The lunch special at Maria's Restaurant is a sandwich and a drink. There are 2 sandwiches and 5 drinks to choose from. How many lunch specials are possible?

Answers

Answer 1

Answer:

the question is incomplete, so I looked for similar questions:

There are 3 sandwiches, 4 drinks, and 2 desserts to choose from.

the answer = 3 x 4 x 2 = 24 possible combinations

Explanation:

for every sandwich that we choose, we have 4 options of drinks and 2 options of desserts = 1 x 4 x 2 = 8 different options per type of sandwich

since there are 3 types of sandwiches, the total options for lunch specials = 8 x 3 = 24

If the numbers are different, all we need to do is multiply them. E.g. if instead of 3 sandwiches there were 5 and 3 desserts instead of 2, the total combinations = 5 x 4 x 3 = 60.

For this question's answer, there are 2 x 5 = 10 lunch specials are possible.

Answer 2

The number of lunch specials possible are 10.

How many ways k things out of m different things (m ≥ k) can be chosen if order of the chosen things doesn't matter?

We can use combinations for this case,

Total number of distinguishable things is m.

Out of those m things, k things are to be chosen such that their order doesn't matter.

This can be done in total of

[tex]^mC_k = \dfrac{m!}{k! \times (m-k)!} ways.[/tex]

If the order matters, then each of those choice of k distinct items would be permuted k! times.

So, total number of choices in that case would be:

[tex]^mP_k = k! \times ^mC_k = k! \times \dfrac{m!}{k! \times (m-k)!} = \dfrac{m!}{ (m-k)!}\\\\^mP_k = \dfrac{m!}{ (m-k)!}[/tex]

This is called permutation of k items chosen out of m items (all distinct).

We are given that;

Number of sandwiches=2

Number of drinks=5

Now,

To find the total number of lunch specials, we need to multiply the number of choices for sandwiches by the number of choices for drinks.

Number of sandwich choices = 2

Number of drink choices = 5

Total number of lunch specials = 2 x 5 = 10

Therefore, by combinations and permutations there are 10 possible lunch specials.

Learn more about combinations and permutations here:

https://brainly.com/question/16107928

#SPJ2


Related Questions

Help me with this problem!

Answers

Answer: A repeated decimal 0.833333333

Step-by-step explanation: Reduce the expression by canceling common factors.

slope of secant line=?
slope of secant line=?
slope of tangent line=?
y=?

Answers

Therefore, the equation of the tangent line at (5,f(5)) is y = 18x - 65.

What is slope?

In mathematics, the slope of a line is a measure of its steepness or incline, usually denoted by the letter m. It describes the rate of change of a line in the vertical direction compared to the horizontal direction. The slope of a line can be positive, negative, zero, or undefined, depending on the angle it makes with the horizontal axis. The slope of a line is commonly calculated as the ratio of the change in the y-coordinates to the change in the x-coordinates between any two points on the line.

Here,

(A) The slope of the secant line joining (2,f(2)) and (7,f(7)) is given by:

slope = (f(7) - f(2)) / (7 - 2)

We can find f(7) and f(2) by substituting 7 and 2, respectively, into the function f(x):

f(7) = 7² + 8(7) = 49 + 56 = 105

f(2) = 2² + 8(2) = 4 + 16 = 20

Substituting these values into the formula for the slope of the secant line, we get:

slope = (105 - 20) / (7 - 2) = 85 / 5 = 17

Therefore, the slope of the secant line joining (2,f(2)) and (7,f(7)) is 17.

(B) The slope of the secant line joining (5,f(5)) and (5+h,f(5+h)) is given by:

slope = (f(5+h) - f(5)) / (5+h - 5) = (f(5+h) - f(5)) / h

We can find f(5) and f(5+h) by substituting 5 and 5+h, respectively, into the function f(x):

f(5) = 5² + 8(5) = 25 + 40 = 65

f(5+h) = (5+h)² + 8(5+h) = 25 + 10h + h² + 40 + 8h = h² + 18h + 65

Substituting these values into the formula for the slope of the secant line, we get:

slope = ((h² + 18h + 65) - 65) / h = h² / h + 18h / h = h + 18

Therefore, the slope of the secant line joining (5,f(5)) and (5+h,f(5+h)) is h+18.

(C) The slope of the tangent line at (5,f(5)) is equal to the derivative of the function f(x) at x=5. We can find the derivative of f(x) as follows:

f(x) = x² + 8x

f'(x) = 2x + 8

Substituting x=5, we get:

f'(5) = 2(5) + 8 = 18

Therefore, the slope of the tangent line at (5,f(5)) is 18.

(D) The equation of the tangent line at (5,f(5)) can be written in point-slope form as:

y - f(5) = m(x - 5)

where m is the slope of the tangent line, which we found to be 18. Substituting the values of m and f(5), we get:

y - 65 = 18(x - 5)

Simplifying, we get:

y = 18x - 65

To know more about slope,

https://brainly.com/question/30088055

#SPJ1

Would like some help, please

Answers

The z-score for Alexandria's test grade is 0.95 standard deviations.

What is standard deviation ?

Standard deviation is a measure of the amount of variation or dispersion in a set of data. It tells us how spread out the data is from the mean or average value. A low standard deviation indicates that the data points are close to the mean, while a high standard deviation indicates that the data points are spread out over a wider range of values.

To calculate the standard deviation, we first find the mean of the data. Then, for each data point, we subtract the mean and square the difference. We take the average of these squared differences, and then take the square root of that average. This gives us the standard deviation.

a) The z-score for Alexandria's test grade can be calculated using the formula:

z = (x - μ) / σ

where x is the test score, μ is the mean of the Math test scores, and σ is the standard deviation of the Math test scores.

Plugging in the values, we get:

z = (82 - 71.5) / 11.1 = 0.95

So Alexandria's test score is 0.95 standard deviations above the mean of the Math test scores.

b) The z-score for Christina's test grade can be calculated in the same way:

z = (x - μ) / σ

where x is the test score, μ is the mean of the Science test scores, and σ is the standard deviation of the Science test scores.

