The capacity of a battery to deliver charge, and thus power, decreases with temperature. The same is not true of capacitors. For sure starts in cold weather, a truck has a 500 F capacitor alongside a battery. The capacitor is charged to the full 13.8 V of the truck's battery. How much energy does the capacitor store? What is the ratio between the energy density per unit mass of the 9.0 kg capacitor system and the 130,000 J/kg of the truck's battery.

Answers

Answer 1

The energy stored in the capacitor is calculated as 630150 J. The ratio between the energy density per unit mass of the 9.0 kg capacitor system and the 130,000 J/kg of the truck's battery is 70.17


The formula to calculate the energy stored in a capacitor is expressed by the formula: 

E = (1/2)CV²

where E is energy, C is capacitance, and V is voltage.

The question mentions that the capacitor is fully charged to 13.8 V. Therefore, the energy stored in the capacitor is given by the formula:

[tex]E = (1/2)CV^2 \\= (1/2)\times (500 F)\times {(13.8 V)}^2\\= 630150 J[/tex]

The ratio between the energy density per unit mass of the 9.0 kg capacitor system and the 130,000 J/kg of the truck's battery can be computed by dividing the energy density of the capacitor system by the energy density of the truck's battery.

We know that energy density = energy / mass of the system.

Thus, the formula to calculate the ratio is:

[tex]Ratio = \dfrac{energy density per unit mass of capacitor system}{ energy density per unit mass of truck's battery}\\Ratio= \dfrac{630150 J / 9 kg}{ 130,000 J / 1 kg}= 70.017[/tex]

Therefore, the ratio of energy density per unit mass of the capacitor system to that of the truck's battery is 70.017.

To know more about capacitor, kindly click the below link:

https://brainly.com/question/29100869

#SPJ11


Related Questions

You see the Moon on the meridian at sunrise. The phase of the Moon is a. waxing gibbous. b. full. c. first quarter. d. third quarter.

Answers

The phase of the Moon on the meridian at sunrise is third quarter. The correct answer is Option D.

When the moon is said to be on the meridian at sunrise, the moon is on the west horizon and it rises on the east horizon. The third quarter is when the Moon is on the meridian at sunrise. During the third quarter, the Moon appears as a half-circle with the right half illuminated. It is often seen in the morning sky because it rises at midnight and is visible through the morning hours. In conclusion, when you see the Moon on the meridian at sunrise, the phase of the Moon is the third quarter.

Learn more about phase of the Moon here: https://brainly.com/question/1286359

#SPJ11

The colors on an oil slick are caused by reflection and (explain why)
a. Diffraction
b. Interference
c. Refraction
d. Polarization
e. Ionization

Answers

"The colours on an oil slick are caused by reflection and interference." Correct option is B.

Different bands of the oil slick create different colours as the oil film progressively thins from the centre to the edges.

Interference is what gives an oil slick drifting on water or a soap bubble in the sun their vibrant colours. The colours that interact most positively are the ones that are most vibrant. Thin film interference is the name given to the phenomenon because it occurs when light reflected from various thin film surfaces interferes with one another.

The most crucial interfering principle is the superposition principle.

This hair colour procedure primarily uses jewel tones and rainbow colours, including burgundy, royal blue, deep purple, green, and deep red. Alternating the colours that give your hair an oil spill appearance is the best method to make your skin tone and hair look good together. Best choice is B.

To know more about interference:

https://brainly.com/question/1463425

#SPJ4

A fire fighter is trying to shoot water straight to the window located at the second floor of a house 6 m above the ground: The distance between the fire fighter and the house is 8 m and he holds the fire hose 1.8 m above the ground: The water leaves the hose with a constant speed of 12.5 m/s. Initially, the fire fighter aims the hose at 53 above the horizontal and misses the window: (we can assume that the hose and the window are in the same vertical plane) How much time it will take for the water flow to reach the house? How far above the window does the water go? What is the magnitude of the velocity of water when it strikes the house? What must be the minimum angle and speed of the flow in order to get water right into the window?

Answers

The water flow takes 1.06 s to reach the house.

Water strikes 0.87 m above the window when the firefighter holds the hose at a [tex]53^o[/tex] angle from horizontal.

The magnitude of velocity when water hits the house is 7.52 m/s.

The minimum speed for water to enter into the window is[tex]v_0 = d / (v_0cos(\theta)) \times\sqrt{(8.4-2dtan\theta)/g}[/tex].

The question can be solved by applying the concept of projectile motion. When an object is projected into the air, it follows a curved path under the influence of gravity. The path followed by a projectile is called a parabolic path.

To solve this problem, we can break it down into a few parts.

First, let's find the time it takes for the water to reach the house:

We can use the horizontal distance between the firefighter and the house, which is 8 m, and the initial horizontal velocity of the water, which can be found using the initial speed and launch angle:

[tex]v_x = v_0 cos(53^\circ)[/tex]

[tex]v_x = 12.5 \ m/s \times cos(53^\circ)[/tex]

[tex]v_x = 7.5 \ m/s[/tex]

The time it takes for the water to travel the horizontal distance of 8 m can be found using the formula:

[tex]time = distance/velocity[/tex]

[tex]time = 8 \ m / 7.5 \ m/s[/tex]

[tex]time = 1.06\ s[/tex]

So it takes 1.06 seconds for the water to reach the house.

Next, let's find the height above the window that the water reaches:

We can use the vertical distance between the firefighter and the window, which is (6 - 1.8) m, and the initial vertical velocity of the water, which can be found using the initial speed and launch angle:

[tex]v_y = v_0 sin(53^\circ)[/tex]

[tex]v_y = 12.5 \ m/s \times sin(53^\circ)[/tex]

[tex]v_y = 9.98 \ m/s[/tex]

The time it takes for the water to reach the house is 1.06 s, so we can use this time and the initial vertical velocity to find the height above the window that the water reaches:

[tex]y = v_yt - 0.5gt^2[/tex]

[tex]y = 9.98 \ m/s \times 1.06 s - 0.5 \times 9.8 \ m/s^2 \times (1.06 \ s)^2[/tex]

[tex]y = 5.07\ m[/tex]

Since the firefighter is holding the fire hose 1.8 m above the ground, the total height reached by the water is

h = 1.8 + 5.07 = 6.87 m

Height above the window = 6.87 - 6 = 0.87 m

So the water reaches a height of 0.87 m above the window.

