the life of light bulbs is distributed normally. the variance of the lifetime is 225 and the mean lifetime of a bulb is 530 hours. find the probability of a bulb lasting for at most 540 hours. round your answer to four decimal places.

Answers

Answer 1

The probability of a bulb lasting for at most 540 hours is 0.7521, rounded to four decimal places.

The life of light bulbs is distributed normally. The variance of the lifetime is 225 and the mean lifetime of a bulb is 530 hours. Find the probability of a bulb lasting for at most 540 hours. Round your answer to four decimal places.

Using the z-score formula z = (x - μ) / σ, where x is the value in question (540 hours in this case), μ is the mean (530 hours in this case) and σ is the standard deviation (15 hours in this case), we can calculate the z-score:
z = (540 - 530) / 15
z = 10 / 15
z = 0.67
Using a z-table, we can look up the probability of a value being less than or equal to 0.67, which is 0.7521.
Therefore, the probability of a bulb lasting for at most 540 hours is 0.7521, rounded to four decimal places.

To learn more about probability refer :

https://brainly.com/question/25638875

#SPJ11


Related Questions

Lee buys 12 notebooks for 1. 29 each. How much money does lee spend on the 12 notebooks

Answers

Lee buys 12 notebooks and the cost of each one is $1.29. The total cost of all twenty notebooks is equals to $15.48. So, Total $15.48, money lee spends on the 12 notebooks.

We have, Lee buys some notebooks by spending money.

Number of notebooks that she bought = 12

The price or cost of one notebook = $1.29

We have to determine the amount of money she spends on the 12 notebooks, that total cost of 12 notebooks. Let the total cost of 12 notebooks be 'x dollars'. As we know , total cost is equals to multiplcation of number of objects by cost of one object. So, total cost of 12 notebooks = number of notebooks × cost of one notebook

=> total cost of 12 notebooks = 12 ×1.29

= (12×129)/100

= 15.48

Hence, the required cost is $15.48.

For more information about multiplcation, visit :

https://brainly.com/question/28773316

#SPJ4

Complete question:

Lee buys 12 notebooks for $1.29 each. How much money does lee spend on the 12 notebooks.

Can you help me with this?

Answers

16. The equatiοn οf the line in slοpe-intercept fοrm that passes thrοugh the pοint (-6, 5) and is parallel tο x + 2y = 14 is y = (-1/2)x + 2.

What is equatiοn οf line?

The equatiοn οf a straight line is y = mx + c, y = m x + c m is the gradient and c is the height at which the line crοsses the y -axis, alsο knοwn as the y -intercept.

16. Tο write the equatiοn οf a line in slοpe-intercept fοrm, we need tο find the slοpe and the y-intercept οf the line.

Tο find the slοpe οf the line, we can rewrite the equatiοn x + 2y = 14 in slοpe-intercept fοrm y = mx + b by sοlving fοr y:

x + 2y = 14

2y = -x + 14

y = (-1/2)x + 7

The slοpe οf the line is -1/2.

Since the line we want tο find is parallel tο this line, it will have the same slοpe οf -1/2.

Nοw we can use the pοint-slοpe fοrm οf the equatiοn οf a line tο find the equatiοn οf the line that passes thrοugh the pοint (-6, 5) with a slοpe οf -1/2:

y - y1 = m(x - x1)

where (x1, y1) is the pοint (-6, 5), and m is the slοpe, -1/2.

y - 5 = (-1/2)(x - (-6))

y - 5 = (-1/2)x - 3

y = (-1/2)x + 2

17. The equation perpendicular to y = -(2/3)x + 4, passing through (-4, 6)

perpendicular equations slope would be negative reciprocal to the current line.

The slope in y = -(2/3)x + 4, is m = -(2/3),

The negative reciprocal of -(2/3) is 3/2

Now, applying the x and y values in pοint-slοpe fοrm

y - 6 = 3/2(x - (-4))

y =  3/2(x+4) + 6

y =  (3/2)x + 6 + 6

y =  (3/2)x + 12

18. Since the line we want tο find is parallel tο this line, it will have the same slοpe.

Lets find the slope using slope formula

[tex]\rm m = \dfrac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]\rm m = \dfrac{0 - (-1)}{2 - (-1)}[/tex]

[tex]\rm m = \dfrac{1}{3}[/tex]

Now, using the point slope form

y - 1 = 1/3(x - 3)

y = 1/3(x - 3) + 1

y = (1/3)x - 1 + 1

y = (1/3)x

Learn more about equation of line on:

https://brainly.com/question/18831322

#SPJ1

4. Circle the reason for each of the following manipulations used to simplify the product (8x²)(3x²).
(8.3).(x²-x²)
8x²-3x²
commutative or associative
8.3.x²-x²
commutative or associative
24x²
commutative or exponent property

Answers

8.3.x².x² = (8.3).(x².x²) - commutative and associative properties of multiplication.

What is commutative law?

Commutative laws deal with arithmetic operations addition and multiplication. This means that changing the order or position when adding or multiplying two numbers does not change the final result. For example, 4 + 5 is 9 and 5 + 4 is also 9. The order in which the two numbers are added does not affect the sum. The same concept applies to multiplication. Commutativity does not apply to subtraction and division, because changing the order of the numbers yields a completely different final result. 