Plugging in the values, we get:

z = (61.2 - 62.2) / 8.2 = -0.12

So Christina's test score is 0.12 standard deviations below the mean of the Science test scores.

c) To determine who did relatively better, we need to compare the z-scores for Alexandria and Christina. Alexandria's z-score of 0.95 indicates that her test score is above average compared to the other Math test scores. Christina's z-score of -0.12 indicates that her test score is slightly below average compared to the other Science test scores. Therefore, Alexandria did relatively better than Christina.

To know more about standard deviation  visit :-

https://brainly.com/question/24298037

#SPJ1

for autonomous equations, find the equilibria, sketch a phase portrait, state the stability of the equilibria.

Answers

Understanding the equilibria, sketching a phase portrait, and determining the stability of equilibria for autonomous equations are important tools for analyzing and understanding the behavior of systems over time.

Autonomous equations are differential equations that do not depend explicitly on time. To find the equilibria of an autonomous equation, we set the derivative of the function to zero and solve for the values of the independent variable that satisfy the equation. These values represent points at which the function does not change over time and are known as equilibrium points.

To sketch a phase portrait for an autonomous equation, we plot the slope field of the function and then draw solutions through each equilibrium point. The resulting graph shows the behavior of the function over time and helps us understand how the solutions behave near each equilibrium point.

The stability of an equilibrium point is determined by examining the behavior of nearby solutions. If nearby solutions move toward the equilibrium point over time, the equilibrium point is stable. If nearby solutions move away from the equilibrium point over time, the equilibrium point is unstable. Finally, if the behavior of nearby solutions is inconclusive, further analysis is needed.

Here is the sketch for [tex]dx/dt = x - x^3[/tex]

       / <--- (-∞)  x=-1  (+∞) ---> \

      /                                \

  <--0-->       x=-1       x=1        0-->

      \                                /

       \ <--- (-∞)  x=1   (+∞) --->  /

Learn more about equilibria here https://brainly.com/question/29313546

#SPJ4

Question 15 (2 points)
A standard deck of cards contains 4 suits of the same 13 cards. The contents of a
standard deck are shown below:

Standard deck of 52 cards
4 suits (CLUBS SPADES, HEARTS, DIAMONDS)
13 CLUBS
13 SPADES
13 HEARTS
DIAMONDS

If a card is drawn at random from the deck, what is the probability it is a jack or ten?

0
4/52- 1/13
8/52 = 2/13
48/52- 12/13

Answers

Answer: 2/13

Step-by-step explanation:

There are four jacks and four tens in a standard deck of 52 cards. However, the jack of spades and the ten of spades are counted twice since they are both a jack and a ten. Therefore, there are 8 cards that are either a jack or a ten, and the probability of drawing one of these cards at random is:

P(Jack or Ten) = 8/52 = 2/13

So the answer is 2/13.

Step-by-step explanation:

a probability is airways the ratio

desired cases / totally possible cases

in each of the 4 suits there is one Jack and one 10.

that means in the whole deck of cards we have

4×2 = 8 desired cases.

the totally possible cases are the whole deck = 52.

so, the probability to draw a Jack or a Ten is

8/52 = 2/13

Help please! I have no idea!!!! PLEASEEE

Answers

The the inverse of [tex]n = \frac{3t+8}{5}$[/tex] is [tex]t = \frac{5n-8}{3}$[/tex].

How to find inverse of the function?

To find the inverse of [tex]n = \frac{3t+8}{5}$[/tex], we need to solve for t in terms of n.

Starting with the given equation, we can first multiply both sides by 5 to get rid of the fraction:

[tex]$$5n = 3t + 8$$[/tex]

Next, we can isolate t by subtracting 8 from both sides and then dividing by 3:

[tex]$\begin{align*}5n - 8 &= 3t \\frac{5n-8}{3} &= t\end{align*}[/tex]

Therefore, the inverse of n is:

[tex]$t = \frac{5n-8}{3}$$[/tex]

We can also check that this is indeed the inverse by verifying that:

[tex]$n = \frac{3t+8}{5} = \frac{3}{5} \cdot \frac{5n-8}{3} + \frac{8}{5} = n$$[/tex]

So, the inverse of [tex]n = \frac{3t+8}{5}$[/tex] is [tex]t = \frac{5n-8}{3}$[/tex].

To know more about Inverse visit:

brainly.com/question/2541698

#SPJ1

How do you write 0.048 as a percentage?

Write your answer using a percent sign (%).

Answers

Answer:

0.048 in %

Step-by-step explanation:

firstly: remove the decimal point

= 48/1000

secondly : Simplify

48/1000*100

=48/10

=4.8%

let be a geometric sequence with and ratio . for how many is it true that the smallest such that is ?

Answers

The smallest integer n such that a_n < 1 is n = -2.

Let the common ratio of the geometric progression be denoted by r. Then we have

a_2 = a_1 × r

a_3 = a_2 × r = a_1 × r^2

a_4 = a_3 × r = a_1 × r^3

a_5 = a_4 × r = a_1 × r^4

So in general, we have

a_n = a_1 × r^(n-1)

Now, we can use the given equation

(a_1357)^3 = a_34

Substituting the expressions above for a_34 and a_1357, we get

(a_1 × r^33)^3 = a_1 × r^3

Simplifying this equation by dividing both sides by a_1×r^3 and taking the cube root, we get

r^10 = 1/ (a_1^2)

Now, we need to find the smallest integer n such that a_n < 1. Using the expression for a_n above, we get

a_n < 1

a_1 × r^(n-1) < 1

r^(n-1) < 1/a_1

Taking the logarithm of both sides (with base r), we get

n-1 < log_r (1/a_1)

n < log_r (1/a_1) + 1

We know that r^10 = 1/ (a_1^2), so

1/a_1 = r^(10/2) = r^5

Substituting this into the expression above for n, we get

n < log_r (1/r^5) + 1

n < -5 + 1

n < -4

Since n is an integer, the smallest possible value for n is -3. However, this does not make sense since we cannot have a negative index for a term in the geometric progression. Therefore, the smallest integer n such that a_n < 1 is n = -2.

