The cost of putting a fence around a square field at ₹2.50 per metre is ₹200.The length of each side of the field is:

Answers

Answer 1

The cost of putting a fence around a square field is ₹2.50 per meter. The cost of fencing around the square field is ₹200.To find: The length of each side of the field.

Solution:  Let the length of each side of the square field be "a".The perimeter of a square is given by the formula P = 4a.The cost of fencing around a square field is given as ₹2.50 per metre.The cost of fencing around the square field is ₹200.The formula for the cost of fencing is given by the formula:

C = length × cost per unit

⇒ Cost of fencing = perimeter × cost per unit

= 4a × ₹2.50/metre

= ₹10a

According to the given details, the cost of fencing is ₹200.

So, we can write the equation as:

10a = 200

Dividing both sides by 10, we get:

a = 20 meters

Therefore, the length of each side of the square field is 20 meters. Hence, the required answer is:

The length of each side of the field is 20 meters.

To know more about  length visit:

https://brainly.com/question/32060888

#SPJ11


Related Questions

Help me find the x please (image attached)

Answers

The measure of the arc is:

x = 120°

How to find the measure of arc x?

The arc of a circle is the part or segment of the circumference of a circle. A straight line drawn by connecting the two ends of the arc is called chord of a circle.

Check the attached image for labeling.

y = 180° (semicircle)

The measure of inscribed angle is half the measure of its intercepted arc. That is:

30° = 1/2 * U

U = 2 * 30

U = 60°

x = 360 - U - y  (sum of angles in a circle is 360°)

x = 360 - 60 - 180

x = 120°

Learn more about arcs on:

brainly.com/question/31105144

#SPJ1

Select the correct answer.
Which expression is equivalent to
3
2
?
A.

6
2

y

9

y
2

3

y
B.

9
y

6
y
+
2
C.

3

y
2

y

6
+
9
2

y

6
D.

Answers

The correct equivalent expression is,

⇒ - 3 (2x - 3y)

We have to given that;

Expression is,

⇒ - 6x + 9y

Now, We can simplify as;

⇒ - 6x + 9y

⇒ - 3 (2x - 3y)

Thus, The correct equivalent expression is,

⇒ - 3 (2x - 3y)

Learn more about the mathematical expression visit:

brainly.com/question/1859113

#SPJ1

Complete question is,

Which expression is equivalent to −6x + 9y?

A) −3(2x + 3y)

B) −3(2x − 3y)

C) 3(2x − 3y)

D) −3(2x + 9)

,determine whether the three vectors lie in a plane in R3.
(a) v1 =(2,−2,0), v2 =(6,1,4), v3 =(2,0,−4)
(b) v1 =(−6,7,2), v2 =(3,2,4), v3 =(4,−1,2)

Answers

a) The determinant of A is non-zero, the vectors v1, v2, and v3 are linearly independent and do not lie in a plane in R3.

b) The determinant of B is non-zero, the vectors v1, v2, and v3 are linearly independent and do not lie in a plane in R3.

To determine whether three vectors lie in a plane in R3, we need to check if they are linearly dependent or independent. If they are linearly dependent, then they lie in a plane; if they are linearly independent, then they do not lie in a plane.

(a) To check if v1, v2, and v3 lie in a plane, we need to see if they are linearly dependent or independent. One way to do this is to find the determinant of the matrix A whose columns are the three vectors:

| 2  6  2 |

|−2  1  0 |

| 0  4 −4 |

We can expand this determinant along the first row to get:

det(A) = 2 × | 1  0 |

       - (-2) × | 6  4 |

       + 0 × | 1 −4 |

       = 2(1 × 4 - 0 × (-4)) - (-2)(6 × 4 - 1 × 1) + 0

       = 8 + 47 + 0

       = 55

(b) To check if v1, v2, and v3 lie in a plane, we need to see if they are linearly dependent or independent. One way to do this is to find the determinant of the matrix B whose columns are the three vectors:

|−6  3  4 |

| 7  2 −1 |

| 2  4  2 |

We can expand this determinant along the third column to get:

det(B) = 4 × |−6  3 |

       - (-1) × | 7  2 |

       + 2 × | 2  4 |

       = 4(-6 × 2 - 3 × 7) - (-1)(7 × 4 - 2 × 2) + 2(2 × 2 - 4 × 3)

       = -96 + 30 + (-8)

       = -74

for such more question on vectors

https://brainly.com/question/24400579

#SPJ11

show that if a basis i is not optimal, then there is an improving swap, which means thtat there is a pair of indices

Answers

I think you may have accidentally cut off the question. Can you please provide the full question so that I can assist you better?

Consider the given vector equation. r(t) = 4 sin(t)i – 2 cos(t)j (a) Find r'(t). 4 cos(t)i + 2 sin(t); (b) Sketch the plane curve together with position vector r(t) and the tangent vector r(t) for the given value of t = 37/4.

Answers

(a) The sketch of the plane curve with the given vector equation is illustrated below.

(b) The resulting picture is a curve in the xy-plane with the position vector r(37/4) and the tangent vector r'(37/4) at that point.