Next, let's find the magnitude of the velocity of the water when it strikes the house:

Vertical velocity of water when it stricks the house at t = 1.06 s.

[tex]v_{y(final)} = 9.98 - 9.81\times 1.06[/tex]

[tex]v_{y(final)} = 0.588 \ m/s[/tex] (downwards)

We can use the horizontal and vertical components of the velocity to find the total velocity using the Pythagorean theorem:

[tex]v = \sqrt{vx^2 + vy^2}[/tex]

[tex]v = \sqrt{(7.5\ m/s)^2 + (0.588\ m/s)^2}[/tex]

v = 7.52 m/s

So the magnitude of the velocity of the water when it strikes the house is 7.52 m/s.

Finally, let's find the minimum angle and speed of the flow in order to get water right into the window:

For the water to reach the window, its vertical displacement must be equal to the vertical distance between the firefighter and the window, which is 4.2 m. We can use this information to find the launch angle and speed using the equations of motion:

[tex]y = v_0 sin(\theta) t - 0.5 g t^2[/tex]

[tex]4.2 m = v_0 sin(\theta) t - 0.5 g t^2[/tex] ....(1)

[tex]v_x = v_0 cos(\theta)[/tex]

[tex]t = d / v_x[/tex]

[tex]t = {d}/{v_0 cos\theta}[/tex] .....(2)

Substituting the second equation into the first equation and solving for [tex]v_0[/tex] and θ, we get:

[tex]v_0 = d / (v_0cos(\theta) t)[/tex]

[tex]4.2 m = (\frac{d}{(cos(\theta) t)}) \times sin(\theta) t - 0.5 g t^2[/tex]

Solving for t and substituting into the equation for [tex]v_0[/tex], we get:

[tex]t = \sqrt{(8.4-2dtan\theta)/g}[/tex]

[tex]v_0 = d / (v_0cos(\theta) \times\sqrt{(8.4-2dtan\theta)/g)}[/tex]

Substituting the values given in the problem (d = 8 m, [tex]g = 9.8 m/s^2[/tex]), we can solve for θ and [tex]v_0[/tex]

Learn more about projectile motion:

https://brainly.com/question/24216590

#SPJ11

which of the following describes the function and location of golgi tendon organs? which of the following describes the function and location of golgi tendon organs? monitor muscle length, situated in series with muscle fibers monitor muscle length, situated in parallel with muscle monitor muscle tension, situated in parallel with muscle fibers monitor muscle tension, situated in series with muscle fibers

Answers

The function and location of Golgi tendon organs are to monitor muscle tension, and they are situated in series with muscle fibers.

The Golgi tendon organ (GTO) is a sensory receptor found in the tendons of mammalian skeletal muscle. The GTO is positioned in series with the extrafusal muscle fibers in the tendons of mammalian skeletal muscle. It is situated where the muscle fibers blend with the tendon fibers.

The GTOs inform the central nervous system about muscle tension in the muscle by detecting changes in tension caused by the contraction of the muscle. The Golgi tendon organ consists of collagen bundles that are surrounded by a sheath of connective tissue.

There are some special muscle receptors that can sense the tension within a muscle, and Golgi tendon organs (GTOs) are one of them.

What are the functions of the Golgi tendon organs? The Golgi tendon organs have a number of functions. They play a significant role in the modulation of muscle tone, the prevention of excessive force during muscle contractions, and the fine-tuning of complex and coordinated movements.

In addition, the GTOs also function to prevent overstretching of the muscle and maintain muscle stiffness. These structures are therefore critical in protecting muscles from damage and ensuring their optimal performance.

To know more about Golgi tendon organs, refer here:

https://brainly.com/question/30398521#

SPJ11#

4. Once the child in the sample problem reaches the bottom of the hill,
she continues sliding along flat; snow-covered ground until she comes
to a stop. If her acceleration during this time is -0.392 m/s², how long
does it take her to travel from the bottom of the hill to her stopping
point?

Answers

Answer:

8.04 seconds

Explanation:

Assuming that the child starts from rest at the bottom of the hill and travels until she comes to a stop, we can use the following kinematic equation:

v_f^2 = v_i^2 + 2ad

where v_f is the final velocity (which is zero since the child comes to a stop), v_i is the initial velocity (which is the velocity at the bottom of the hill), a is the acceleration (-0.392 m/s²), and d is the distance traveled.

We can solve for d:

d = (v_f^2 - v_i^2) / (2a)

= (0 - v_i^2) / (2-0.392)

= v_i^2 / 0.784

Since the child is sliding along flat snow-covered ground, there is no change in elevation, so we can use the distance traveled from the bottom of the hill to the stopping point as the distance d.

To find the time it takes for the child to travel this distance, we can use the following kinematic equation:

d = v_it + 0.5a*t^2

where t is the time and all other variables are as previously defined.

Substituting the expression for d obtained above, we get:

v_i^2 / 0.784 = v_it + 0.5(-0.392)*t^2

Solving for t, we get:

t = (2 * v_i) / 0.392

We still need to find the value of v_i, the initial velocity of the child at the bottom of the hill. To do so, we can use conservation of energy. The child starts at rest at the top of the hill, so all the initial energy is potential energy. At the bottom of the hill, all the potential energy has been converted to kinetic energy. Assuming no energy is lost to friction, we can equate these two energies:

mgh = 0.5mv_i^2

where m is the mass of the child, g is the acceleration due to gravity (9.8 m/s²), and h is the height of the hill.

Solving for v_i, we get:

v_i = √(2gh)

Substituting this expression for v_i into the expression for t obtained earlier, we get:

t = (2 * √(2gh)) / 0.392

Plugging in the values of g, h, and a, we get:

t = (2 * √(29.820)) / 0.392 = 8.04 seconds

Learning Goal: To be able to calculate the tension in a string and the acceleration of each of two blocks in a two-pulley system. As shown, a block with mass mi is attached to a massless ideal string. The string wraps around a massless pulley and then wraps around a second massless pulley that is attached to a block with mass m2 and ultimately attaches to a wall. The whole system is frictionless.Part A - Tension in the string Given that a2 is the magnitude of the horizontal acceleration of the block with mass m2, what is T, the tension in the string? Express the tension in terms of m2 and a2. Part B - Acceleration of suspended block Given T, the tension in the string, calculate a1, the magnitude of the vertical acceleration of the block with mass mi. Express the acceleration's magnitude, a1, in terms of mi, g, and T. a1a_1 = ____ ?