To verify this, we can substitute n = -2 into the expression for a_n and see if it is less than 1

a_n = a_1 × r^(n-1)

a_{-2} = a_1 × r^(-3)

Since a_1 > 1, we just need to show that r^3 > 1 to prove that a_{-2} < 1. From the equation r^10 = 1/ (a_1^2), we have

r^3 = (r^10)^(3/10) = (1/a_1^2)^(3/10) > 1

Learn more about geometric progression here

brainly.com/question/4853032

#SPJ4

The given question is incomplete, the complete question is:

Let a_1, a_2, a_3, a_4, a_5, . . . be a geometric progression with positive ratio such that a_1 > 1 and

(a_1357)^3 = a_34. Find the smallest integer n such that a_n < 1.

find an ordered pair (x, y) that is a solution to the equation. -x+6y=7

Answers

Step-by-step explanation:

(-1, 1) is a solution.

because

-(-1) + 6×1 = 7

1 + 6 = 7

7 = 7

correct.

every ordered pair of x and y values that make the equation true is a solution.

(5, 2) would be another solution. and so on.

Type the correct answer in each box. Assume π = 3.14. Round your answer(s) to the nearest tenth. 90° 30° In this circle, the area of sector COD is 50.24 square units. The radius of the circle is units, and m AB is units.​

Answers

Therefore, the length of segment AB is approximately 7.4 units.

What is area?

Area is a mathematical concept that describes the size of a two-dimensional surface. It is a measure of the amount of space inside a closed shape, such as a rectangle, circle, or triangle, and is typically expressed in square units, such as square feet or square meters. The area of a shape is calculated by multiplying the length of one side or dimension by the length of another side or dimension. For example, the area of a rectangle can be found by multiplying its length by its width.

Here,

To find the radius of the circle, we can use the formula for the area of a sector:

Area of sector = (θ/360) x π x r²

where θ is the central angle of the sector in degrees, r is the radius of the circle, and π is approximately 3.14.

We're given that the area of sector COD is 50.24 square units and the central angle of the sector is 90°. So we can plug in these values and solve for r:

50.24 = (90/360) x 3.14 x r²

50.24 = 0.25 x 3.14 x r²

r² = 50.24 / (0.25 x 3.14)

r² = 201.28

r = √201.28

r ≈ 14.2

Therefore, the radius of the circle is approximately 14.2 units.

Next, we need to find the length of segment AB. Since AB is a chord of the circle, we can use the formula:

AB = 2 x r x sin(θ/2)

where θ is the central angle of the sector in degrees, r is the radius of the circle, and sin() is the sine function.

We're given that the central angle of sector COD is 30°. So we can plug in this value and the radius we found earlier to solve for AB:

AB = 2 x 14.2 x sin(30/2)

AB = 2 x 14.2 x sin(15)

AB ≈ 7.4

To know more about area,

https://brainly.com/question/22469440

#SPJ1

Find the unknown side lengths in similar triangles PQR and ABC.
I need an explanation on how to get the answer

Answers

Answer:

a=18 b=24

Step-by-step explanation:

We know that BC=25 and QR=30, the key term is that they are similar triangles. Therefore, BC: QR=25:30=5:6. Then BA:A=5:6=15:X

x=a=18

20:b=5:6

b=24

Refer to the figure to the right.
(a) How many inches will the weight in the figure rise if the
pulley is rotated through an angle of 74° 50°?
(b) Through what angle, to the nearest minute, must the
pulley be rotated to raise the weight 5 in.?
9.61 in
(a) The weight in the figure will rise inches.
(Do not round until the final answer. Then round to the nearest tenth as needed.)

Answers

a) The weight will rise about 13.142 inches if the pulley is rotated through an angle of 77° 50'.

b) So, to the nearest minute, the pulley must be rotated through an angle of 23° 40' to raise the weight 4 inches.

What is angle of rotation?

In geometry, the angle of rotation refers to the amount of rotation of a geometric figure about a fixed point, usually the origin. It is the measure of the amount of rotation in degrees or radians.

Depending on the direction of rotation, the angle of rotation can be positive or negative. A positive angle of rotation represents a counterclockwise rotation, while a negative angle of rotation represents a clockwise rotation.

(a) To find out how many inches the weight will rise if the pulley is rotated through an angle of 77° 50', we need to use the formula for arc length:

arc length = r × θ

where r is the radius of the pulley, and θ is the angle of rotation in radians. To convert 77° 50' to radians, we need to convert the degrees to radians and add the minutes as a fraction of a degree:

θ = (77 + 50/60) × π/180

= 1.358 rad

Substituting r = 9.67 inches and θ = 1.358 rad into the formula for arc length, we get:

arc length = 9.67 × 1.358

= 13.142 in (approx)

(b) To find out through what angle the pulley must be rotated to raise the weight 4 inches, we can rearrange the formula for arc length to solve for θ:

θ = arc length / r

Substituting arc length = 4 inches and r = 9.67 inches, we get:

θ = 4 / 9.67

= 0.413 radians

To convert this to degrees and minutes, we can multiply by 180/π and convert the decimal part to minutes:

θ = 0.413 × 180/π

= 23.66°

To know more about geometry, visit:

https://brainly.com/question/16836548

#SPJ1

Weekly CPU time used by an accounting firm has probability density function (measured in hours) given by f(x) = { 3/64 * x^2 (4 − x) 0 ≤ x ≤ 4 0 Otherwise } (a) Find the F(x) for weekly CPU time. (b) Find the probability that the of weekly CPU time will exceed two hours for a selected week. (c) Find the expected value and variance of weekly CPU time. (d) Find the probability that the of weekly CPU time will be within half an hour of the expected weekly CPU time. (e) The CPU time costs the firm $200 per hour. Find the expected value and variance of the weekly cost for CPU time. :-;​

Answers

The correct answers to the given questions are given below:

a. E(Y)= 2.4, Var (Y) = 0.64b. E(Y) = 480, Var(Y) = 25,600

What is CPU time?