(c) The sketch of the position vector r(t) and the tangent vector r'(t) for the given value of t is illustrated below.

To find r'(t), we need to take the derivative of r(t) with respect to t. Since the coefficients of i and j are functions of t, we need to use the chain rule. The result is r'(t) = 4 cos(t)i + 2 sin(t)j. This vector represents the tangent vector to the curve at the point r(t) for any given value of t.

Now, let's sketch the curve together with the position vector r(t) and the tangent vector r'(t) for t = 37/4.

To do this, we can plot the point (4sin(37/4), -2cos(37/4)) on the xy-plane and draw a vector from the origin to this point, which represents r(37/4). We can also draw a tangent vector to the curve at this point, which represents r'(37/4).

Since

=> r'(37/4) = 4cos(37/4)i + 2sin(37/4)j,

we can plot this vector starting at the point r(37/4) and extending in the direction of the vector.

To know more about vector here

https://brainly.com/question/29740341

#SPJ4

Complete Question:

Consider the vector equation r ( t ) = 4 sin t i − 2 cos t j , t = 3 π / 4 .

(a) Sketch the plane curve with the given vector equation.

(b) Find r'(t).

(c) Sketch the position vector r(t) and the tangent vector r'(t) for the given value of t.

what is the hydronium-ion concentration of a 0.210 m oxalic acid, h 2c 2o 4, solution? for oxalic acid, k a1 = 5.6 × 10 –2 and k a2 = 5.1 × 10 –5.

Answers

The hydronium-ion concentration of a 0.210 M oxalic acid (H₂C₂O₄) solution is approximately 1.06 × 10⁻² M.

To find the hydronium-ion concentration, follow these steps:

1. Determine the initial concentration of oxalic acid (H₂C₂O₄) which is 0.210 M.
2. Since oxalic acid is a diprotic acid, it has two dissociation constants, Ka1 (5.6 × 10⁻²) and Ka2 (5.1 × 10⁻⁵).
3. For the first dissociation, H₂C₂O₄ ⇌ H⁺ + HC₂O₄⁻, use the Ka1 to find the concentration of H⁺ ions.
4. Create an ICE table (Initial, Change, Equilibrium) to represent the dissociation of H₂C₂O₄.
5. Write the expression for Ka1: Ka1 = [H⁺][HC₂O₄⁻]/[H₂C₂O₄].
6. Use the quadratic formula to solve for [H⁺].
7. The resulting concentration of H⁺ (hydronium-ion) is approximately 1.06 × 10⁻² M.

To know more about ICE table click on below link:

https://brainly.com/question/30395953#

#SPJ11

reate a recursive definition for the set of all positive integers that have a 2 as at least one of its digits

Answers

Thus, S recursively as follows:
Base case: 2 is in S.
Recursive step: If n is in S, then n2 and 2n are also in S.

A recursive definition for the set of all positive integers that have a 2 as at least one of its digits can be created as follows. Let S be the set of all positive integers that have a 2 as at least one of its digits.

Base case: The number 2 is in the set S.

Recursive step: For any n in S, we can obtain a new number in S by adding 2 as a digit to the left of n, or by appending 2 to the right of n. This means that any number in S can be obtained by starting with 2 and applying the recursive step a finite number of times.

Thus, we have defined S recursively as follows:

Base case: 2 is in S.
Recursive step: If n is in S, then n2 and 2n are also in S.

This recursive definition ensures that any positive integer that has a 2 as at least one of its digits can be generated by starting with 2 and applying the recursive step a finite number of times. It also ensures that every number generated in this way will have a 2 as at least one of its digits.

Know more about the finite number

https://brainly.com/question/1622435

#SPJ11

a farming community collected data on the effect of different amounts of fertilizer, x, in 100 kg/ha, on the yield of carrots, y, in tonnes. The resulting quadratic regression model is y=-0.5x^2 + 1.4x +0.1. Determine the amount of fertilizer needed to produce the maximum yield.

Answers

To determine the amount of fertilizer needed to produce the maximum yield, we need to find the vertex of the quadratic equation. The vertex represents the maximum point on the graph of the equation.

The given quadratic regression model is y = -0.5x^2 + 1.4x + 0.1.

The x-coordinate of the vertex can be found using the formula: x = -b / (2a), where a and b are the coefficients of the quadratic equation (ax^2 + bx + c).

In this case, a = -0.5 and b = 1.4. Substituting these values into the formula, we get:

x = -(1.4) / (2 * (-0.5))
x = -1.4 / (-1)
x = 1.4

Therefore, the amount of fertilizer needed to produce the maximum yield is 1.4 kg/ha.

4. the table below shows the weight of an alligator at various times during a feeding trial. a) make a scatterplot of this data using your calculator. is a linear model appropriate? explain. b) what is the equation for the line of best fit? equation c) what is the slope and describe what it means in context to this data. d) use the equation to predict the weight of this alligator at week 52.