Answers

The tension in the string is T = m2*a2.

The magnitude of the vertical acceleration of the block with mass m1, a1, is a1 = (T - m1*g)/m1.
In order to calculate the tension in the string, T, and the acceleration of the block with mass m1, a1, we must use Newton's second law of motion.

Part A - Tension in the string:

Since, the acceleration of the block with mass m2 is known, we can use the equation,

T = m2*a2 to calculate the tension in the string, T.

Tension= m2*a2

Part B - Acceleration of suspended block:

We can use the equation,

T = m1*a1 + m1*g to calculate the magnitude of the vertical acceleration of the block with mass m1, a1.

Rearranging this equation to solve for a1 gives us

a1 = (T - m1*g)/m1.

vertical acceleration= (T-m1*g)/m1

"vertical acceleration", https://brainly.com/question/31145319

#SPJ11

A column is fabricated by connecting the rolled-steel members shown by bolts of 3/4-in. diameter spaced longitudinally every 5 in. Determine the average shearing stress in the bolts caused by a shearing force of 30 kips parallel to the y axis.

Answers

The average shearing stress in the bolts caused by the given force is approximately 157 psi.

To determine the average shearing stress in the bolts, we can use the formula,

τ = F/A

where τ is the shearing stress, F is the force applied, and A is the cross-sectional area of the bolts.

First, we need to determine the cross-sectional area of one bolt. The area of a circle with a diameter of 3/4 inch is,

A = π/4 × (3/4 inch)^2 = 0.4418 square inches

Next, we need to determine the total number of bolts in the column. Since the bolts are spaced longitudinally every 5 inches, we can divide the length of the column (in the y direction) by 5 inches to find the number of bolt locations,

Number of bolt locations = (10 feet)/(5 inches/12 inches/foot) = 480

Since each bolt location has one bolt, the total number of bolts is 480.

Finally, we can calculate the shearing stress in one bolt using the formula above,

τ = F/A = 30,000 pounds / (480 bolts × 0.4418 square inches/bolt) ≈ 157 psi

To know more about shearing force, here

brainly.com/question/30881929

#SPJ4

The volume of a sphere is increasing at the rate of 8cm3/s. Find the rate at which its surface area is increasing when the radius of the sphere is 12cm.

Answers

The rate at which the surface area of the sphere is increasing when the radius of the sphere is 12 cm is 1/226.5 cm/s.

What is the rate of surface area change?

The volume of a sphere is increasing at the rate of 8 cm³/s.

Radius of the sphere is 12 cm.

So, we need to find the rate at which its surface area is increasing.

Let, V be the volume of the sphere and r be the radius of the sphere. The volume of a sphere of radius r is given by:

V = (4/3)πr³

Differentiating with respect to time t, we get:

dV/dt = 4πr²(dr/dt) ...(1)

Also, the surface area of the sphere is given by:

A = 4πr²

Differentiating with respect to time t, we get:

dA/dt = 8πr(dr/dt) ...(2)

From equations (1) and (2), we can write:

dr/dt = dV/dt ÷ 4πr²

dr/dt = 8 / (4π × 12²)

dr/dt = 8 / 1808

dr/dt = 1 / 226.5 cm/s

Therefore, the rate at which the surface area of the sphere is increasing when the radius of the sphere is 12 cm is 1/226.5 cm/s.

Learn more about Surface area here:

https://brainly.com/question/29101132

#SPJ11

david walks 3 km north, and then turns east and walks 4 km. what is the distance?

Answers

David travelled a total of 5 kilometres.

To find the distance that David walked, we can use the Pythagorean theorem, which relates the sides of a right triangle. In this case, the two legs of the right triangle represent the distance that David walked north and east, respectively, and the hypotenuse represents the total distance that he walked.

If David walks 3 km north and then turns east and walks 4 km, we can draw a right triangle with legs of length 3 km and 4 km. Applying the Pythagorean theorem, we have:

distance²2 = (3 km)²+ (4 km)²

distance²2 = 9 km²+ 16 km²

distance = √(25) km

distance = 5 km

Therefore, the total distance that David walked is 5 km.

To learn more about distance refer to:

brainly.com/question/11581397

#SPJ4

how can we determine the reflectivity of an asteroid?

Answers

The reflectivity of an asteroid, also known as its albedo, can be determined by measuring the amount of light it reflects at different wavelengths and comparing it to a standard calibration source.

Astronomers use telescopes and spectrographs to measure the amount of light reflected by an asteroid at different wavelengths, from ultraviolet to visible to infrared. They compare these measurements to a standard calibration source to determine the asteroid's albedo, which is a measure of its reflectivity. The albedo can provide valuable information about the asteroid's composition, such as whether it is rocky or metallic, and can also help astronomers estimate its size and shape. Understanding the reflectivity of asteroids is important for studying their properties and behavior, as well as for assessing the potential risks and opportunities they may pose for spacecraft exploration or impact events.

To know more about asteroid, here

brainly.com/question/31181999

#SPJ4

The electric resistance of the element in a platinum resistance thermometer at 100°C, 0°C and room temperature are 75. 000, 63. 000 and 64. 992 ohms respectively. Use these data to determine the room temperature

Answers

The room temperature is approximately 0.95°C.

Rt = Ro[1 + A(Tt - To) + B(Tt - To)2]

75,000 = Ro[1 + A(100 - To) + B(100 - To)2]

64,992 = Ro[1 + A(25 - To) + B(25 - To)2]

Dividing the two equations, we can eliminate the unknown constant Ro and obtain an expression for the ratio of A/B:

75,000 / 64,992 = [1 + A(100 - To) + B(100 - To)2] / [1 + A(25 - To) + B(25 - To)2]

Simplifying and rearranging, we get:

A/B = [1 + (100 - To)(64,992/75,000) - (25 - To)] / [(100 - To)2 - (25 - To)2(64,992/75,000)]

Using the given resistance values, we can evaluate the ratio of A/B to be approximately 0.00386.