CPU time, as opposed to elapsed time, which might include things like waiting for input/output operations or switching to low-power mode.

It is the length of time that a central processing unit was employed to process instructions from a computer program or operating system. The CPU time is expressed in seconds or clock ticks.

Thus, from the given question, the CPU time is measured and the expected value and variance of weekly CPU time are calculated (see image)

c. No, observing the above part, the weekly cost does not exceed $600 because the weekly cost for CPU time E(Y) =480

Read more about CPU time here:

https://brainly.com/question/19999569

#SPJ1

Which system of linear inequalities is represented by the graph?

y > x – 2 and x – 2y < 4
y > x + 2 and x + 2y < 4
y > x – 2 and x + 2y < 4
y > x – 2 and x + 2y < –4

Answers

The graph illustrates the linear inequality [tex]y > x - 2[/tex] and [tex]x - 2y < 4[/tex].

What is a good illustration of inequality?

The equation-like form of the formula 5x 4 > 2x + 3 has an arrowhead in lieu of the equals sign. That is an illustration of inequity. This shows that the left half, 5x 4, is bigger than the right part, 2x + 3. Finding the x numbers where the inequality holds true is what we are most interested in.

What justifies an inequality?

In mathematics, "inequality" means the connection between two reactions or values that is not equal to one another. As either an outcome, inequality occurs because of an imbalance.

We can see that the shaded region is above the line [tex]y = x - 2[/tex], which represents the inequality [tex]y > x - 2[/tex]. Additionally, the shaded region is below the line [tex]x - 2y = 4[/tex], which represents the inequality [tex]x - 2y < 4[/tex].

As a result, the graph's representation of a linear inequality arrangement is as follows:

[tex]y > x - 2[/tex] and [tex]x - 2y < 4[/tex]

To know more about inequality visit:

https://brainly.com/question/30231190

#SPJ1

Answer:

d

Step-by-step explanation:

A TRIANGLE HAS TWO SIDES OF LENTHS 6 AND 9. WHAT VALUE COULD THE LENGTH OF THE THIRD SIDE BE

Answers

Answer:

The value could be any length between 3 and 15

Step-by-step explanation:

9 - 6 = 3

and

9 + 6 = 15

Which of the following statements is true about an angle drawn in standard position?
Positive angles are measured clockwise.
The vertex of the angle is at point (1,1).
One side is always aligned with the positive y-axis.
One side is always aligned with the positive x-axis.

Answers

Answer:

Step-by-step explanation:

The statement that is true about an angle drawn in standard position is that one side is always aligned with the positive x-axis. The other side of the angle can be aligned with either the positive y-axis or the negative y-axis. The vertex of the angle does not necessarily have to be at point (1,1) and positive angles are measured counterclockwise.

FILL IN THE BLANK.Given any z-score, it is safe to say that the absolute value is a good indicator of ______ and the sign (+ or -) is a good indicator of ______.

Answers

Given any z-score, it is safe to say that the absolute value is a good indicator of standard deviations away from the mean a data point is, and the sign (+ or -) is a good indicator of the data point is above or below the mean.

The z-score, also known as the standard score, is a measure of the number of standard deviations a data point is away from the mean of a distribution.

A positive z-score indicates that the data point is above the mean, while a negative z-score indicates that the data point is below the mean. The absolute value of the z-score tells us the distance of the data point from the mean in terms of the number of standard deviations.

For example, if a data point has a z-score of +2.5, we know that it is 2.5 standard deviations above the mean. If a data point has a z-score of -1.8, we know that it is 1.8 standard deviations below the mean.

The sign of the z-score is particularly useful in interpreting the direction of the deviation from the mean, while the absolute value is useful in determining the magnitude of the deviation.

To learn more about z-score click on,

https://brainly.com/question/30725725

#SPJ4


If p(x) = 3x²- ax + 1 and we want p(1) = 2. What number should we take in the place
of a?

Answers

Answer:

Step-by-step explanation:

[tex]p(x)=2x^2-ax+1\\\\p(1)=3\times 1^2-a\times1+1=4-a\\\\\text{but } p(1)=2 \text{ So,}\\\\4-a=2 \rightarrow a=2[/tex]

Answer:2

Step-by-step explanation:

p(x)--->p(1)

means you should write 1 instead of every x and then make whole equation equal ro 2:

3*1^2-a*1+1=3-a+1=2

-a+4=2

-a=-2

a=2

could anyone help me out with this? thank you much in advance

Answers

Once we have this data, we can substitute the values into the formula to find the empirical probability that a person prefers apple pie given that they prefer whipped cream. Therefore, the missing probability is 1/12, and we know this because it is the value that makes the sum of all probabilities equal to 1.

What is probability?

Probability is a measure of the likelihood of an event occurring. It is expressed as a number between 0 and 1, where 0 represents an event that is impossible, and 1 represents an event that is certain to occur. For example, if the probability of winning a coin toss is 1/2, this means that there is an equal chance of the coin landing heads or tails. Probability can be calculated by dividing the number of favorable outcomes by the total number of possible outcomes. This is known as the classical probability approach. Another approach is empirical probability, where probabilities are calculated based on observed data or experiments. Lastly, subjective probability involves making an informed guess or estimate about the likelihood of an event occurring based on subjective factors such as experience, intuition, or expert opinion. Probability is a fundamental concept in statistics and is used in many application

Here,

1. The formula needed to calculate the empirical probability that a person prefers apple pie given that they prefer whipped cream is:

P(Apple Pie | Whipped Cream) = P(Apple Pie and Whipped Cream) / P(Whipped Cream)

where P(Apple Pie and Whipped Cream) is the probability that a person prefers both apple pie and whipped cream, and P(Whipped Cream) is the probability that a person prefers whipped cream.

This formula is used because it is a conditional probability, which is a measure of the probability of an event occurring given that another event has occurred. In this case, we want to find the probability that a person prefers apple pie given that they already prefer whipped cream.