(8x²)(3x²) can be simplified as follows:

(8x²)(3x²) = 8.3.x².x² = (8.3).(x².x²)

= [tex]24x^4[/tex]

The reason for each of the manipulations is as follows:

8.3.x².x² = (8.3).(x².x²) - commutative and associative properties of multiplication.

(8.3).(x².x²) = [tex]24x^4[/tex] - exponent property of multiplication.

Therefore, the final answer is [tex]24x^4[/tex].

To know more about associative properties visit:

https://brainly.com/question/30111262

#SPJ1

Which value will be assigned to z in line 12 under static sexping? (b) Which value will be assigned to 2 in line 12 under dynamic scoping? I might be instructive to draw the runtime stack for different times of the execution. Inut it is not strictly required. Draw the runtime stack after each line executes! Exercise 3. Parameter Passing Consider the following block. Ansune static scaping { int y: int z; - 7 { int (int a) 4 yari: return (yta) 1 int g(int x) { y = f(x+1)+1; 2:- 1( x3): return (z+1) } 2 :- g(y2): : 12 13 14 is) What are the values of y and 2 at the end of the following block under the assumption that both parameters a und x repassed: la) Call-by-Name (h) Calltyy Need It might be instructive to draw the runtime stack for differcut times of the execution, but it is not strictly required Draw the runtime stack after each line executes

Answers

The runtime stack for dynamic scoping at the end of the block would be:

y: f(x+1)+1
z: f(x+1)+1+1

Under static scoping, the value of z in line 12 will be 7. Under dynamic scoping, the value of z in line 12 will be the value of y in line 2, which is equal to f(x+1)+1. The values of y and z in the end of the block will differ depending on the parameter passing method used.

For call-by-name, the value of y at the end of the block will be f(x+1)+1 and the value of z will be f(x+1)+1+1. For call-by-need, the value of y will be f(x+1)+1 and the value of z will be f(x+1)+1+1.

It might be instructive to draw the runtime stack for different times of the execution, but it is not strictly required. The runtime stack for static scoping at the end of the block would be:

y: f(x+1)+1
z: 7


The runtime stack for dynamic scoping at the end of the block would be:

y: f(x+1)+1
z: f(x+1)+1+1Learn more about Dynamicbrainly.in/question/23656646#SPJ11

Use Lagrange multipliers to find the points on the given cone that are closest to the following point.
z^2 = x^2 + y^2; (14, 8, 0)
x,y,z=(smaller z-value)
x,y,z=(larger z-value)

Answers

By using the Lagrange multipliers, the two points on the cone that is closest to (14, 8, 0) are:

(7, 4, √65) and (7, 4, -√65)

We want to minimize the distance between the point (14, 8, 0) and the points on the cone z^2 = x^2 + y^2. The distance squared between two points (x_1, y_1, z_1) and (x_2, y_2, z_2) is given by:

d^2 = (x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2

In our case, we want to minimize the distance squared between (14, 8, 0) and a point (x, y, z) on the cone z^2 = x^2 + y^2:

d^2 = (x - 14)^2 + (y - 8)^2 + z^2

Subject to the constraint z^2 = x^2 + y^2. We can use Lagrange multipliers to solve this constrained optimization problem. Let L be the Lagrangian:

L = (x - 14)^2 + (y - 8)^2 + z^2 - λ(z^2 - x^2 - y^2)

Taking the partial derivatives of L with respect to x, y, z, and λ, and setting them to zero, we get:

2(x - 14) - 2λx = 0.....(1)

2(y - 8) - 2λy = 0.....(2)

2z - 2λz = 0.....(3)

z^2 - x^2 - y^2 = 0.....(4)

Simplifying the third equation, we get z(1 - λ) = 0. Since we want to find points where z is not zero, we must have λ = 1. Then, from the first two equations, we get x = 7 and y = 4. Substituting these values into the fourth equation, we get:

z^2 = x^2 + y^2 = 65

So the two points on the cone that is closest to (14, 8, 0) by using  Lagrange multipliers are:

(7, 4, √65) and (7, 4, -√65)

To know more about the "Lagrange multipliers": https://brainly.com/question/4609414

#SPJ11


Someone please help I need the answer to the 7 questions the image is below

Answers

a) The Name of the angle of elevation is ∠c = 83.3°

b) The Name of the Hypotenuse side is AC

c) The Name of the Opposite side is AB

What is the elevation angle?

The angle formed between the line of sight and the horizontal is known as the angle of elevation. The angle created is an angle of elevation if the line of sight is upward from the horizontal line.

We can use the tangent ratio to determine the angle of elevation:

tan(angle of elevation) = opposite/adjacent

tan(angle of elevation) = 29.25/4.75

tan(angle of elevation) = 6.157

The inverse tangent (tan⁻¹) both sides, we obtain:

angle of elevation = tan⁻¹(6.157)

Using a calculator, we get:

angle of elevation ≈ 81.3 degrees (rounded to the nearest tenth)

The elevation angle is roughly 81.3 degrees.

d) The Name of the Adjacent side is BC

e) The Trig Ratio I will be using is Tan θ = Sin θ/Cos θ because we are  

   given the side Opposite Side & Adjacent Side

To know more about elevation angle visit:-

brainly.com/question/21137209

#SPJ1

Martin makes b bags of snack mix. Each bag contains 1.5 lb of nuts and 0.75 lb of dried fruit. What does the expression 1.5b + 0.75b represent?
Pls explain why​

Answers

1.5b + 0.75b represents the total amount of nuts and dried fruit used for b bags of snack mix.

b is the number of bags of snack mix, so the expression 1.5b means 1.5 multiplied by b, which is the total amount of nuts used for b bags of snack mix. Similarly, 0.75b is 0.75 multiplied by b, which is the total amount of dried fruit used for b bags of snack mix.