Answers

Apologies, but I cannot create or display visual content like scatterplots. However, I can still provide you with guidance on the other questions.

a) To determine whether a linear model is appropriate, you would need to examine the scatterplot. A linear model would be appropriate if the data points appear to form a roughly straight line pattern. If the points deviate significantly from a straight line or exhibit a nonlinear trend, a linear model may not be suitable.

b) To find the equation for the line of best fit (also known as the regression line), you would typically use statistical software or calculators capable of performing linear regression analysis on the given data. The equation would be in the form of y = mx + b, where y represents the weight and x represents the time during the feeding trial.

c) The slope of the line of best fit represents the rate of change in weight with respect to time. A positive slope indicates an increase in weight over time, while a negative slope would indicate a decrease. The magnitude of the slope reflects the steepness of the line and indicates the rate at which the weight is changing.

d) Without the equation for the line of best fit, it's not possible to provide an accurate prediction of the alligator's weight at week 52. However, once you have the equation, you can substitute x = 52 into the equation to calculate the predicted weight at that time point.

For such more questions on Scatterplots:

https://brainly.com/question/29366075

#SPJ11

Find the fundamental matrix Φ(t) satisfying Φ(0)=I for the given first-order system: x ′
=( −1
1

−4
−1

)x

Answers

The fundamental matrix Φ(t) satisfying Φ(0) = I for the given first-order system x' = [[-1, 1], [-4, -1]]x is Φ(t) = [[e^(-t), te^(-t)], [-4te^(-t), e^(-t)]].

The fundamental matrix is a matrix whose columns are the linearly independent solutions of the given system of differential equations. In this case, we are given the matrix representation of the system and we need to find the fundamental matrix Φ(t).

To find Φ(t), we first need to find the eigenvalues and eigenvectors of the coefficient matrix A = [[-1, 1], [-4, -1]]. The eigenvalues can be found by solving the characteristic equation det(A - λI) = 0, where λ is the eigenvalue and I is the identity matrix.

Solving det(A - λI) = 0, we find that the eigenvalues are λ₁ = -2 and λ₂ = -3.

Next, we find the corresponding eigenvectors. For λ₁ = -2, we solve the equation (A - λ₁I)v₁ = 0, where v₁ is the eigenvector. Similarly, for λ₂ = -3, we solve (A - λ₂I)v₂ = 0, where v₂ is the eigenvector.

After finding the eigenvectors, we construct the fundamental matrix Φ(t) using the formula Φ(t) = [v₁ e^(λ₁t), v₂ e^(λ₂t)], where e^(λ₁t) and e^(λ₂t) are the exponential terms corresponding to the eigenvalues.

Finally, we substitute the eigenvalues and eigenvectors into the formula and simplify to obtain the fundamental matrix Φ(t) = [[e^(-t), te^(-t)], [-4te^(-t), e^(-t)]], which satisfies Φ(0) = I.

Learn more about characteristic equation here:

https://brainly.com/question/31432979

#SPJ11

convert the following equation to cartesian coordinates. describe the resulting curve. rsinθ=4the cartesian equation is ___. (type an equation.)

Answers

The Cartesian equation is x^2 + y^2 = (4/y)^2, and the resulting curve is a circle centered at the origin with radius r = 16/y for all values of y except y = 0.

How to convert the polar equation into Cartesian coordinates?

To convert the polar equation r sin(θ) = 4 into Cartesian coordinates, we can use the identities x = r cos(θ) and y = r sin(θ).

Substituting r sin(θ) = 4 into the second equation gives y = 4/r cos(θ). We can now substitute r^2 = x^2 + y^2 into this equation to get:

y = 4/√(x^2 + y^2) * x/√(x^2 + y^2)

Simplifying this equation gives:

x^2 + y^2 = (4/y)^2

This is the equation of a circle centered at the origin with radius r = 16/y. However, we need to be careful because the original polar equation is only defined for θ values where sin(θ) ≠ 0, or in other words, θ ≠ kπ for any integer k.

When we look at the Cartesian equation x^2 + y^2 = (4/y)^2, we can see that it is undefined at y = 0. However, we know that the original polar equation is defined for all values of θ except θ = kπ. Therefore, we can say that the resulting curve is a circle centered at the origin with radius r = 16/y for all values of y except y = 0.

In summary, the Cartesian equation is x^2 + y^2 = (4/y)^2, and the resulting curve is a circle centered at the origin with radius r = 16/y for all values of y except y = 0.

Learn more about cartesian equation

brainly.com/question/11676110

#SPJ11

A pendulum is exactly 70 cm long. If its period is 1.68 s, what is the value of g at the location of the pendulum?

Answers

9.81 m/s².

Given that the pendulum is 70 cm long and its period is 1.68 s, we can use the formula for the period of a simple pendulum to find the value of g at the location of the pendulum:

T = 2π√(L/g)

Where T is the period (1.68 s), L is the length of the pendulum (0.7 m), and g is the acceleration due to gravity. We can rearrange the formula to solve for g:

g = 4π²L/T²

Substituting the given values:

g = 4π²(0.7 m) / (1.68 s)²
g ≈ 9.81 m/s²

The value of g at the location of the pendulum is approximately 9.81 m/s².