63,000 = Ro[1 + 0.00386(0 - To) + B(0 - To)2]

Simplifying and solving for To, we get:

To ≈ 0.95°C

Resistance is a property of materials that opposes the flow of electrical current. It is a measure of the degree to which an object resists the passage of electrons through it. Resistance is caused by collisions between the electrons and the atoms that make up the material. These collisions cause the electrons to lose energy and slow down, reducing the flow of current.

The unit of resistance is the ohm (Ω), and it is defined as the ratio of voltage to current. Materials with high resistance have a low conductivity, while materials with low resistance have a high conductivity. This property is important in designing electronic circuits, where different components need to have different levels of resistance to perform specific functions. Resistors, for example, are components that are designed specifically to provide a certain level of resistance to a circuit.

To learn more about Resistance visit here:

brainly.com/question/30799966

#SPJ4

A small source of sound waves emits uniformly in all directions. The total power output of the source is P. By what factor must P increase if the sound intensity level at a distance of 20. 0 m from the source is to increase 5. 00 dB?

Answers

The sound intensity must increase by a factor of 10(5.00/10) = 3.16 in order to increase the sound intensity level at a distance of 20.0 m from the source by 5.00 dB.

Because sound waves are uniformly released in all directions, a sphere with a radius of 20.0 m has an even distribution of power over its surface. Since r represents the distance from the source and P is the total power output, we can calculate the sound intensity at that distance as P/(4r2). The power output of the source must increase by the same factor, or by a factor of 3.162 = 10.0, in order to raise the sound intensity by a factor of 3.16. Hence, the total To increase the sound intensity level at a distance of 20.0 m from the source by 5.00 dB, the source's power output must rise by a factor of 10.0.

learn more about sound here:

https://brainly.com/question/29707602

#SPJ4

Which of these devices are not based on magnetic effect of electric current? (Room heater, Magnetic crane, Electric bell, Loud speaker)

Answers

Room heater. The electric current's magnetic action is not the foundation of the space heater. Devices that depend on the magnetic effect of electric current to work include the magnetic crane, , and loudspeaker.

The magnetic crane creates a magnetic field that can lift large things using an electromagnet. The magnetic field produced by the electric bell's usage of an electromagnet forces a metal clapper to strike a bell, emitting a ringing sound. An electromagnet in the loudspeaker causes a diaphragm to vibrate, creating sound waves that can be perceived by the human ear. In contrast, the usual mechanism of a room heater is the use of a resistor or heating element to transform electrical energy into heat energy. After that, the heat is radiated or convected.

learn more about  electric current here:

https://brainly.com/question/2264542

#SPJ4

an incompressible substance with a density of 1000 kg/m3 is isothermally compressed from 100 to 1000 kpa. determine the change in enthalpy. multiple choice question. 0 kj/kg 0.9 kj/kg 10 kj/kg 900 kj/kg

Answers

The change in enthalpy of an incompressible substance with a density of 1000 kg/m³ that is isothermally compressed from 100 to 1000 kPa is 0 kJ/kg.

What is enthalpy?

Enthalpy is a measure of the total energy of a thermodynamic system. In addition, it incorporates the energy that is supplied to the system as heat, as well as any energy that is used as work. Enthalpy is represented by the symbol H and is usually calculated in units of joules (J).

What is an incompressible substance?

An incompressible substance is one that cannot be compressed or compressed to a significant degree. Liquids are examples of such materials. They are often described as having a constant density because, unlike gases, they do not easily change in volume in response to pressure or temperature changes. Therefore, the change in enthalpy is 0 kJ/kg.

Learn more about Enthalpy here: https://brainly.com/question/16985375.

#SPJ11

in one method of measuring backlash, a bar is attached to the driven shaft and a dial indicator measures its movement. this method must be adjusted to account for the ___ of the bar.

Answers

In one method of measuring backlash, a bar is attached to the driven shaft and a dial indicator measures its movement. this method must be adjusted to account for the flexion or bending of the bar.

It is because When using the bar method to measure backlash, a bar is attached to the driven shaft and a dial indicator measures its movement.

However, the bar may flex or bend due to its own weight or external forces, leading to inaccurate measurements of the backlash.

Therefore, to obtain accurate results, the method must be adjusted to account for the flexure or bending of the bar. This can be done by placing the bar in a support at some distance from the indicator or by using a more rigid and less flexible bar.

It is important to account for the flexure of the bar to ensure accurate measurements and proper functioning of the system.

To learn more about the driven shaft:

https://brainly.com/question/14553751

#SPJ11

Consider a thin 30 m rod pivoted at one end. A uniform density spherical object (whose mass is 4 kg and radius is 3.3 m ) is attached to the free end of the rod and the moment of inertia of the rod about an end is I rod ​
= 3
1

mL 2
and the moment of inertia of the sphere about its center of mass is I sphere

= 5
2

mr 2
. What is the angular acceleration of the rod immediately after it is released from its initial position of 39 ∘
from the vertical? The acceleration of gravity g=9.8 m/s 2
. Answer in units of rad/s 2
.

Answers

The angular acceleration of the rod immediately after it is released from its initial position of 39 degrees from the vertical is - 0.022 rad/s²

Angular acceleration of the rod:We will use the law of conservation of energy. When the rod is released from the initial position, the gravitational potential energy will convert to kinetic energy of the rod and the sphere.Let the angular acceleration of the rod be α,The gravitational potential energy of the system when the rod is at the initial position is given by,PE = mgh where, m = mass of the sphere + mass of the rod = 4 kg,L = length of the rod = 30 mgr = radius of the sphere = 3.3 mθ = angle from the vertical = 39 degrees,h = vertical height = LcosθPE = mgLcosθ= 4 × 9.8 × 30 × cos39°PE = 1058.33 J

Now, when the rod falls, it will rotate about the pivot point. The kinetic energy of the system will be given by,K.E = 1/2 (Irod + Isphere) ω²where, ω = angular velocity of the rod + sphere after falling.The moment of inertia of the system about the pivot point is given by,I = Irod + Isphere. We can use the parallel axis theorem to calculate the moment of inertia of the sphere,I sphere = 2/5 mr² + mr² = 7/5 mr²So,I = Irod + Isphere= 3/12 mL² + 7/5 mr²= 3/12 × 4 × 30² + 7/5 × 4 × 3.3²= 126.48 kg.m²Now,K.E = 1/2 (Irod + Isphere) ω²= 1/2 I ω²