To calculate P(Apple Pie and Whipped Cream), we would need to gather data on the number of people who prefer both apple pie and whipped cream. Similarly, to calculate P(Whipped Cream), we would need to gather data on the number of people who prefer whipped cream.

2. To find the missing probability, we need to use the fact that the sum of all probabilities in a probability distribution must be equal to 1. Therefore, we can set up an equation to solve for the missing probability:

1/6 + 1/3 + x + 5/12 = 1

Simplifying the equation by finding a common denominator gives:

2/12 + 4/12 + x + 5/12 = 1

Combining like terms gives:

11/12 + x = 1

Subtracting 11/12 from both sides gives:

x = 1 - 11/12

x = 1/12

To know more about probability,

https://brainly.com/question/30034780

#SPJ1

PLEASE HELP FAST!!
Find the slope of a line perpendicular to the line whose equation is
4x−6y=−24. Fully simplify your answer.

Answers

Answer: -3/2

Step-by-step explanation:

FIrst rearrange the equation in y = mx + b form.

4x - 6y = -24

-6y = -4x - 24

y = 2/3x + 4

If the line is perpendicular, the slope must be the negative reciprocal of the current line.

The negative reciprocal of 2/3 is -3/2.

Find x, if √x +2y^2 = 15 and √4x - 4y^2=6

pls help very soon

Answers

Answer:

We have two equations:

√x +2y^2 = 15 ----(1)

√4x - 4y^2=6 ----(2)

Let's solve for x:

From (1), we have:

√x = 15 - 2y^2

Squaring both sides, we get:

x = (15 - 2y^2)^2

Expanding, we get:

x = 225 - 60y^2 + 4y^4

From (2), we have:

√4x = 6 + 4y^2

Squaring both sides, we get:

4x = (6 + 4y^2)^2

Expanding, we get:

4x = 36 + 48y^2 + 16y^4

Substituting the expression for x from equation (1), we get:

4(225 - 60y^2 + 4y^4) = 36 + 48y^2 + 16y^4

Simplifying, we get:

900 - 240y^2 + 16y^4 = 9 + 12y^2 + 4y^4

Rearranging, we get:

12y^2 - 12y^4 = 891

Dividing both sides by 12y^2, we get:

1 - y^2 = 74.25/(y^2)

Multiplying both sides by y^2, we get:

y^2 - y^4 = 74.25

Let z = y^2. Substituting, we get:

z - z^2 = 74.25

Rearranging, we get:

z^2 - z + 74.25 = 0

Using the quadratic formula, we get:

z = (1 ± √(1 - 4(1)(74.25))) / 2

z = (1 ± √(-295)) / 2

Since the square root of a negative number is not real, there are no real solutions for z, which means there are no real solutions for y and x.

Therefore, the answer is "no solution".

1. Ferris Wheel Problem As you ride the Ferris wheel, your distance from the
ground varies sinusoidally with time. When the last seat1 is filled and the Ferris
wheel starts, your seat is at the position shown in the figure below. Lett be the
number of seconds that have elapsed since the Ferris wheel started. You find that
it takes you 3 seconds to reach the top, 43 feet above ground, and that the wheel
makes a
a. Sketch a graph of this sinusoidal function.
b. What is the lowest you go as the Ferris
wheel turns?
c. Find an equation of this sinusoid.
d. Predict your height above ground when
you have been riding for 4 seconds.
e. Using Desmos, find the first three times you are 18
feet above ground.
Seat
QI
Rotation
Ground

Answers

The graph of this sinusoidal function can be drawn as shown in the diagram below. As the Ferris wheel rotates, the position of the seat varies sinusoidally with respect to time.

What is graph?

Graph is a type of diagram used to represent information using a network of points and lines that connect them. It is a powerful data visualization tool that can help to effectively convey information and make relationships between data sets easier to understand. Graphs can be used to represent a wide variety of data types such as numerical, categorical or time-series data. Graphs are commonly used in mathematics, physics, biology, engineering, economics, and other disciplines.

b. The lowest point the seat reaches is 0 feet above ground, as the Ferris wheel makes a full rotation.

c. An equation of this sinusoid can be written as y = A sin (Bt + C), where A is the amplitude, B is the angular frequency, t is time, and C is the phase shift.

d. When you have been riding for 4 seconds, your height above ground is 43 feet.

e. Using Desmos, the first three times your height is 18 feet above ground can be found by solving the equation y = 18. The solutions are t = 0.715 seconds, t = 4.715 seconds, and t = 8.715 seconds.

To know more about graph click-
https://brainly.com/question/19040584
#SPJ1

Can you guys help me?​

Answers

Answer:

[tex]{ \sf{a = \frac{0.012}{0.633 -0.063 } }} \\ \\ { \sf{a = \frac{0.012}{0.57} }} \\ \\ { \sf{a = 0.021 \: (2 \: s.f)}}[/tex]

Use Lagrange multipliers to find the indicated extrema, assuming that x and y are positive. Minimize f(x, y) = x2 + y2 Constraint: x + 2y − 10 = 0

Answers

The value after minimizing f(x, y) = x2 + y2 with respect to constraint - x + 2y − 10 = 0, using Lagrange multipliers, is 50.

To solve this problem using Lagrange multipliers, we first write the function to be minimized as:

f(x,y) = x² + y²

And the constraint equation as:

g(x,y) = x + 2y - 10 = 0

We then form the Lagrangian function L(x,y,λ) as follows:

L(x,y,λ) = f(x,y) - λg(x,y)

Substituting in our expressions for f(x,y) and g(x,y), we get:

L(x,y,λ) = x² + y² - λ(x + 2y - 10)

Now, we take partial derivatives of L with respect to x, y and λ and set them equal to zero:

∂L/∂x = 2x - λ = 0 ∂L/∂y = 2y - 2λ = 0 ∂L/∂λ = x + 2y - 10 = 0

Solving these equations simultaneously gives us:

x = λ y = λ/2 x + 2y - 10 = 0

Substituting these values back into our original function f(x,y), we get:

f(5,5) = (5)² + (5)² = 50

Therefore, the minimum value of f(x,y) subject to the given constraint is 50.