Learn more about Simple pendulum here:

https://brainly.com/question/29150473

#SPJ11

Harry pays $28 for a one month gym membership and has to pay $2 for every fitness class he takes. This is represented by the following function, where x is the number of classes he takes.

Answers

Taking the data into consideration, the function would be C(x) = 2x + 28, and Harry would have to pay $52 if he were to take 12 classes, as seen below.

How to solve the function

Taking the information provided in the prompt into consideration, the cost Harry has to pay for the gym membership and fitness classes can be represented by the following function:

C(x) = 2x + 28

Where x is the number of fitness classes he takes, and C(x) is the total cost he has to pay. If Harry takes 12 classes, then we can substitute x = 12 into the function:

C(12) = 2(12) + 28

C(12) = 24 + 28

C(12) = 52

Therefore, Harry has to pay a total of $52 if he takes 12 classes.

This is the complete question we found online:

Harry pays $28 for a one month gym membership and has to pay $2 for every fitness class he takes. This is represented by the following function, where x is the number of classes he takes.

What is the total amount Harry has to pay if he takes 12 classes?

Learn more about functions here:

https://brainly.com/question/25638609

#SPJ1

Suppose a is an invertible nxn matrix and v is an eigenvector of a with associated eigenvalue, prove that v is an eigenvector of a^2 and find the associated eigenvalue.

Answers

This result shows that the eigenvalues of A^2 are the squares of the eigenvalues of A, and the eigenvectors of A and A^2 are the same

Let λ be the eigenvalue associated with eigenvector v of matrix A. Then by definition, we have:

Av = λv

Now consider the matrix A^2. We can write A^2 as the product A * A, so we have:

A^2 v = A(Av) = A(λv) = λ(Av)

Note that Av = λv, so we have:

A^2 v = λ(Av) = λ(λv) = λ^2 v

This shows that v is an eigenvector of A^2 with associated eigenvalue λ^2. To see why, note that we have shown that A^2 v is a scalar multiple of v, with the scalar being λ^2. This means that v is an eigenvector of A^2 with associated eigenvalue λ^2.

Therefore, we have shown that if v is an eigenvector of A with associated eigenvalue λ, then v is an eigenvector of A^2 with associated eigenvalue λ^2.

To summarize:

If Av = λv, then A^2 v = λ^2 v.

So, v is an eigenvector of A^2 with associated eigenvalue λ^2.

This result shows that the eigenvalues of A^2 are the squares of the eigenvalues of A, and the eigenvectors of A and A^2 are the same

To know more about eigenvectors refer here

https://brainly.com/question/31013028#

#SPJ11

Find the Maclaurin series for the function. (Use the table of power series for elementary functions.) f(x)=ln(x−4) f(x)=∑ n=1[infinity] ()

Answers

The series converges for values of x such that |x-4| < 1, since the series for ln(1+x) converges for |x| < 1.

To find the Maclaurin series for f(x) = ln(x-4), we can use the formula for the Maclaurin series of ln(1+x), which is:

ln(1+x) = ∑ n=1[infinity] ((-1)^ⁿ⁺ / n) * xⁿ

We can apply this formula by replacing x with (x-4), which gives us:
ln(x-3) = ln(1 + (x-4)) = ∑ n=1[infinity] ((-1)^(n+1) / n) * (x-4)ⁿ

Therefore, the Maclaurin series for f(x) = ln(x-4) is:
f(x) = ∑ n=1[infinity] ((-1)^ⁿ⁺¹ / n) * (x-4)ⁿ

This series converges for values of x such that |x-4| < 1, since the series for ln(1+x) converges for |x| < 1.

Know more about the Maclaurin series here:

https://brainly.com/question/29652576

#SPJ11

On a dry surface the braking distance in feet of a Cadillac Escalade can be approximated by a normal distribution the mean stopping distance is 157. 5 feet with a standard deviation of 7. 2 feet find the braking distance of the Cadillac Escalade that corresponds to z=1. 2

Answers

The answer is , The braking distance of the Cadillac Escalade that corresponds to z=1.2 is approximately 166.14 feet. The option is (a) .

Given that the mean stopping distance is 157.5 feet and the standard deviation is 7.2 feet.

We need to find the braking distance of the Cadillac Escalade that corresponds to z=1.2.

Because the distribution is normal, we can use the z-score formula to find the corresponding braking distance:

z=(x-μ)/σ

where z=1.2, μ=157.5, and σ=7.2

We can solve for x by rearranging the equation:

x = zσ + μx

= 1.2(7.2) + 157.5x

= 8.64 + 157.5x

= 166.14

The braking distance of the Cadillac Escalade that corresponds to z=1.2 is approximately 166.14 feet.

Therefore, the correct option is (a) 166.14 feet.

To know more about Distance visit:

https://brainly.com/question/29769926

#SPJ11

Plot this into a graph.
y = tan (x + 90°) - 1

Answers

The attached is a graph of y = tan (x + 90°) - 1. The graph will exhibit the periodic nature of the tangent function, with oscillations between positive and negative values.

Understanding Tan Graph

The function y = tan(x) represents the tangent function, which is a periodic function that oscillates between positive and negative infinity as x increases or decreases. The tangent function has vertical asymptotes at intervals of π radians (or 180°).