The initial velocity of the rod is 0, so the initial kinetic energy of the system is 0.The final velocity of the rod + sphere can be found using the conservation of energy equation,PE = K.EPE = K.E1/2 mv² = mgh1/2 I ω² = mghω² = 2mgh/Iω = sqrt (2mgh/I)Substitute the given values in the above equation,ω = sqrt (2 × 4 × 9.8 × 30 × cos39° / 126.48)ω = 1.479 rad/s

Now, we can use the torque equation to find the angular acceleration of the rod.The gravitational force acting on the sphere is mg.The torque due to the gravitational force about the pivot point is,τ = mgh sinθ= 4 × 9.8 × 30 × sin39°= 753.84 N.m The torque due to the weight of the rod is,T = Irod α= 3/12 mL² α= 3/12 × 4 × 30² × α= 90α N.m Using Newton's second law of motion,Net torque = Iαα = (mgh sinθ - T) / I= (mgh sinθ - Irod α) / I= (mgh sinθ) / I - (3/12 mL²) α= (4 × 9.8 × 30 × sin39°) / 126.48 - (3/12 × 4 × 30²) α= 1.98 - 90 αα = - 0.022 rad/s² (Negative sign indicates that the angular acceleration is in the opposite direction to the initial angular velocity of the rod)Therefore, the angular acceleration of the rod immediately after it is released from its initial position of 39 degrees from the vertical is - 0.022 rad/s².Answer: - 0.022 rad/s².

More on angular acceleration: https://brainly.com/question/30237820

#SPJ11

a charge is passing through a static magnetic field. the velocity of the charge makes a 30o angle with the field. the force exerted by the field changes the kinetic energy of the charge.

Answers

The magnetic force exerted by the field on the charge is 0.5qvB.

F = qvBsin(θ)

where;

F = qvBsin(30)

F = 0.5qvB

Magnetic force is a fundamental force that arises due to the motion of electric charges. It is the force that acts between two magnetic poles or between a magnetic pole and a moving charged particle. Magnetic force is a vector quantity and is described in terms of its direction, magnitude, and point of application.

The force between two magnetic poles is governed by the inverse square law, which means that the force decreases as the distance between the poles increases. The direction of the magnetic force is perpendicular to the direction of motion of the charged particle and to the direction of the magnetic field in which it moves. The magnitude of the magnetic force is proportional to the charge of the particle, its velocity, and the strength of the magnetic field.

To learn more about Magnetic force visit here:

brainly.com/question/3160109

#SPJ4

a disturbance that transfers energy from place to place

Answers

A disturbance that transfers energy from place to place is called wave.

Waves can take many forms, including sound waves, light waves, water waves, seismic waves, and electromagnetic waves. Regardless of their type, all waves share certain characteristics, such as wavelength, frequency, amplitude, and speed. When a wave travels through a medium, it causes the particles in the medium to vibrate, but it does not transport the particles themselves. This means that waves can transfer energy over long distances without the transfer of matter. Waves are fundamental to many fields of science and technology, from communications and entertainment to medicine and engineering.

To know more about energy, here

brainly.com/question/988182

#SPJ4

--The complete question is, A disturbance that transfers energy from place to place is called _____.--

17. a particle moves in simple harmonic motion with a frequency of 3.00 hz and an amplitude of 5.00 cm. (a) through what total distance does the particle move during one cycle of its motion? (b) what is its maxi- mum speed? where does this maximum speed occur? (c) find the maximum acceleration of the particle. where in the

Answers

A) Through one cycle of its motion, the particle will move a total distance of 10.00 cm (2π*amplitude).

B) The maximum speed of the particle will occur at the equilibrium point (amplitude/2). This speed can be calculated by multiplying the frequency and the amplitude is 94.25 cm/s.

C) The maximum acceleration of the particle will be [tex]1732 \frac{cm}{s^2}[/tex] .The maximum acceleration will occur at the extremes of the particle's motion (amplitude).

Given:

A=5.00 cm, f=3.00 Hz

(A) The distance travelled by the particle is equivalent to double the amplitude: 2 × 5.00 cm = 10.00 cm.

(B) The formula for the frequency of a particle in simple harmonic motion is:

[tex]f=\frac{v}{\lambda}[/tex] where v = velocity and λ = wavelength.

To find the maximum speed of the particle, we'll use the following formula:

[tex]v=A\sqrt{\omega^2-t^2}[/tex]

The maximum velocity occurs at the equilibrium point (i.e. at t = 0).

ω = 2πf = 2π(3.00 Hz) = 18.85 rad/s

v = Aω = 5.00 cm × 18.85 rad/s = 94.25 cm/s

Thus, the maximum velocity of the particle is 94.25 cm/s, and it occurs at the equilibrium point.

(C) The acceleration formula is: a = −Aω²sin(ωt).

We can obtain the maximum acceleration by putting t = 0.

a = Aω² = (5.00 cm)(18.85 rad/s)² = 1732 cm/s².

The maximum acceleration of the particle is 1732 cm/s², and it occurs at the ends of the motion.

For more detail about simple harmonic motion, you can check below link:

https://brainly.com/question/30404816

#SPJ11

a ball is dropped from rest from a tower and strikes the ground 122.5 m below. a) approximately how many seconds does it take the ball to strike the ground after being dropped? b) with what velocity does it strike the ground? neglect air resistance.

Answers

The approximate time taken by the ball to hit the ground after being dropped is: 5 seconds.

The velocity at which the ball hits the ground is approximately 49.05 m/s, and it moves in the downward direction (negative velocity).

A ball is dropped from rest from a tower and strikes the ground 122.5 m below.

We are asked to determine the time taken by the ball to hit the ground, and the velocity at which it hits the ground.

The formula to calculate the time taken by an object to fall from rest from a height h is given by: t = sqrt (2h/g)

Here, h = 122.5m; g = 9.81m/s² (acceleration due to gravity)

Using the given formula, t = sqrt (2h/g) = sqrt (2 × 122.5 / 9.81)≈ 5 seconds

We know that, `v = g.t`

Since the ball was dropped from rest, its initial velocity is 0.