Adding these together gives us 1.5b + 0.75b, which is the total amount of nuts and dried fruit used for b bags of snack mix.

You and your siblings decided to make 10 pies for a bake sale. There were 8 slices in each apple pie and 10 slices in each shoo-fly pie. At the sale, there were 84 slices available. How many of each pie were made?

Answers

Answer: 6 apple pies and 4 shoo-fly pies were made.

Step-by-step explanation:

Let's assume the number of apple pies made is A, and the number of shoo-fly pies made is S.

We know that there were 8 slices in each apple pie, so the total number of apple pie slices would be 8A. Similarly, the total number of shoo-fly pie slices would be 10S.

We also know that the total number of slices available was 84. So we can write an equation:

8A + 10S = 84

We have two unknowns and only one equation, so we need another equation to solve for A and S. We know that the siblings made a total of 10 pies. So we can write another equation:

A + S = 10

Now we have two equations and two unknowns, so we can solve for A and S. We can use substitution to eliminate one variable:

A + (10 - A) = 10

10 = 2A + 10

2A = 0

A = 0

This is obviously not the solution we're looking for, so there must be an error in our calculations. Let's check our first equation:

8A + 10S = 84

If A = 0, then we have:

10S = 84

S = 8.4

This is also not a valid solution since we can't make 8.4 shoo-fly pies. The mistake we made was assuming that both A and S were whole numbers. We can fix this by using another equation:

A + S = 10

We know that A and S are both whole numbers and that A + S = 10. The only pairs of whole numbers that add up to 10 are (1, 9), (2, 8), (3, 7), (4, 6), and (5, 5).

Let's try each pair and see which one gives us a valid solution:

(1, 9): 8(1) + 10(9) = 98 (not 84)

(2, 8): 8(2) + 10(8) = 96 (not 84)

(3, 7): 8(3) + 10(7) = 94 (not 84)

(4, 6): 8(4) + 10(6) = 92 (not 84)

(5, 5): 8(5) + 10(5) = 90 (not 84)

None of the pairs work, which means there is no valid solution that uses whole numbers for A and S.

However, we can use decimals to get a solution that's close to the desired number of slices. Let's try (4.2, 5.8):

8(4.2) + 10(5.8) = 84.4 (close to 84)

This means that the siblings made 4.2 apple pies and 5.8 shoo-fly pies. Since we can't make a fraction of a pie, we'll round up the number of apple pies and round down the number of shoo-fly pies:

4 apple pies and 5 shoo-fly pies would give us a total of 8(4) + 10(5) = 84 slices, which is the desired number.

Based on the following sorted 20 values for age, what are the possible split points?

{20, 22, 24, 26, 28, 31, 32, 33, 35, 40, 42, 43, 45, 47, 49, 50, 52, 53, 55, 57}

Multiple Choice

a {20, 21, 23, 25, 27, 29. 5, 31. 5, 32. 5, 34, 37. 5, 41, 42. 5, 44, 46, 48, 49. 5, 51, 52, 54, 56}

b {21, 23, 25, 27, 29. 5, 31. 5, 32. 5, 34, 37. 5, 41, 42. 5, 44, 46, 48, 49, 51, 52. 5, 54, 56, 57}

c {0, 21, 23, 25, 27, 29. 5, 31. 5, 32. 5, 34, 37. 5, 41, 42. 5, 44, 46, 48, 49, 51, 52. 5, 54, 56}

d {21, 23, 25, 27, 29. 5, 31. 5, 32. 5, 34, 37. 5, 41, 42. 5, 44, 46, 48, 49. 5, 51, 52. 5, 54, 56}

Answers

Based on the following sorted 20 values for age, the possible split points are {20, 21, 23, 25, 27, 29. 5, 31. 5, 32. 5, 34, 37. 5, 41, 42. 5, 44, 46, 48, 49. 5, 51, 52, 54, 56} (option a).

Option A suggests that the split points are {20, 21, 23, 25, 27, 29.5, 31.5, 32.5, 34, 37.5, 41, 42.5, 44, 46, 48, 49.5, 51, 52, 54, 56}. Notice that every split point falls between two consecutive ages in the original list. For example, the first split point is 20 because it is between 20 and 22. The second split point is 21 because it is between 20 and 22 as well.

Option B suggests that the split points are {21, 23, 25, 27, 29.5, 31.5, 32.5, 34, 37.5, 41, 42.5, 44, 46, 48, 49, 51, 52.5, 54, 56, 57}. Notice that the only difference between this option and Option A is that the last split point is 57 instead of 49.5.