To know more about Lagrange multipliers, refer:

https://brainly.com/question/17218339

#SPJ4

9x+6=24
8x-4=28
-18-x=57
-4-8x=8
3x+0.7=4

Answers

Answer:

Step-by-step explanation:

To solve each of these equations, we need to isolate the variable (x) on one side of the equation. Here are the steps to solve each equation:

9x + 6 = 24

Subtract 6 from both sides:

9x = 18

Divide both sides by 9:

x = 2

Therefore, the solution to the equation is x = 2.

8x - 4 = 28

Add 4 to both sides:

8x = 32

Divide both sides by 8:

x = 4

Therefore, the solution to the equation is x = 4.

-18 - x = 57

Add 18 to both sides:

-x = 75

Multiply both sides by -1:

x = -75

Therefore, the solution to the equation is x = -75.

-4 - 8x = 8

Add 4 to both sides:

-8x = 12

Divide both sides by -8:

x = -1.5

Therefore, the solution to the equation is x = -1.5.

3x + 0.7 = 4

Subtract 0.7 from both sides:

3x = 3.3

Divide both sides by 3:

x = 1.1

Therefore, the solution to the equation is x = 1.1.

In the given figure, arrange the sides of ∆ from shortest to longest.

Answers

the sides from shortest to longest in the triangle is DE,DF and EF.

define triangle

A triangle is defined as a two-dimensional geometric shape that has three straight sides and three angles. The three sides of a triangle are referred edges or legs, and the three angles are formed where the edges or legs meet.

∠DEF=58°

∠DFE=180°-147°=33°

Angle sum of the triangle is 180°

∠DEF+∠DFE+∠EDF=180°

∠EDF=180°-33°-58°

=89°

The greatest side and the largest angle of a triangle are opposite one another, as are the shortest side and the smallest angle.

Increasing order of angle

∠DFE,∠DEF,∠EDF

Arranging the sides from shortest to longest DE,DF and EF.

to know more about angles, visit:

https://brainly.com/question/28451077

#SPJ1

A company manufactures rubber balls. The mean diameter of a ball is 12 cm with a standard deviation of 0.2 cm. Define the random variable X in words. X = ______________.

Answers

A company manufactures rubber balls, random variable X in words is diameter of the rubber ball, standard deviation is -1.5 and z-score of the x = 2 is 2.123.

A random variable is a variable with an unknown value or a function that gives values to each of the results of an experiment. Random variables are frequently identified by letters and fall into one of two categories: continuous variables, which can take on any value within a continuous range, or discrete variables, which have specified values.

In probability and statistics, random variables are used to measure outcomes of a random event, and hence, can take on various values. Real numbers are often used as random variables since they must be quantifiable.

1) X denotes the diameter of the rubber ball.

So the correct option was A. (option A)

Therefore,  the random variable X in words is diameter of the rubber ball.

2) For 1.5 Standard deviations left to the mean , Z score will be -1.5

option(A)

So, standard deviation to the left of the mean is -1.5.

3) [tex]Z=\frac{(x-\mu)}{\sigma}[/tex]

x=2

sigma = √2

Z = 2-(-1)/ √2

Z = 3/√2

Z = 2.123

Hence, the z-score of the x = 2 is 2.123.

Learn more about Random variable:

https://brainly.com/question/16106278

#SPJ4

Complete question:

A company manufactures rubber balls. The mean diameter of a rubber ball is 12 cm with a standard deviation of 0.2 cm. Define the random variable X in words. X

diameter of a rubber ball

rubber balls

mean diameter of a rubber ball

12 cm

Question 2 What is the z-score of x=9, if it is 1.5 standard deviations to the left of the mean? Hint: the z-score of the mean is =0 −1.5 1.5 9 Question 3 Suppose X∼N(−1,2). What is the z-score of x=2 ? Hint: z=(x−μ)/σ 1.5 −1.5 0.2222

Maximize z = 3x₁ + 5x₂
subject to: x₁ - 5x₂ ≤ 35
3x1 - 4x₂ ≤21
with. X₁ ≥ 0, X₂ ≥ 0.
use simplex method to solve it and find the maximum value​

Answers

Answer:

See below.

Step-by-step explanation:

We can solve this linear programming problem using the simplex method. We will start by converting the problem into standard form

Maximize z = 3x₁ + 5x₂ + 0s₁ + 0s₂

subject to

x₁ - 5x₂ + s₁ = 35

3x₁ - 4x₂ + s₂ = 21

x₁, x₂, s₁, s₂ ≥ 0

Next, we create the initial tableau

Basis x₁ x₂ s₁ s₂ RHS

s₁ 1 -5 1 0 35

s₂ 3 -4 0 1 21

z -3 -5 0 0 0

We can see that the initial basic variables are s₁ and s₂. We will use the simplex method to find the optimal solution.

Step 1: Choose the most negative coefficient in the bottom row as the pivot element. In this case, it is -5 in the x₂ column.

Basis x₁ x₂ s₁ s₂ RHS

s₁ 1 -5 1 0 35

s₂ 3 -4 0 1 21

z -3 -5 0 0 0

Step 2: Find the row in which the pivot element creates a positive quotient when each element in that row is divided by the pivot element. In this case, we need to find the minimum positive quotient of (35/5) and (21/4). The minimum is (21/4), so we use the second row as the pivot row.

Basis x₁ x₂ s₁ s₂ RHS

s₁ 4/5 0 1/5 1 28/5

x₂ -3/4 1 0 -1/4 -21/4

z 39/4 0 15/4 3/4 105

Step 3: Use row operations to create zeros in the x₂ column.

Basis x₁ x₂ s₁ s₂ RHS

s₁ 1 0 1/4 7/20 49/10

x₂ 0 1 3/16 -1/16 -21/16

z 0 0 39/4 21/4 525/4

The optimal solution is x₁ = 49/10, x₂ = 21/16, and z = 525/4.