In the given equation y = tan(x + 90°) - 1, the entire function is shifted to the left by 90°. This means that for each x value, we are evaluating the tangent of x + 90°.

The -1 term in the equation shifts the graph downward by 1 unit.

Learn more about tan graph here:

https://brainly.com/question/19040584

#SPJ1

exponential equation 4= in x

Answers

The exponential equation of 4 = ln x is [tex]e^{4} = x\\[/tex]

The ln equation

ln x = 4

The ln equation is written in the form

[tex]ln_{b} x = y[/tex]

According to the logarithm rule

[tex]b^{y} = x[/tex]

condition of the rule are x > 0, b > 0 and b ≠ 0

Here b = e , y = 4 and x = x

Natural log ln have base e  

[tex]e^{4} = x[/tex]

About logarithm - A logarithm is the opposite of a power. In other words, if we take a logarithm of a number, we undo an exponentiation. The logarithmic function log x is the inverse function of the exponential function .

To know more about exponential equation click here :

https://brainly.com/question/29506679

#SPJ1

If a chi-square goodness of fit test ends in a significant result it means that the expected frequencies are significantly different than the observed frequencies.
a) True
b) False

Answers

The statement given "If a chi-square goodness of fit test ends in a significant result it means that the expected frequencies are significantly different than the observed frequencies." is true because because if a chi-square goodness of fit test ends in a significant result, it means that the expected frequencies are significantly different from the observed frequencies.

The chi-square goodness of fit test is a statistical test used to determine if observed categorical data follows an expected distribution. It compares the observed frequencies in different categories with the expected frequencies based on a specified distribution or hypothesis.

If the test yields a significant result, it indicates that there is a significant difference between the observed frequencies and the expected frequencies. In other words, the data does not fit the expected distribution, and there is evidence to suggest that the observed frequencies are not simply due to chance.

You can learn more about chi-square at

https://brainly.com/question/4543358

#SPJ11

compute the vector assigned to the points p= (0,6,-3) and q = (9,1,0) by the vector field f=
F (P) = F (Q) =

Answers

Computing the vector assigned to the points P=(0,6,-3) and Q=(9,1,0) by the vector field F(P)=F(Q) is that we can estimate the vectors based on assumptions about the smoothness and continuity of the vector field, and nearby points.

To compute the vector assigned to the points p=(0,6,-3) and q=(9,1,0) by the vector field f=F(P)=F(Q), we need to evaluate the vector field at each point.

The vector field F(P) tells us the direction and magnitude of the vector at point P.

In this case, we don't have a specific formula for the vector field, so we can't simply plug in the coordinates of P and Q to get the vectors.

However, we can make an educated guess based on the given points.

Looking at the coordinates of P and Q, we can see that they are not aligned along any of the coordinate axes.

This suggests that the vector field may be twisting or curving in some way.

Without more information, we can't say for sure what the vector field looks like, but we can make some assumptions and use our intuition.

One possible assumption is that the vector field is smooth and continuous, meaning that the vectors at nearby points are similar in direction and magnitude.

If we assume this, we can estimate the vectors at P and Q by looking at the nearby points.

For example, we can look at the points (1,6,-3) and (0,5,-3) that are close to P. The vector from P to (1,6,-3) is (1,0,0), and the vector from P to (0,5,-3) is (0,-1,0).

These vectors suggest that the vector field is pointing slightly to the right and slightly down at P.

Similarly, we can look at the points (9,2,0) and (9,1,-1) that are close to Q. The vector from Q to (9,2,0) is (0,1,0), and the vector from Q to (9,1,-1) is (0,0,1).

These vectors suggest that the vector field is pointing slightly up and slightly forward at Q.

Based on these assumptions and estimates, we can assign approximate vectors to P and Q:

- The vector at P is approximately (-0.5,-0.5,0.5), pointing slightly to the right, slightly down, and slightly forward.
- The vector at Q is approximately (0,0.5,0.5), pointing slightly up and slightly forward.


In summary, the long answer to the question of computing the vector assigned to the points P=(0,6,-3) and Q=(9,1,0) by the vector field F(P)=F(Q) is that we can estimate the vectors based on assumptions about the smoothness and continuity of the vector field, and nearby points.

Know more about the vector here:

https://brainly.com/question/27854247

#SPJ11

Quadrilateral ABCD is a rhombus. Given that m∠EDA=37°, what are the measures of m∠AED,m∠DAE , and m∠BCE? Show all calculations and work

Answers

The measure of the angles are;

m<AED = 90 degrees

m<DAE = 43 degrees

m<BCE = 37 degrees

How to determine the angles

To determine the measure of the angles, we need to know the following;

Adjacent angles are equalCorresponding angles are equalThe sum of angles in a triangle is 180 degreesThe sum of the interior angles of a rhombus is 360 degreesAngles on a straight line is 180 degrees