Option C suggests that the split points are {0, 21, 23, 25, 27, 29.5, 31.5, 32.5, 34, 37.5, 41, 42.5, 44, 46, 48, 49, 51, 52.5, 54, 56}. Notice that the first split point is 0, which is not a possible age in the original list.

Option D suggests that the split points are {21, 23, 25, 27, 29.5, 31.5, 32.5, 34, 37.5, 41, 42.5, 44, 46, 48, 49.5, 51, 52.5, 54, 56}. Notice that the only difference between this option and Option A is that the split point after 49 is 49.5 instead of 49.5.

In summary, the correct answer is Option A because it provides all the possible split points that fall between the ages in the original list. When working with split points, it's important to consider the specific context and criteria for dividing the data.

To know more about split point here

https://brainly.com/question/12413130

#SPJ4

In a lab experiment, a population of 400 bacteria is able to triple every hour. Which equation matches the number of bacteria in the population after 3 hours?

Answers

Answer:

400(3)^3

Step-by-step explanation:

It tripled for 3 hours which is 3^3 and there's 400 bacteria

a child who weighs 18kg is to receive motrin (ibuprofen) 8mg/kg by mouth every 4 hours as needed for pain. the label reads 100mg/5mls. how many milliliters will you administer?

Answers

According to the information on what the child should receive ibuprofen, it should be administered to the child 1.6 mL.

What is Ibuprofen?

Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID). It works by inhibiting the body's synthesis of prostaglandins. This aids in the reduction of swelling, pain, and fever. It can also be used to relieve mild to moderate pain caused by menstruation, arthritis, or toothache.

To calculate the amount of milliliters to be administered, we need to use the following formula:

Amount of Motrin = Weight of child (kg) × Dose of Motrin (mg/kg) ÷ Concentration of Motrin (mg/ml)

Where

Weight of child = 18kgDose of Motrin = 8mg/kgConcentration of Motrin = 100mg/5mls

Substitute the given values in the above formula.

Amount of Motrin = 18kg × 8mg/kg ÷ 100mg/5mls= 144mg ÷ 20mg/mls= 7.2mls

Therefore, the amount of Motrin to be administered is 7.2mls.

However, the dosage amount administered is not in 5ml increments. Therefore, we need to round it to one decimal place. Thus, we'll have: Amount of Motrin = 7.2 ml (rounded to one decimal place) = 1.6 ml Answer: 1.6 ml

See more about amount to be administered at: https://brainly.com/question/30479294

#SPJ11

a hummingbird lives in a nest that is 5 meters high in a tree. the hummingbird flies 9 meters to get from its nest to a flower on the ground. how far is the flower from the base of the tree? if necessary, round to the nearest tenth.

Answers

The flower is about 10.3 meters away from the base of the tree, rounded to the nearest tenth of a meter. The hummingbird has to fly this distance to get to the flower.

To figure out how far the flower is from the base of the tree, we need to use the Pythagorean theorem. It can be applied when there is a right triangle, which is a triangle with one angle of 90 degrees.Here, the hummingbird's nest is at the top of the tree, and the flower is on the ground. The vertical distance from the nest to the ground is 5 meters. The horizontal distance from the tree trunk to the flower is the distance we want to find.

We'll need to calculate the length of the hypotenuse (the slanted line) of the right triangle in order to determine the distance from the tree to the flower. The hypotenuse's length is found by squaring each of the other sides, adding the results together, and then taking the square root:

hypotenuse=√5^2+9^2

=√25+81 = √106

≈10.3 m

So the flower is about 10.3 meters away from the base of the tree, rounded to the nearest tenth of a meter. The hummingbird has to fly this distance to get to the flower.

To learn more about distance refer :

https://brainly.com/question/15129604

#SPJ11

.......???????????????​

Answers

Answer:

Step-by-step explanation:

       [tex]x^2-5=-7x-1[/tex]

[tex]x^2+7x-5=-1[/tex]         (subtracted 7x from both sides of the equation)

[tex]x^2+7x-4=0[/tex]            (+1 both sides)

Use quadratic formula to solve for x:

   [tex]x=\frac{-b \pm \sqrt{b^2 - 4ac} }{2a}[/tex]     where [tex]a=1,b=7,c=-4[/tex]

       [tex]=\frac{-7 \pm \sqrt{7^2 - 4\times1\times(-4)} }{2\times 1}[/tex]

       [tex]=\frac{-7 \pm \sqrt{49 +16} }{2}[/tex]

        [tex]=\frac{-7 \pm \sqrt{65} }{2}[/tex]

     [tex]x=\frac{-7 +\sqrt{65} }{2},\frac{-7 - \sqrt{65} }{2}[/tex]

     [tex]x=0.53,-7.53[/tex]

   

what is the vertex of h=-16t^2+29t+6 and its domain and range, and x and y axis?

Answers

Answer:

Domain = {t | t ∈ ℝ } or (-∞, ∞)

h = 6

Step by step explanation:

The given quadratic function is h = -16t^2 + 29t + 6.

To find the vertex, we can use the formula:

t = -b / 2a

where a = -16 and b = 29 are the coefficients of the t^2 and t terms, respectively.

Substituting the values of a and b, we get:

t = -29 / 2(-16) = 29 / 32

Substituting this value of t into the original equation, we can find the corresponding value of h:

h = -16(29/32)^2 + 29(29/32) + 6 ≈ 13.47

Therefore, the vertex of the parabola is (29/32, 13.47).