Therefore, the maximum value of z is 525/4, which occurs when x₁ = 49/10 and x₂ = 21/16.

find the sum of the series 1 12 13 14 16 18 19 112 where the terms are reciprocals of the positive integers whose only prime factors are 2s and 3s.

Answers

the sum of the series is 8/3. The series consists of reciprocals of positive integers whose only prime factors are 2s and 3s.

In other words, each term of the series can be expressed as a fraction of the form 1/n, where n is a positive integer that can be factored into only 2s and 3s. For example, the first term of the series is 1/1, the second term is 1/2, and the fourth term is 1/4.

To find the sum of the series, we can first list out the terms and their corresponding values:

1/1 = 1

1/2 = 0.5

1/3 = 0.333...

1/4 = 0.25

1/6 = 0.166...

1/8 = 0.125

1/9 = 0.111...

1/12 = 0.083...

and so on.

We can see that the terms of the series decrease in value as n increases, so we can use this fact to estimate the sum of the series. For example, we can take the sum of the first few terms to get an idea of how large the sum might be:

1 + 0.5 + 0.333... + 0.25 = 2.083...

We can see that the sum is greater than 2, but less than 3. To get a more accurate estimate, we can add a few more terms:

2.083... + 0.166... + 0.125 + 0.111... = 2.486...

We can continue adding terms in this way to get a more and more accurate estimate of the sum. However, it is not easy to find a closed-form expression for the sum of the series.

Alternatively, we can use a formula for the sum of a geometric series to find the sum of the series. A geometric series is a series of the form a + ar + ar^2 + ... + ar^n, where a is the first term and r is the common ratio between terms. In our series, the first term is 1 and the common ratio is 1/2 or 1/3, depending on whether n is even or odd. Therefore, we can split the series into two separate geometric series:

1 + 1/2 + 1/8 + 1/32 + ... = 1/(1 - 1/2) = 2

1/3 + 1/12 + 1/48 + 1/192 + ... = (1/3)/(1 - 1/2) = 2/3

The sum of the two geometric series is the sum of the original series:

2 + 2/3 = 8/3

Therefore, the sum of the series is 8/3.

To know more about geometric series click here:

brainly.com/question/21087466

#SPJ4

Please help!

To prove the converse of the Pythagorean theorem, we can define a right triangle, [FILL WITH ANSWER], with sides a, b, and x. Then, we will show that if ​△ABC​ is a triangle with sides a, b, and c where a² + b² = c², then it is congruent to △DEF and therefore a right triangle.

By the Pythagorean theorem, because ​△DEF​ is a right triangle, a² + b² = x².

If ​​a² + b² = x² and a² + b² = c² ​​, then c² = x². Further, since sides of triangles are positive, then we can conclude that ​c = x​. Thus, the two triangles have congruent sides and are congruent.

If ​△ABC​ is congruent to a right triangle, then it must also be a right triangle.

Answers:
right triangle
[tex]a^{2}[/tex] + [tex]b^{2}[/tex] = [tex]x^{2}[/tex]
[tex]a^{2}[/tex] + [tex]b^{2}[/tex] = [tex]c^{2}[/tex]
​△ABC
​△DEF

Answers

If △ABC is congruent to △DEF, then it must also be a right triangle. Thus, the two triangles have congruent sides and are congruent.

what is pythagoras theorem ?

A key idea in geometry known as the Pythagorean theorem explains the relationship between the sides of a right triangle. The square of the hypotenuse, or side opposite the right angle, is said to be equal to the sum of the squares of the other two sides. It can be expressed mathematically as: a² + b² = c²

given

By defining a right triangle, DEF, with sides a, b, and x, we can demonstrate the opposite of the Pythagorean theorem. Then, we'll demonstrate that if ABC is a triangle with sides a, b, and c where a2 + b2 = c2, it is congruent to DEF and is thus a right triangle because a2 + b2 = c2.

By the Pythagorean theorem, because △DEF is a right triangle, a² + b² = x².

When a2 + b2 = c2 and a2 + b2 = x2, c2 equals x2.

If △ABC is congruent to △DEF, then it must also be a right triangle.Thus, the two triangles have congruent sides and are congruent.

To know more about Pythagoras theorem visit :-

https://brainly.com/question/14461977

#SPJ1

If △ABC is congruent to △DEF, then it must also be a right triangle. Thus, the two triangles have congruent sides and are congruent.

What is Pythagoras theorem?

A key idea in geometry known as the Pythagorean theorem explains the relationship between the sides of a right triangle. The square of the hypotenuse, or side opposite the right angle, is said to be equal to the sum of the squares of the other two sides. It can be expressed mathematically as: a² + b² = c²

By defining a right triangle, DEF, with sides a, b, and x, we can demonstrate the opposite of the Pythagorean theorem. Then, we'll demonstrate that if ABC is a triangle with sides a, b, and c where [tex]a^2 + b^2 = c^2[/tex], it is congruent to DEF and is thus a right triangle because a2 + b2 = c2.

By the Pythagorean theorem, because △DEF is a right triangle, a² + b² = x².

When[tex]a^2 + b^2 = c^2[/tex] and [tex]a^2 + b^2 = x^2[/tex], [tex]c^2[/tex] equals [tex]x^2[/tex].

If △ABC is congruent to △DEF, then it must also be a right triangle. Thus, the two triangles have congruent sides and are congruent.