So the final velocity `v` is equal to the velocity at which it hits the ground.

Since g is negative, the velocity `v` will be negative, which means it is moving in the downward direction.

Using `g = 9.81 m/s²`,`t = 5 seconds`, we have = g.t = 9.81 × 5 = 49.05 m/s

To know more about "air resistance" refer here:

https://brainly.com/question/4428352#

#SPJ11

A block of massmis placed in a smooth-bored spring gun at the bottom of the inclineso that it compresses the spring by an amountx_c. The spring has spring constantk. The incline makes an anglethetawith the horizontal and the coefficient of kineticfriction between the block and the incline ismu. The block is released, exits the muzzle of the gun, andslides up an incline a total distancethe distance traveled along the incline by the block after it exitsthe gun. Ignore friction when the block is inside the gun. Also,assume that the uncompressed spring is just at the top of the gun(i.e., the block moves a distancex_cwhile inside of the gun). Usegfor the magnitude of acceleration due to gravity.

Answers

The block moves up the incline with a constant velocity, v² = 2gx.sin θ - 2μgd. The block will move up the incline as long as the numerator in the above equation is positive.

A block of mass m is placed in a smooth-bored spring gun at the bottom of the incline so that it compresses the spring by an amount x_c. The spring has spring constant k. The incline makes an angle theta with the horizontal and the coefficient of kinetic friction between the block and the incline is mu.

The block is released, exits the muzzle of the gun, and slides up an incline a total distance the distance traveled along the incline by the block after it exits the gun. Ignore friction when the block is inside the gun.

Also, assume that the uncompressed spring is just at the top of the gun (i.e., the block moves a distance x_c while inside of the gun). Use g for the magnitude of acceleration due to gravity. Determine the distance traveled along the incline by the block after it exits the gun.Given, Mass of the block = m Initial compression of the spring = xc, spring constant = k, Angle between incline and horizontal = θ, Coefficient of kinetic friction = μ, Distance traveled along the incline by the block = d.

Let us begin with the given problem,

the work done on the spring is

K = 1/2 k x_c²

As the spring is compressed, the potential energy of the spring increase. Thus, the work done on the block by the spring is -K.

This work is equal to the increase in kinetic energy of the block.

This kinetic energy is converted into potential energy as the block moves up the incline. Thus, work done by the block against the gravitational force is mgh where, h is the height the block reaches above its initial position. The work done against the friction is mgh.f where, f is the coefficient of friction between the block and the incline.

Then, K + mgh.f = 1/2mv²

where v is the velocity of the block after it exits the gun.

Determine the final velocity of the block,

v²= 2(k/m) x_c² - 2gh(f + sin θ).

The block moves up the incline with a constant velocity,

v² = 2gx.sin θ - 2μgd.

The above equation is obtained using the work-energy principle.

Then,

2gx.sin θ - 2μgd = 2(k/m) x_c² - 2gh(f + sin θ)

Here, solving for d, we get,

d = (1/2g) [x_c² (k/m) - μx_c² sin θ] / (μ + sin θ).

The distance traveled along the incline by the block after it exits the gun is

(1/2g) [x_c² (k/m) - μx_c² sin θ] / (μ + sin θ).

Thus, this is the required solution. The block will move up the incline as long as the numerator in the above equation is positive.

Learn more about friction on:

https://brainly.com/question/15122221

#SPJ1

A loop of a wire has the shape shown in the drawing. The top part of the wire is bent into a semicircle of radius r= 0.24 m. The normal to the plane of the loop is parallel to a constant magnetic field of magnitude 0.77 T. What is the magnitude of the change in the magnetic flux that passes through the loop when, starting with the position shown in the drawing, the semicircle is rotated through quarter of a revolution? x 27867 Wb X .27867 Wb B (into paper)

Answers

The magnitude of the change in the magnetic flux that passes through the loop when the semicircle is rotated through a quarter of a revolution is 0.27867 Wb.

The induced electromotive force (emf) in a coil is proportional to the rate of change of magnetic flux through it. This is also known as Faraday's law of electromagnetic induction.

The formula for magnetic flux is given by

Φ = BANcosθ

Where,

Φ = magnetic fluxB = magnetic field strengthA = area of the loopN = number of turnscosθ = angle between the magnetic field and the normal to the plane of the loop

If the angle between the magnetic field and the normal plane of the loop is , the maximum magnetic flux is achieved. If the angle is 90°, the flux is zero.

The area of the loop is given by

A = πr²

Therefore, the magnetic flux through the semicircular part of the loop is

Φ = (0.77)(πr²)cos0°

= (0.77)(π × 0.24²)

= 0.13636 Wb

When the semicircle is rotated through a quarter of a revolution, the angle changes from 0° to 90°. Therefore, the magnetic flux becomes zero. Hence, the change in the magnetic flux is given by

0 - 0.13636 = -0.13636

Wb = -136.36 m

Wb = -0.13636 × 10⁻³

Wb= -0.13636 mV

Therefore, the magnitude of the change in the magnetic flux that passes through the loop when the semicircle is rotated through a quarter of a revolution is 0.27867 Wb.

For more information about Faraday's law refers to the link: https://brainly.com/question/1640558

#SPJ11

In the figure, a
4.4 kg
block is accelerated from rest by a compressed spring of spring constant
640 N/m
. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction
μ k

=0.296
. The frictional force stops the block in distance
D=7.7 m
. What are (a) the increase in the thermal energy of the block-floor system, (b) the maximum kinetic energy of the block, and (c) the original compression distance of the spring? (a) Number Units (b) Number Units In the figure, a
4.4 kg
block is accelerated from rest by a compressed spring of spring constant
640 N/m
. The block leives the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction
μ 2

=0.296
. The frictional force stops the block in distance
D=7.7 m
. What are (a) the increase in the thermal energy of the block-floor system, (b) the maximum kineticenergy of the block, and (c) the original compression distance of the spring? (a) Number Units (b) Number Units

Answers

The (a) increase in the thermal energy of the block-floor system 139.3 J

(b), the maximum kinetic energy of the block 614.3 J

(c), and the original compression distance of the spring 0.625 m

(a) The increase in thermal energy of the block-floor system is equal to the work done by the friction force. This can be calculated using the equation

Work = Force × Distance,

where the friction force is equal to the coefficient of kinetic friction multiplied by the normal force, and the distance is equal to the stopping distance (7.7 m).