From the information given, we have that;

m<AED is right- angled thus is equal to 90 degrees

But we have that;

m<DAE + m<EDA + m<AED = 180

Then,

m<DAE + 37 + 90 = 180

collect the like terms

m<DAE = 180 - 137

m<DAE = 43 degrees

m<BCE = m<EDA

Hence, m<BCE = 37 degrees

Learn more about rhombus at: https://brainly.com/question/26154016

#SPJ4

equal monthly payments (starting end of first month) on a 6-year, $50,000 loan at a nominal annual interest rate of 10ompounded monthly are:

Answers

To calculate the equal monthly payments for a 6-year, $50,000 loan at a nominal annual interest rate of 10% compounded monthly, we can use the formula for the monthly payment on a loan:

P = (r(PV))/(1 - (1 + r)^(-n))

where P is the monthly payment, r is the monthly interest rate (which is the nominal annual rate divided by 12), PV is the present value of the loan (which is $50,000), and n is the total number of monthly payments (which is 6 years times 12 months per year, or 72).

First, we need to calculate the monthly interest rate:

r = 0.10/12 = 0.0083333

Next, we can substitute these values into the formula to calculate the monthly payment:

P = (0.0083333(50000))/(1 - (1 + 0.0083333)^(-72)) = $843.86

Therefore, the equal monthly payments for this loan would be $843.86, starting at the end of the first month.

Learn more about loan here

https://brainly.com/question/25696681

#SPJ11

A membership at Gisele's Gym costs $145 to join and $3 for each visit.



A membership at Freddie's Fitness costs $75 to join and $5 for each visit.



At how many visits will both cost the same?



1) define the variables: c = cost and v = total visits.



2) write the equations.



3) solve using substitution OR elimination

Answers

1. Define the variables: C = cost and V = total visits.2. Write the equations.Gisele's Gym CostFreddie's Fitness CostC = 145 + 3VC = 75 + 5V3V = 5V - 70.

Simplify the equations by subtracting 3V and 5V from both sides:2V = 70V = 35Using V = 35, substitute 35 into one of the equations to determine the cost of membership at both places:C = 145 + 3(35)C = 145 + 105C = 250This means that membership will cost the same at both gyms at 35 visits and the cost will be $250. Answer: 35 visits.

Variables:

Let c be the total cost and v be the number of visits.

Equations:

For Gisele's Gym:

c = 145 + 3v

For Freddie's Fitness:

c = 75 + 5v

Solve using substitution:

Since both costs are equal, we can set the two equations equal to each other and solve for v:

145 + 3v = 75 + 5v

Rearranging the equation:

145 - 75 = 5v - 3v

Simplifying:

70 = 2v

Dividing both sides by 2:

v = 35

Therefore, both Gisele's Gym and Freddie's Fitness will cost the same after 35 visits.

To know more about the word cost visits :

https://brainly.com/question/13910351

#SPJ11

Suppose the amount of a certain drug in the bloodstream is modeled by C(t)=15te-.4t. Given this model at t=2 this function is: Select one:
a. At the inflection point
b. Increasing
c. At a maximum
d. Decreasing

Answers

The function is decreasing and at a maximum at t=2.

At t=2, the function C(t)=15te-.4t evaluates to approximately 9.42. To determine whether the function is at the inflection point, increasing, at a maximum, or decreasing, we need to examine its first and second derivatives. The first derivative is C'(t) = 15e-.4t(1-.4t) and the second derivative is C''(t) = -6e-.4t.
At t=2, the first derivative evaluates to approximately -2.16, indicating that the function is decreasing. The second derivative evaluates to approximately -3.03, which is negative, confirming that the function is concave down. Therefore, the function is decreasing and at a maximum at t=2.

Learn more about derivatives here:

https://brainly.com/question/31464919

#SPJ11

(a) Sketch the conic section. Find and label any foci, vertices, and asymptotes. (x - 3)^2 – 9y^2 = 36
(b) Find the equation of the ellipse with foci (0,+2) and semi-major axis length 3.

Answers

a) the vertices are (9, 0) and (-3, 0).

the foci are (3 ± 2√10, 0)

the asymptotes are y = ±x/3 - 1

b) the equation of the ellipse is x² + (y-√5/2)² = 5/4

a)  To find the foci, vertices, and asymptotes of the ellipse (x - 3)² - 9y² = 36, we can first divide both sides by 36 to get:

[tex]\frac{(x-3)^2}{36} - \frac{y^2}{4}=1[/tex]

Therefore, the center of the ellipse is (3, 0).

The semi-major axis length is √36 = 6, and the semi-minor axis length is √4 = 2.

Therefore, the vertices are (3 ± 6, 0) = (9, 0) and (-3, 0).

The foci are located at a distance of √(6²-2²) = 2√10 from the center along the major axis. Therefore, the foci are (3 ± 2√10, 0) and the equation of the major axis is x = 3.

To find the asymptotes, we will use the formula:

[tex]\frac{y-k}{b} = \pm\frac{x-h}{a}[/tex]

where (h, k) is the center of the ellipse, a is the length of the semi-major axis, and b is the length of the semi-minor axis. Therefore, the equations of the asymptotes are:

(y-0)/2 = ±(x-3)/6

y = ±x/3 - 1

b) To find the equation of the ellipse with foci (0, 2) and semi-major axis length 3, we can first find the center of the ellipse. Since the foci are located on the y-axis, the center must also be located on the y-axis. Therefore, the center is (0, c), where c is the distance between the center and one of the foci.