The domain of the function is all real numbers because there are no restrictions on the possible input values of t.

To find the range, we can consider that the coefficient of the t^2 term is negative, which means that the parabola opens downward. Therefore, the vertex is the maximum point of the parabola, and the range is all real numbers less than or equal to the y-coordinate of the vertex, which is approximately 13.47.

The x-axis is the set of values where h = 0. We can use the quadratic formula to find the roots of the equation:

-16t^2 + 29t + 6 = 0

The roots are approximately t = -0.15 and t = 1.92. Therefore, the parabola intersects the x-axis at t = -0.15 and t = 1.92.

The y-axis is the set of values where t = 0. Substituting t = 0 into the equation for h, we get:

h = -16(0)^2 + 29(0) + 6 = 6

Therefore, the parabola intersects the y-axis at h = 6.

an inner city revitalization zone is a rectangle that is twice as long as it is wide. the width of the region is growing at a rate of 32 m per year at a time when the region is 220 m wide. how fast is the area changing at that point in time?

Answers

The area is changing at a rate of 28,160 m²/year at that point in time.

The area of the rectangular region is given by:

A = lw

Where l is the length of the rectangular region and w is the width of the rectangular region.

The width of the rectangular region is given to be 220 m. Therefore, we have the width w = 220 m. The length l of the rectangular region can be found knowing that it is twice as long as it is wide. Therefore, the length of the rectangular region is given by:

l = 2w

l = 2 x 220

l = 440

Therefore, the length l of the rectangular region is 440 m.

At the given point in time, the width of the rectangular region is growing at a rate of 32 m per year. Therefore, we have the rate of change of the width dw/dt to be 32 m per year. We need to find how fast the area of the rectangular region is changing at that point in time. Therefore, we need to find the rate of change of the area of the rectangular region dA/dt.

A = lw

dA/dt = w dl/dt + l dw/dt

dA/dt = 220 d/dt(2w) + 440 dw/dt

dA/dt = 220 x 2 dw/dt + 440 dw/dt

dA/dt = 880 dw/dt

Substitute the value of dw/dt to get:

dA/dt = 880 x 32

dA/dt = 28,160 m²/year

Therefore, the area of the rectangular region has a rate of change of 28,160 m² per year at that point in time.

Learn more about rate of change here: https://brainly.com/question/29504549

#SPJ11

Jamal sold hotdogs at a recent basketball game. Each hotdog sold for $3.50. In total, Jam
sold $98 worth of hot dogs. Let n be the number of hotdogs that Jamal sold.
Set up an equation that models the information given in this problem.

Answers

Answer:The concession stand sold

46

hot dogs and

32

hamburgers.

Explanation:

The first thing to do in algebraic problems is assign variables to things we don't know, so let's start there:

We don't know how many hot dogs the concession stand sold, so we will call that number

d

.

We don't know how many hamburgers the concession stand sold, so we will call that number

h

.

Now we translate the statements into algebraic equations:

The number of hot dogs and hamburgers that were sold is

78

, so

d

+

h

=

78

.

If each hot dog is sold for

1.25

, then the total revenue from hot dogs is given by

1.25

d

. In the same way, the total revenue from hamburgers is

1.50

h

. The total revenue from both hot dogs and hamburgers should be the sum of these, and since we are told the total revenue is

105.50

, we can say

1.25

d

+

1.5

h

=

105.5

.

We now have a system of two linear equations:

d

+

h

=

78

1.25

d

+

1.5

h

=

105.5

We can solve it using several methods, though I'm going to go with substitution. Use the first equation to solve for

d

:

d

+

h

=

78

d

=

78

h

Now plug this in for

d

in the second equation:

1.25

d

+

1.5

h

=

105.5

1.25

(

78

h

)

+

1.5

h

=

105.5

Solving for

h

, we have:

97.5

1.25

h

+

1.5

h

=

105.5

0.25

h

=

8

h

=

8

.25

h

=

32

Since

h

+

d

=

78

,

32

+

d

=

78

d

=

46

Step-by-step explanation:

Solve each of the following systems by the Method of Elimination. These two should be relatively easy. Make sure to understand why. (a) x-y 7 (b) 2x+5y = 3 x+ y=5 -2x-y= 5

Answers

A) The solution of the system x-y = 7, x+y = 5 is (6, -1)

B) The solution of the system 2x+5y = 3,  -2x-y= 5 is (-16/3, 13/3)

A) To solve by the elimination method , we add the left-hand sides and right-hand sides of the two equations separately, as follows,

(x - y) + (x + y) = 7 + 5

2x = 12

x = 6

(x + y) - (x - y) = 5 - 7

2y = -2

y = -1

Therefore, the solution to the system is (x, y) = (6, -1).