To know more about Pythagoras theorem visit :-

brainly.com/question/14461977

#SPJ1

Other Questions
A rigid, insulated tank, initially containing 0.4m3of saturated water vapor at 3.5bar, is connected by a valve to a large vessel, holding steam at 15bar,320oC. The valve is opened only as long as required to bring the tank pressure to 15bar.For the tank contents, determinea) the final temperature, in oCb) final mass, in kg "Cuantolos pantalones?"(Hint: Is it singularor plural?)A. cuestaB. esC. cuestan11 Read the passage from "By the Waters of Babylon."But it was not dark. Everywhere there were lights-lines of light circles and blurs of light-ten thousandtorches would not have been the same. The sky itselfwas alight--you could barely see the stars for the glowin the sky. I thought to myself "This is strong magic"and trembled. There was a roaring in my ears like therushing of rivers. Then my eyes grew used to the lightand my ears to the sound. I knew that I was seeing thecity as it had been when the gods were alive.That was a sight indeed-yes, that was a sight: I couldnot have seen it in the body--my body would havedied. Everywhere went the gods, on foot and inchariots-there were gods beyond number andcounting and their chariots blocked the streets. Theyhad turned night to day for their pleasure--they did notsleep with the sun. The noise of their coming andMark this and returnU1.05:47Which details from the text best support the analysisthat the narrator is in awe of the city at night? Selectthree options 'But it was not dark. Everywhere there were lights."O ' thought to myself 'This is a strong magic' andtrembled." 'That was a sight indeed-yes, that was a sight: Icould not have seen it in the body--my body wouldhave died." 'Everywhere went the gods, on foot and in chariots." 'It was magic what they could do--it was magicwhat they did."Save and ExitNextSubmit Acording to leader member exchange. you must work to develop special relationship whit which substance would shatter when hit with a hammer? steel, bronze, table salt, copper Label each of the following as Discrete Random Variable, Continuous Random Variable, Categorical Random Variable, or Not a Variable. 1. The Name of the people in the car that crosses the bridge Not a Variable 2. The time between each car crossing the bridge Continuous Random Variable 3. The type of cars that cross the bridge Categorical Random Variable 4. The number of cars that use the bridge in one hour Continuous Random Variable Question 2 3 pts Which of these are Continuous and which are Discrete Random Variables? 1. Type of coin Continuous Random Variable 2. Distance from a point in space to the moon Discrete Random Variable 3. Number of coins in a stack Continuous Random Variable In 1900, about 3. 05 million people lived in Texas. Altogether, about 76. 1 million people lived in the United States. About how many people in the United States did not live in Texas. PLEASE HELP I ONLY HAVE 5 MINUTES One reason for using a distribution instead of the standard Normal curve to find critical values when calculating a level C confidence interval for a population mean is that(a) z can be used only for large samples.(b) z requires that you know the population standard deviation .(c) z requires that you can regard your data as an SRS from the population.(d) the standard Normal table doesn't include confidence levels at the bottom.(e) a z critical value will lead to a wider interval than a t critical value.(b) z requires that you know the population standard deviation . Find the total amount and total interest after six months if the interest is compounded every quarter. Principal =10 000 Rate of interest =20% per annum. in january of year 1, idea company purchased a patent for a new consumer product for $340,000. at the time of purchase, the remaining legal life of the patent was 17 years. however, because of the competitive nature of the market, the patent was estimated to have a useful life of 10 years. during year 5, it was determined that there was a potential health hazard present in the product. as a result, the estimated future cash flows from the patent on december 31 of year 5 are estimated to be $160,000 while the fair value of the patent is estimated to be $138,600. total estimated useful life remains unchanged.Required a. Determine annual amortization expense for Year 1 through Year 5 . b. Determine the carrying value of the patent on December 31 of Year 5 , before assessing for impairment. c. What amount should idea record as an impairment loss if anyb in Year 5? d. What is the adjusted carrying value of the patent on December 31 of Year $ ? e Assume that the potential health hazard was resolved in vear 6: .As a result, the future cash flows from the patent on December 31 of Year 6 are estimated to be5130.090 whie the far value of the patent is estimated to be 5108,000 . What amount ahould idea record as a loss for recovery on impairment (d any) in Vear 6 ? f. What is the adjusted carrying value of the patent on December 31 of Year 6 ? T/F: data mining is used to explore large amounts of data, looking for hidden patterns that can be used to predict future trends and behaviors. Work out the size of angle x. 79) 35 In a comparison of a perfectly competitive firm's short-run equilibrium to its long-run equilibrium, which of the following is true?A. Price must equal marginal cost in the long run, but not necessarily in the short run.B. Economic profit must be positive in the long run, but not necessarily in the short run.C. The firm can set price in the short run, but not necessarily in the long run.D. The firm must produce at minimum average total cost in the short run, but not necessarily in the long run.E. Price equals average total cost in the long run, but not necessarily in the short run. Which of the following statements about biomes is correct?A.Each biome type occurs on every continent.B.Most biomes are characterized by unique groups of particular species of plants and animals.C.Most biomes are unaffected by human activity.D.Each continent is home to a biome not found elsewhere on Earth.E.The major factors affecting the distribution of biomes are temperature and precipitation. Discuss the impact of Stalins five year plan on the soviet economy and the russian people : SCENE REWRITERewrite this scene from Daisy's or Gatsby's point of view. Your rewritten scene must include thecharacter's inner thoughts, description of other characters/the setting, and dialogue betweencharacters.ne? Explain.PLEASE NOTE: You may use the dialogue from the original text, but nothing else. Don't let dialoguedominate your entire rewritten scene. Also, you may rewrite the dialogue, as long as it stays true tothe scene and characters. (Example: Many versions of books change the dialogue but not in away that changes the representation of the character or scene, ideally.)When you are finished, answer the following:1. How did the change in narration affect the story?2. Which narrator-Nick, Daisy, or Gatsby-do you think is more effective in th Why might tortoises grow to such huge sizes on isolated islands, such as the Galapagos, but not elsewhere? Evaluate the expression z + 3x4A. 27B. 32C. 56D. 1,304 Demon Lover question from English bookBeyond the physical effects of war on the home front, what emotional effects of the war does Bowen's story suggest? In your response, use at least two of these Essential Question words: alter, vulnerable, unre-solved. [Connecting to the Essential Question: What is the relationship between literature and place?] which of the following best describes an event during step 2 in the simplified model above? responses A. a new rna molecule is synthesized using a dna template. B. a new polypeptide is synthesized using an rna template. C. thymine nucleotides in an rna molecule are replaced with uracil nucleotides. D. noncoding sequences are removed from a newly synthesized rna molecule.