Since the semi-major axis length is 3, the distance between the center and one of the vertices is 3. Therefore, we have:

c² + (3/2)² = (3/2+2)²

c² = 5/4

Therefore, the center of the ellipse is (0, √5/2). The distance between the center and one of the foci is √5/2 - 2. Therefore, the distance between the center and one of the vertices is √{(√5/2)² - (√5/2 - 2)²} = √5.

Therefore, the semi-minor axis length is √5/2, and the equation of the ellipse is:

[tex]\frac{x^2}{\frac{5}{4} } +\frac{(y-\frac{\sqrt{5}}{2} )^2}{\frac{5}{4} } =1[/tex]

x² + (y-√5/2)² = 5/4

Learn more about Ellipse here

https://brainly.com/question/12043717

#SPJ4

(LOTS OF POINTS) How tall is the tree? Show work

Answers

The height of the tree, found using the distances in the diagram and Pythagorean Theorem is about 92.49 feet

What is the Pythagorean Theorem?

The Pythagorean Theorem express the relationship between the lengths of the sides of a right triangle. The theorem states that the square of the hypotenuse side of a right triangle is equivalent to the sum of the squares of the other two sides of the triangle.

The distances in the drawing, whereby the tree is vertical indicates;

The distance line from the person to the top of the tree, the height of the person, and the distance from the base of the tree to the person forms a right triangle

Hypotenuse side = The distance line from the person to the top of the tree, h

The legs = The height of the tree, y and the distance from the person to the base of the tree, x

Pythagorean theorem indicates that we get;

h² = y² + x²

h = 102, x = 43, therefore;

102² = y² + 43²

y² = 102² - 43² = 8555

The height of the tree, y = √(8555) ≈ 92.49

The height of the tree, y is about 92.49 feet

Learn more on Pythagorean Theorem here: https://brainly.com/question/343682

#SPJ1

a pair of dice are rolled one time find the probaility of odds against a sum of 7

Answers

The required answer is every 5 times we roll the dice and don't get a sum of 7, we can expect to get a sum of 7 once.

To find the probability of odds against a sum of 7 when rolling a pair of dice one time, we need to first determine the number of ways to get a sum of 7 versus the number of ways to get any other sum.
There are a total of 36 possible outcomes when rolling a pair of dice, as there are six possible outcomes for each die (1, 2, 3, 4, 5, or 6). To get a sum of 7, there are 6 possible combinations: 1+6, 2+5, 3+4, 4+3, 5+2, and 6+1. Therefore, the probability of rolling a sum of 7 is 6/36 or 1/6.

To find the odds against rolling a sum of 7, we can use the formula:
Odds against = (number of ways it won't happen) : (number of ways it will happen)
So the number of ways it won't happen (i.e. rolling any sum other than 7) is 36-6, or 30. Therefore, the odds against rolling a sum of 7 are:
Odds against = 30 : 6
Simplifying, we get:
Odds against = 5 : 1
This means that for every 5 times we roll the dice and don't get a sum of 7, we can expect to get a sum of 7 once.

To know more about the probability . Click on the link.

https://brainly.com/question/30034780

#SPJ11

URGENT
3
2-
-2
7777
-3
2 3 456
What is the domain of the function?
x<0
X>0
O x < 1
all real numbers

Answers

The domain of the function is given as follows:

x > 0.

How to define the domain and range of a function?

The domain of a function is defined as the set containing all possible input values of the function, that is, all the values assumed by the independent variable x in the context of the function.The range of a function is defined as the set containing all possible output values of the function, that is, all the values assumed by the dependent variable y in the context of the function.

The function in this problem is defined for values of x to the right of x = 0, hence the domain is given as follows:

x > 0.

Missing Information

The graph is given by the image presented at the end of the answer.

More can be learned about domain and range at https://brainly.com/question/26098895

#SPJ1

In Exercises 9-14, compute the solution of the given initial-value problem. d2 de y dr2 d2y dt2 y (0) = y(0) = 0 diy 12. +9y = sin 31 d2 14. + 4y sin 3r dr y(0) = 2, y'(0) = 0

Answers

The solution of the given initial value problem is y(r) = (1/9) cos(3r) + (1/9) sin(3r) - (1/9) sin(3r) = (1/9) cos(3r)

We are given the initial value problem:

d^2y/dr^2 + 9y = sin(3r), y(0) = y'(0) = 0 ---------(1)

We can write the characteristic equation for the given differential equation as:

r^2 + 9 = 0

The roots of the characteristic equation are: r = 0 ± 3i

So, the general solution of the homogeneous differential equation d^2y/dr^2 + 9y = 0 is:

y_h(r) = c1 cos(3r) + c2 sin(3r) ------------(2)

Now, we will find the particular solution of the given differential equation. We use the method of undetermined coefficients and assume the particular solution to be of the form:

y_p(r) = A sin(3r) + B cos(3r)