B) To solve by the method of elimination, we can multiply the first equation by 2 to eliminate the x term, as follows,

2x + 5y = 3

-4x - 2y = 10

Adding these two equations, we get,

3y = 13

y = 13/3

Substituting y = 13/3 into the first equation, we get,

2x + 5(13/3) = 3

2x = -32/3

x = -16/3

Therefore, the solution to the system is (x, y) = (-16/3, 13/3)

Learn more about elimination method here

brainly.com/question/14619835

#SPJ4

The given question is incomplete, the complete question is:

Solve each of the following systems by the Method of Elimination A) x-y = 7, x+y = 5 B)  2x+5y = 3,  -2x-y= 5

A series of locks manages the water height along a water source used to produce energy. As the locks are opened and closed, the water height between two consecutive locks fluctuates.
The height of the water at point B located between two locks is observed. Water height measurements are made every 10 minutes beginning at 8:00 a.m.
It is determined that the height of the water at B can be modeled by the function f(x)=−11cos(πx/48 − 5π/12)+28 , where the height of water is measured in feet and x is measured in minutes.
What is the maximum and minimum water height at B, and when do these heights first occur?

Answers

The given function f(x) = -11cos(πx/48 - 5π/12) + 28 models the height of water at point B between two locks, where x is the time in minutes beginning at 8:00 a.m.

The amplitude of the cosine function is 11, and the vertical shift is 28. The argument of the cosine function has a period of 96 minutes, which means that the function repeats itself every 96 minutes.

Therefore, the maximum water height at B is 39 feet and occurs at x = 120 minutes (10:00 a.m.), while the minimum water height at B is 17 feet and occurs at x = 0 minutes (8:00 a.m.). These heights occur because the cosine function attains its maximum value at x = 120 minutes and its minimum value at x = 0 minutes.

For more questions like Function click the link below:

https://brainly.com/question/12431044

#SPJ11

The equation y = 1.55x + 110,419 approximates the total cost, in dollars, of raising a child in the united states from birth to 17 years, given the household’s annual income, x.
What is the approximate total cost of raising a child from birth to 17 years in a household with an annual income of 80,321

Answers

Answer:

he cost to raise a child from birth to 17 years in a household is $194119.

Step-by-step explanation:

Important information:

The equation y = 1.55x + 110,419

The annual incoem is $54,000

Calculation of the cost:

y = 1.55(54,000) + 110419

y = 83700 + 110419

y = $194119

Mr. Ferrell has feet of a piece of 5/6 cardboard. He wants to cut pieces that are foot long. 1/8 How many pieces can he make?

Answers

Mr. Ferrell can cut 6 and 2/3 pieces that are one-eighth foot long from a 5/6 foot long piece of cardboard.

What is common factor?

A number is said to be a common factor if it can divide two or more integers without producing a residue. Common factors are used in fraction operations to simplify fractions and carry out operations like addition, subtraction, multiplication, and division.

Finding a common denominator is necessary, for instance, when adding or subtracting fractions. A multiple of all the fractions' denominators is referred to as a common denominator. We can determine the shared characteristics of the denominators and utilise the lowest common multiple (LCM) as the common denominator to obtain a common denominator.

Given that, one-eighth foot long pieces can be cut from a 5/6 foot long piece of cardboard.

First, we need to convert 5/6 feet into eighths of a foot:

5/6 feet = (5/6) * 8 eighths = 40/48 eighths

Next, we need to divide 40/48 by 1/8 to find the number of one-eighth foot long pieces that can be cut:

(40/48) ÷ (1/8) = (40/48) * (8/1) = 320/48 = 6 2/3 pieces

Hence, Mr. Ferrell can cut 6 and 2/3 pieces that are one-eighth foot long from a 5/6 foot long piece of cardboard.

Learn more about LCM here:

https://brainly.com/question/20739723

#SPJ1

5 2 fiths minus 1 2 fiths

Answers

Answer:

Step-by-step explanation:

2/5-1 2/5

Find a vector equation and parametric equations in tfor the line through the point and parallel to the given line.(P0 corresponds to t = 0.)
P0 = (0,12, -10)
x = -4 + 2t, y = 7 - 4t, z = 5 + 8t
How do you find x,y,and z?

Answers

The vector equation and the parametric equations in t for the line through the point and parallel to the given line are:

Vector Equation= [-4 7 5] + t[2 -4 8]Parametric Equations:

x= 2t - 4

y= -4t + 7

z= 8t + 5

How to find the value of x, y, and z

To find x, y, and z in the given scenario, the following steps can be followed:

1: Vector Equation of Line

To find the vector equation, use the given line and its coefficients:

x = -4 + 2t

y = 7 - 4t

z = 5 + 8t

Take the coefficients of x, y, and z, and place them in a 3 by 1 matrix:

Column Matrix= [-4 7 5]

Add the parameter t and place it in a column matrix to get the vector equation:

Vector Equation= [-4 7 5] + t[2 -4 8]

2: Parametric Equation.

To find the parametric equations, write the components of the vector equation in terms of the parameters:

x= -4 + 2t

y= 7 - 4t

z= 5 + 8t

Learn more about vector equation at

https://brainly.com/question/30561769

#SPJ11

The first term of a sequence along with a recursion formula for the remaining terms is given below. Write out the first ten terms of the sequence.a1=6,an+1=an+(1/3^n)

Answers

The first term of the given sequence is 6, and the recursion formula for the remaining terms is 6, 6.333, 6.444, 6.481, 6.4938, 6.4988, 6.5007, 6.5018, 6.5024, 6.5026.