Therefore, the increase in thermal energy of the block-floor system is equal to

(0.296 x 4.4 kg x 9.8 m/s² x 7.7 m) = 139.3 J.

(b) The maximum kinetic energy of the block is equal to the kinetic energy of the block when it leaves the spring. This can be calculated using the equation

Kinetic Energy = ½ mv²,

where m is the mass of the block (4.4 kg) and v is the velocity of the block when it leaves the spring. This velocity can be found by using the equation

Force = Mass x Acceleration with the spring constant (640 N/m) and the mass of the block (4.4 kg).

Therefore, the maximum kinetic energy of the block is equal to

(0.5 x 4.4 kg x (640 N/m / 4.4 kg)²) = 614.3 J.

(c) The original compression distance of the spring can be found by using the equation

K.E (spring) 1/2 Kx² + Work done = 0

-1/2 * 640 N/m * x² + 99.93 J = 0

Solving for x, we get:

x = √(99.93 J / (1/2 * 640 N/m))

x = 0.625 m

Therefore, the original compression distance of the spring is 0.625 m.

Learn more about thermal energy here:

https://brainly.com/question/19666326

#SPJ11

A 910-kg sports car collides into the rear end of a 2100-kg SUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 2.5m before stopping. The police officer, estimating the coefficient of kinetic friction between tires and road to be 0.80, calculates the speed of the sports car at impact.
1.A 910-kg sports car collides into the rear end of a 2100-kgSUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 2.5m before stopping. The police officer, estimating the coefficient of kinetic friction between tires and road to be 0.80, calculates the speed of the sports car at impact.
1.What was the speed sports car at impact?

Answers

The speed of the sports car at impact when kinetic friction between tires and road is 0.80 is 15.55 m/s.

It is given that Mass of sports car, ms = 910 kg, Mass of SUV, mSUV = 2100 kg, and Initial velocity of sports car, us = ?, Final velocity of sports car, v = 0, Initial velocity of SUV, uSUV = 0, Final velocity of SUV, vSUV = 0, and Coefficient of kinetic friction, μk = 0.80. Distance covered before stopping, s = 2.5 m.

We know that the total momentum of the system remains conserved, we can write:

ms * us + mSUV * uSUV = (ms + mSUV) * v

Thus,

ms * us = (ms + mSUV) * v

The speed of the sports car at impact when kinetic friction between tires and road is 0.80 is 15.55 m/s.

It is given that Mass of sports car, ms = 910 kg, Mass of SUV, mSUV = 2100 kg, and Initial velocity of sports car, us = ?, Final velocity of sports car, v = 0, Initial velocity of SUV, uSUV = 0, Final velocity of SUV, vSUV = 0, and Coefficient of kinetic friction, μk = 0.80. Distance covered before stopping, s = 2.5 m.

We know that the total momentum of the system remains conserved, we can write:

ms * us + mSUV * uSUV = (ms + mSUV) * v

Thus,

ms * us = (ms + mSUV) * v

Since the two cars skid together, the frictional force provides the reduction to the motion of the cars. The reduction force F = μk * N where N is the normal force acting on the cars, N = (ms + mSUV) * g where g is the acceleration due to gravity, g = 9.8 m/s².

We have to find the speed of the sports car at impact i.e. us. So, using the equations of motion with constant acceleration, we can write:

us² - 2 * μk * (ms + mSUV) * g * s / (ms + mSUV) = v²

us² = 2 * μk * (ms + mSUV) * g * s / ms

us = sqrt [2 * 0.80 * (910 + 2100) * 9.8 * 2.5 / 910]

us = 15.55 m/s

Therefore, the speed of the sports car at impact is 15.55 m/s.

Learn more about Kinetic friction:

https://brainly.com/question/20241845

#SPJ11

How much force is required to accelerate a 5kg mass at 20m/s 2 ?

Answers

Нам не дано коэффициент трения, значит, можно не учесть силу трения. От этого, по второму закону Ньютона, F=ma=5×20=100 Н.

И это всё!

what is refraction? what is refraction? the bending of waves due to a change in wave amplitude the bending of waves due to a change in wavelength the bending of waves due to a change in wave velocity the bending of waves due to a change in wave phase

Answers

Refraction is the bending of waves due to a change in their speed.

What is refraction? Refraction is a phenomenon in which waves bend due to a change in speed when they travel from one medium to another medium. It usually occurs when the waves pass from one medium to another medium, and the angle at which the waves hit the surface is not perpendicular.

It happens because waves travel at different speeds in different media. When waves pass through the medium, the refracted waves change direction, but their frequency and wavelength remain constant.

The most commonly observed examples of refraction are the bending of light rays in water, the splitting of white light into a rainbow, the mirages on hot days, and the apparent bending of objects partially submerged in water.

To know more about Refraction, refer here:

https://brainly.com/question/14760207#

SPJ11#

Five docks are being tested in a laboratory. Exactly at noon, as determined by the WWV

Answers

Exactly at noon, as determined by the WWV time signal, on successive days of a week the clocks according to their relative value as good timekeepers, best to worst.

Time signals are also used in many everyday applications, such as GPS navigation, where precise timing is essential for calculating positions accurately.  A time signal refers to any signal that provides information about the passage of time. Time signals are often used in experiments to measure the duration of events or to synchronize the timing of multiple processes.

One common type of time signal is a periodic signal, which repeats itself at regular intervals. This can be used to measure the period or frequency of a phenomenon, such as the oscillation of a pendulum or the vibration of a guitar string. Another type of time signal is a pulse signal, which provides a brief burst of energy at a specific time. This can be used to trigger the start or stop of a process or to measure the time delay between different events.

To learn more about Time signal visit here:

brainly.com/question/28875779

#SPJ4

when one stationary object is replaced by another stationary object, the change between the two objects maybe perceived as the movement of a single object. this creates?

Answers

When one stationary object is replaced by another stationary object, the change between the two objects maybe perceived as the movement of a single object. This creates an optical illusion.

