribution.The t-distribution is similar to the standard normal distribution. However, it is more spread out and flatter than the standard normal distribution. As a result, the t-distribution has thicker tails than the standard normal distribution, which makes it more suitable for analyzing small samples of data.
Learn more about Repeated samples
brainly.com/question/15019364
#SPJ11
Lightbulbs act as resistors. Janine is building a circuit that contains two lightbulbs in parallel. One of the lightbulbs has a resistance of 120 ohms, but the resistance of the second lightbulb is unknown. She models the total resistance in the circuit, t, with this equation, in which r represents the resistance of the second lightbulb. T = 120 r r + 120 Find the inverse of Janine’s equation. Big fraction Parentheses Vertical bars Square root Root Superscript (Ctrl+Up) Subscript (Ctrl+Down) Plus sign Minus sign Middle dot Multiplication sign Equals sign Less-than sign Greater-than sign Less-than or equal to Greater-than or equal to Pi Alpha Beta Epsilon Theta Lambda Mu Rho Phi Sine Cosine Tangent Arcsine Arccosine Arctangent Cosecant Secant Cotangent Logarithm Logarithm to base n Natural logarithm Bar accent Right left arrow with under script Right arrow with under script Angle Triangle Parallel to Perpendicular Approximately equal to Tilde operator Degree sign Intersection Union Summation with under and over scripts Matrix with square brackets
Lightbulbs act as resistors. Janine is building a circuit that contains two lightbulbs in parallel. One of the lightbulbs has a resistance of 120 ohms, but the resistance of the second lightbulb is unknown. Therefore, The inverse of Janine's equation is r = -120/(t - 120).
Equation:
An equation is described as a formula that expresses the equality of two expressions, by connecting them with the equals sign. An equation is a formula that expresses that two expressions are equal by joining them with the equal sign =.The word comparison and its cognates in other languages may have subtly different meanings; for example, in French, an equation is defined to contain one or more variables, and in English any well-formed formula composed of two expressions linked by equal signs is an equation.
According to the Question:
In algebra, an equation is a mathematical statement that determines whether two mathematical expressions are equal.
The type of comparison is identity or conditional comparison.
For each potential value, the variable provides an identifier. Only certain combinations of variable values allow conditional comparisons to be true.
In order to find the inverse of Janine's equation, we will to solve for r in terms of t.
First, we can rearrange the equation to get
⇒ t - 120 = 1/r.
divide both sides of the equation by 1/r to get
⇒ t/r - 120/r = 1.
divide both sides of the equation by -120/r to get
⇒ r = -120/(t - 120).
Therefore, the inverse of Janine's equation is r = -120/(t - 120).
Learn more about Equation:
https://brainly.com/question/29538993
#SPJ4
Find the definite integral of f(x)=
fraction numerator 1 over denominator x squared plus 10 invisible times x plus 25 end fraction for x∈[
5,7]
Over the range [5, 7], the definite integral of f(x) = 1 / (x² + 10x + 25) is around -1/60.
To find the definite integral of f(x) = 1 / (x² + 10x + 25) over the interval [5, 7], we can use the following formula:
∫[a,b] f(x) dx = F(b) - F(a)
where F(x) is the antiderivative of f(x).
First, we need to find the antiderivative of f(x):
∫ f(x) dx = ∫ 1 / (x² + 10x + 25) dx
To do this, we can use a technique called partial fraction decomposition:
1 / (x² + 10x + 25)
= A / (x + 5) + B / (x + 5)²
Multiplying both sides by the denominator (x² + 10x + 25), we get:
1 = A(x + 5) + B
Setting x = -5, we get:
1 = B
Setting x = 0, we get:
A + B = 1
A + 1 = 1
A = 0
Therefore, the partial fraction decomposition of f(x) is:
1 / (x² + 10x + 25) = 1 / (x + 5)²
Now we can find the antiderivative:
∫ f(x) dx = ∫ 1 / (x² + 10x + 25) dx = ∫ 1 / (x + 5)² dx
Using the substitution u = x + 5, du = dx, we get:
∫ 1 / (x + 5)² dx = -1 / (x + 5) + C
where C is the constant of integration.
Now we can evaluate the definite integral over the interval [5, 7]:
∫[5,7] f(x) dx = F(7) - F(5)
∫[5,7] f(x) dx = [-1 / (7 + 5) + C] - [-1 / (5 + 5) + C]
∫[5,7] f(x) dx = [-1 / 12 + C] - [-1 / 10 + C]
∫[5,7] f(x) dx = -1 / 12 + C + 1 / 10 - C
∫[5,7] f(x) dx = -1 / 60
Therefore, the definite integral of f(x) = 1 / (x² + 10x + 25) over the interval [5, 7] is approximately -1/60.
To learn more about definite integral click here
brainly.com/question/29974649
#SPJ4
give the position of C on this number line
The position of C on the number line is 1/8th position.
Define the term number line?A number line is a visual representation of the real numbers as points or marks on a straight line. The number line is usually represented horizontally, with zero in the middle and positive numbers to the right of zero and negative numbers to the left of zero.
From the given number line, there are total 8 points between 0 to 1
That means, it's fractions of 8.
Location of point C is on the 1st point,
So, position of C on this number line = (1/8) ÷ (1-0) = 1/8
Therefore, In the number line, C is located in the 1/8th place.
To know more about number line, visit:
https://brainly.com/question/24644930
#SPJ1