We are given a recursive formula: [tex]a_{n+1} = an + (1/3^n)[/tex] with [tex]a_{1} = 6.[/tex]

Using this formula, we can calculate the first few terms of the sequence as follows:

[tex]a_{1}= 6[/tex]

[tex]a_{2} = a_{1} + (1/3^1) = 6 + 1/3 = 6.333[/tex]

[tex]a_{3} = a_{2} + (1/3^2) = 6.333 + 1/9 = 6.444[/tex]

[tex]a_{4} = a_{3} + (1/3^3) = 6.444 + 1/27 = 6.481[/tex]

[tex]a_{5} = a_{4} + (1/3^4) = 6.481 + 1/81 = 6.4938[/tex]

[tex]a_{6} = a_{5} + (1/3^5) = 6.4938 + 1/243 = 6.4988[/tex]

[tex]a_{7} = a_{6} + (1/3^6) = 6.4988 + 1/729 = 6.5007[/tex]

[tex]a_{8} = a_{7} + (1/3^7) = 6.5007 + 1/2187 = 6.5018[/tex]

[tex]a_{9} = a_{8} + (1/3^8) = 6.5018 + 1/6561 = 6.5024[/tex]

[tex]a_{10} = a_{9} + (1/3^9) = 6.5024 + 1/19683 = 6.5026[/tex]

Therefore, the first 10 terms of the sequence are: 6, 6.333, 6.444, 6.481, 6.4938, 6.4988, 6.5007, 6.5018, 6.5024, 6.5026.

To practice more questions about 'recursion formula':

https://brainly.com/question/1275192

#SPJ11

Write a equation for a parabola with a focus at (-2,5) and a directrix at x=3 format: x=

Answers

Answer:Write a equation for a parabola with a focus at (-2,5) and a directrix at x=3 format: x=

Step-by-step explanation:

PLS ANSWER THIS ASAP

In two similar triangles, the ratio of the lengths of a pair of corresponding sides is 7:8. If the perimeter of the larger triangle is 32, find the perimeter of the smaller triangle.​

Answers

The perimeter of the smaller triangle would be = 28.1

How to calculate the perimeter of the smaller triangle?

A triangle can be defined as a three sided polygon that has a total internal angle of 180°.

To calculate the perimeter of the triangle is to find out the scale factor that exists between the two triangles.

The formula for scale factor = original object/new object

Scale factor= 8/7 = 1.14

The perimeter of the smaller triangle = 32/1.14

= 28.1.

Learn more about perimeter here:

https://brainly.com/question/25092270

#SPJ1

Bernard's rectangular bedroom is 12 feet by 16 feet. What is the diagonal distance from one corner to the opposite corner?

Answers

Answer: 20 feet

Step-by-step explanation: To find the diagonal distance from one corner to the opposite corner of Bernard's rectangular bedroom, we can use the Pythagorean theorem, which states that the square of the length of the hypotenuse (diagonal) of a right triangle is equal to the sum of the squares of the lengths of the other two sides.

In this case, the two other sides are the length and the width of the room, so we have:

diagonal^2 = 12^2 + 16^2

diagonal^2 = 144 + 256

diagonal^2 = 400

Taking the square root of both sides, we get:

diagonal = √400

diagonal = 20 feet

Therefore, the diagonal distance from one corner to the opposite corner of Bernard's rectangular bedroom is 20 feet.

In order to make the same amount of money, they would have to each sell ______ bicycles. They would both make $______.

Answers

In order to make the same amount of money, they would have to each sell 5 bicycles. They would both make $500

How many bicycle would they sell to make the same amount of money?

To find the number of bicycles they would need to sell to make the same amount of money,

We can set Jim's and Tom's weekly earnings equal to each other and solve for the number of bicycles:

250 + 50x = 400 + 20x

30x = 150

x = 5

So they would need to sell 5 bicycles to make the same amount of money.

How much would they make for selling that amount

To find out how much money they would make for selling 5 bicycles, we can substitute x = 5 into either equation.

Let's use Jim's equation:

250 + 50(5) = 500

So they would make $500 for selling 5 bicycles.

Read more about linear relation at

https://brainly.com/question/4074386

#SPJ1

in the figure below, mL2= 138, find mL1, mL3, and mL4

Answers

Answer:

Step-by-step explanation:

Find ∠1:

  ∠2 + ∠1 = 180            (angles on a straight line are supplementary)

  138 + ∠1 = 180

            ∠1 = 42°

Find ∠4:

  ∠4 =∠2 = 138°            (vertically opposite angles are equal)    

Find ∠3:

  ∠3 = ∠1 = 42°              (vertically opposite angles are equal)  

use the newton-raphson method to find an approximate value of 3√7 . use the method until successive approximations obtained by calculator are identical. an appropriate function to use for the approximation would be f (x) = A x^2 + B x^3 + C x + D where A= B= C= D=
If c1 = 2, then c2 = ___
2√3= ____

Answers

First, let's find the function to use for the Newton-Raphson method approximation. We want to find an approximation of 3√7, so we can use f(x) = x^3 - 7 and rewrite it as f(x) = -7 + x^3.

Setting A = B = C = D = 0 in the given function, we get f(x) = x^3 - 7.