Differentiating y_p(r) w.r.t r, we get:

y_p'(r) = 3A cos(3r) - 3B sin(3r)

Differentiating y_p'(r) w.r.t r, we get:

y_p''(r) = -9A sin(3r) - 9B cos(3r)

Substituting these values in the differential equation (1), we get:

-9A sin(3r) - 9B cos(3r) + 9(A sin(3r) + B cos(3r)) = sin(3r)

Simplifying the above equation, we get:

-9A sin(3r) + 9B cos(3r) = sin(3r)

Comparing the coefficients of sin(3r) and cos(3r) on both sides, we get:

-9A = 1 and 9B = 0

Solving the above equations, we get:

A = -(1/9) and B = 0

So, the particular solution of the given differential equation is:

y_p(r) = -(1/9) sin(3r)

Therefore, the general solution of the given differential equation is:

y(r) = y_h(r) + y_p(r) = c1 cos(3r) + c2 sin(3r) - (1/9) sin(3r) ------------(3)

Now, we will apply the initial conditions to find the values of c1 and c2.

Given that y(0) = 0. Substituting r = 0 in equation (3), we get:

c1 - (1/9) = 0

So, c1 = 1/9

Differentiating equation (3) w.r.t r, we get:

y'(r) = -3c1 sin(3r) + 3c2 cos(3r) - (1/3) cos(3r)

Given that y'(0) = 0. Substituting r = 0 in the above equation, we get:

3c2 = (1/3)

So, c2 = (1/9)

Therefore, the solution of the given initial value problem is:

y(r) = (1/9) cos(3r) + (1/9) sin(3r) - (1/9) sin(3r) = (1/9) cos(3r)

Learn more about initial value here

https://brainly.com/question/2546258

#SPJ11

A central angle of a circle measures (2pi)/3 radians and its radius is 6 cm. What is the length of the arc intercepted by the angle?

Answers

Okay, let's solve this step-by-step:

* The central angle measures (2pi)/3 radians

* Converting to degrees: (2pi)/3 radians = (2*3.14)/3 = 120 degrees

* The radius of the circle is 6 cm

To find the length of an arc intercepted by an angle (in degrees) and radius, we use the formula:

Arc Length = (Degrees * pi * Radius) / 180

So in this case:

Arc Length = (120 * 3.14 * 6) / 180 = 36 cm

Therefore, the length of the arc intercepted by the central angle is 36 cm.

Let me know if you have any other questions!

Other Questions
A snail crawls at the rate of 1cm in 3 minutes.how long will it take to cover 1m distance? answer asap Kaylee, a 19-year-old college student who is living away from home for the first time has been feeling tired and having trouble focusing for the last few weeks and goes to the campus clinic to see the nurse. Which findings lead the nurse to believe the student is experiencing protein malnutrition HELP!!!!! In this activity, you record a few sentences, in Spanish, about how you plan to be successful at a university or college. Use the present progressive tense, the future tense, and the conditional, where appropriate, in your response. Use any audio recording software to record your response. Submit your response to your teacher. When treasury shares are reissued for an amount greater than cost, the amount over the cost increases A local farmer built a rectangular pen for her chickens using 12 meters of fence. She used part of one side of her barn as one length of the rectangular pen. She maximized the area using 12 meters of fence. She then build a rectangular pen for her pigs using 16 meters of fence. She used part of one side of her barn as one length of the rectangular pen. The length of her pen was 2 meters more than the length of the chicken pen. The width of her pen was 1 meter more than the width of the chicken pen. How much larger is the pig pen than the chicken pen In a series lrc circuit, the frequency at which the circuit is at resonance is f0. If you double the resistance, the inductance, the capacitance, and the voltage amplitude of the ac source, what is the new resonance frequency?. Using evidence from the senses (or from an instrument, such as a thermometer or questionnaire, that assists the senses) as the basis for conclusions is known as what? Proofs and congruent triangles 2 forgot to put images last time 50 points ( serious answer or 1 star and report ) ( YOU NEED TO CHECK MY ANSWERS PLEASE ) Express the following The domino theory was A town planner is interested in getting some demographic data about the households in the city. The city has ten wards that vary in size. Which sampling method is most appropriate? Using the following table, construct and interpret a 90% confidence interval for the population standard deviation of the carbon in metric tons.NationBrazilGermanyMexicoEmissionsCanada361844398Great Britain 577631 Help Me Please!!!! Its American Literature Which expression is not equivalent to 8+(n-4) (8-4+n) 12+n n+4 (8+n)-4 The high concentration nutrients in sieve tubes causes entry of water through osmosis. It leads to how do I solve for x? (the picture has the problem) Which section(s) of the Code emphasize the fact that all circuiting must be done so as to avoid the damaging effects of induction heating A school play sold 575 tickets total They were either adult or student tickets there were 75 fewer student tickets sold than adult tickets how many adult tickets were sold Write the equation of a parabola whose directrix is y=1.5y=-1.5 and has a focus at (4,2.5)(-4,-2.5) . find the y intercept of the line on the graph