An optical illusion is defined as a visual phenomenon in which the information gathered by the eye is processed in a way that results in a false perception of reality or the visual impression of seeing something that is not present or incorrectly perceiving it. It is a misinterpretation of a visual stimulus caused by the brain's ability to misjudge sensory information.

It can happen when visual information is processed in the brain, and it can create an impression of movement that isn't there. This phenomenon occurs when an object is moving or when the eyes are moving around, but it can also happen when the object being looked at is stationary.

When one stationary object is replaced by another stationary object, the change between the two objects maybe perceived as the movement of a single object. This creates an optical illusion because the visual system is misled into thinking that the object is moving.

The brain continues to process visual information even when the object is stationary, creating the impression that the object is moving. This is why an optical illusion can be used to make a stationary object appear to move or to make a moving object appear to be stationary.

Learn more about optical illusion: https://brainly.com/question/3260067

#SPJ11

the orbital period of saturn is 29.46 years. determine the distance from the sun to the planet in km

Answers

The average distance from the Sun to Saturn is approximately 1,427,000,000 km. To calculate this, we can use the Third Kepler's Law of Planetary Motion, which states that the square of the orbital period of a planet is proportional to the cube of the semi-major axis of the orbit.

We can use Kepler's Third Law to relate the orbital period of a planet to its distance from the sun:

T^2 = (4π^2 / GM) * r^3

where T is the orbital period in years, G is the gravitational constant, M is the mass of the sun, and r is the average distance from the sun to the planet in astronomical units (AU).
Therefore, we can use the formula:

d^3 = (T^2 * 4π^2)/G*M

Where d is the distance, T is the orbital period, G is the gravitational constant, and M is the mass of the Sun.


Plugging in the values:

d^3 = (29.46^2 * 16π^2)/(6.67408 * 1.989 * 10^30)
d = 1,427,000,000 km

For more such question on Third Kepler's Law

https://brainly.com/question/6867220

#SPJ11

A student drops a rock in a pond and notices that her reflection in the water becomes less clear. Which statement best explains the student’s observation?(1 point)


The surface of the water is not shiny after the rock is dropped in the pond.

The surface of the water is no longer hard after the rock is dropped in the pond.

The water is not able to reflect waves after the rock is dropped in the pond.

The water is not a smooth surface after the rock is dropped in the pond.

Answers

Answer:

The best statement that explains the student's observation is: "The water is not a smooth surface after the rock is dropped in the pond." When the rock is dropped in the pond, it creates ripples and waves that disturb the smooth surface of the water. As a result, the reflection becomes less clear because the disturbed surface scatters the light and creates a distorted image. This is a common phenomenon observed when a disturbance is created on the surface of water, like when you throw a stone or object into it.

Other Questions
Please some one help me solve this question. George needs to take the route as follows .6km on a bearing of 080 from A to B 5km on a bearing of 160. From B to C The scale is 1.5cm= 1km However, George uses an incorrect scale of 1cm= 1km and ends up at D. What bearing and distance does he need to take to end up at the correct destination of C. Eddie's Electronics sells laptop computers for $450 cach. At this price, the store sells 325 laptops per month. Eddie's Electronics incurs a cost of $398 for each laptop it sells. Assume that this is the store's only cost. What are Eddie's Electronics' revenue and profit? Feedback You have not stered the correct revenue for Eddie's Electronics. Revenue is equal to price times quantity Revenue: $ 146250 Accounting Profit: $ 234000 Economic Profit Eddie recently received an offer from a big box store to purchase his business at a valuation of $100,000. If invested in the stock market, these funds could earn 0.6% return, on average, per month. Assuming the valuation is accurate and Eddy could earn $4,000 a month if he returned to his previous IT job, what are Eddy's monthly economic profits from running Eddie's Electronics? Why does Gina perform regular audits such as the accounting of disclosure review? Find the slope of the following graph and enter your result in the empty box. [TRUE OR FALSE] Extended examples are typically much more effective as supporting material for your speech than brief examples. fill in the blank.___are a framework for how to think about what you need to gather from a prospect during each stage of the sales process. TRUE OR FALSE cut and sew construction refers to knit garments where the pieces are cut from fabric rather than knit to shape. Companies sometimes spend millions to move location:A. for pleasant sceneryB. to be near vacation spotsC. at a supplier's requestD. for proximity to customers in one method of measuring backlash, a bar is attached to the driven shaft and a dial indicator measures its movement. this method must be adjusted to account for the ___ of the bar. Let Gbe a group. Say what it means for a map :GGto be an automorphism. Show that the set-theoretic composition =of any two automorphisms ,is an automorphism. Prove that the set Aut(G)of all automorphisms of the group Gwith the operation of taking the composition is a group. A small open economy with a floating exchange rate is initially in equilibrium at A with IS1*, LM1*. Holding all else constant, if the domestic price level increases, then the _____ curve will shift to _____.A. IS1*; IS2*B. IS1*; IS3*C. LM1*; LM2*D. LM1*; LM3* I NEED HELP ASAP. How do the ideas of the talent search finalist support the main idea of the text these. Teens have some ideas for stopping climate change commonlit 1.5. matric is a stressful year for most learners. advice learners on how to manage stress by using mechanism techniques.(8) Please help 50 points and Brainly Which of the following are examples of microbial evolution that might lead to emergence or reemergence of a disease? assuming w1, w2, and w3 are 0-1 integer variables, the constraint w1 w2 w3 < 1 is often called a Sean wants to talk to his teenage daughter about the dangers of smoking. Which of the following suggestions is least likely to persuade Sean's daughter to resist the pressure to smoke?A. Ask her to think about the negative effects of smoking (e.g., cancer).B. Ask her to make a public commitment to not smoke.C. Increase her fear of smoking by showing her pictures of lung cancer.D. Tell her she is forbidden from smoking and threaten to take her car away if she ever tries smoking. an actuary has discovered that policyholders are five times as likely to file two clams as to file four claims. if the number of claims filed has a poisson distribution, what is the variance of the number of claims filed? the larger leg of a right triangle is 7cm more than the smaller leg the hypotenuse is 17cm find each leg Dewayne missed four of the 30 problems on the problem set. Whatpercent of the problems did Dewayne answer correctly?