Next, we apply the Newton-Raphson method with x1 = 2, which gives us:

x2 = x1 - f(x1) / f'(x1)
x2 = 2 - (2^3 - 7) / (3 * 2^2)
x2 = 2 - (8 - 7) / 12
x2 = 2 - 1/12
x2 = 23/12

Next, we apply the Newton-Raphson method again with x2, which gives us:

x3 = x2 - f(x2) / f'(x2)
x3 = 23/12 - ((23/12)^3 - 7) / (3 * (23/12)^2)
x3 = 23/12 - (12167/20736 - 7) / (3 * 529/144)
x3 = 23/12 - (4337/15552) / (529/48)
x3 = 23/12 - (36/15552)
x3 = 2783/1440

We can continue this process of applying the Newton-Raphson method until we obtain successive approximations that are identical. However, we can stop here and use 2783/1440 as our approximate value for 3√7.

Converting to a decimal approximation, we get:

3√7 ≈ 2.660874...

Rationalizing the denominator, we get:

3√7 ≈ (2783√21) / 1440

Therefore, our final answer is 2√3 = (2 * √3) ≈ 3.464.

there was a person trolling and didnt actually answer i need the answer to this

Answers

Answer:

Step-by-step explanation:

To write 0.246 as a fraction in simplest form, we need to remove the decimal and reduce the fraction to its lowest terms.

Step 1: Write 0.246 as the fraction 246/1000.

(Note: We get the denominator 1000 by counting the number of decimal places after the 6 in 0.246.)

Step 2: Simplify the fraction by dividing both the numerator and denominator by the greatest common factor.

The greatest common factor (GCF) of 246 and 1000 is 2.

246/2 = 123

1000/2 = 500

Therefore, 0.246 written as a fraction in simplest form is 123/500.

Answer:if I’m correct I think you would put it like this 123/500

It can’t be reduced because the denominator is at it’s simplest form

Step-by-step explanation:

Other Questions
Suppose that an ethene molecule gains an additional electron to give the 2 C H-4 ion. Will the bond order of the carboncarbon bond increase or decrease? Explain. As a mass tied to the end of a string swings from its highest point down to its lowest point, it is acted on by three forces: gravity (F), tension (T), and air resistance (R) HINT (a) Which force does positive work? O Fg O T O R (b) Which force does negative work? O Fg O T O R (c) Which force does zero work? O Fg O T O R find the conditional probability that x is greater than 2 6 given that x is less than or equal to 1 2 . a. what are the physical processes by which atoms rearrange during phase transformations in the solid state (how do atoms rearrange in the solid state)? culture practices in Ghana that needs to be modified Question content area topPart 1Find the future value of an ordinary annuity if payments are made in the amount R and interest is compounded as given. Then determine how much of this value is from contributions and how much is from interest.R; % interest compounded semiannually for years.Question content area bottomPart 1The future value of the ordinary annuity is $177,961.83. (Round to the nearest cent as needed.)Part 2The amount from contributions is $enter your response here and the amount from interest is $enter your response here. (Round to the nearest cent as needed.) In an examination,x pupils take the history paper and 3x take the mathematics paper. A. illustrate the data on a venn diagram indicating the number of pupils I'm each region.B. if the number of pupils taken the examination is 46, find the value of x Which equation correctly represents a change in population density?A. Change in Population Density = (Births + Immigration) - (Deaths + Emigration)B. Change in Population Density = (Births + Emigration) - (Deaths + Immigration). Change in Population Density = (Births - Immigration) + (Deaths + Emigration)D. Change in Population Density = (Births + Immigration) + (Deaths - Emigration) Which of the following statements about a do while repetition statement is true?a. The body of a do while loop is executed only if the terminating condition is true.b. The body of a do while loop is executed only once.c. The body of a do while loop is always executed at least once.d. None of the above. Interpret the confidence interval. Select the correct choice below and fill in the answer boxes to complete your choice (Round to one decimal place as needed.) I O A. We can be 95% confident that the mean duration of imprisonment, p, of all political prisoners with chronic PTSD is somewhere between 19 4 months and 46.1 months. O B. There is a 95% chance the mean duration of imprisonment, p, of all political prisoners with chronic PTSD will equal the mean of the interval from 19.4 months to 46.1 months Please help me with this question. water flows through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s. the density of water is 1 000 kg/m3. determine its average velocity. multiple choice question. 0.02 m/s 2 m/s 200 m/s 20 m/s 0.2 m/s a bond is selling for 105% of par, has a coupon rate of 7%, and will mature in five years. there are annual coupon payments. calculate the yield-to-maturity on an annualized basis. group of answer choices 5.82% 7% 6% 6.44% TRUE OR FALSE the elite model presupposes a small group of leaders who are defined primarily by their inherited wealth. listen to exam instructions you have implemented a new application control solution. after monitoring traffic and use for a while, you have noticed an application that continuously circumvents blocking. how should you configure the application control software to handle this application? A dinosaur isa.) a Mesozoic terrestrial reptile that walks with an upright stanceb.) a Mesozoic reptile that walks with an upright stancec.) a terrestrial reptile that walks with an upright stanced.) a Mesozoic reptile The materials or compounds converted into new compounds in a chemical reaction are known as I need help please i will give you stars and 12 points List several important provisions from the oceans In human resource management, _____ usually refers to teaching operational or technical employees how to do the job for which they were hired.a. developmentb. job rotationc. deskillingd. job specializatione. training