The mass of a density bottle is 20g when empty, 70g when full of water and 55g when full of a second liquid. Calculate the density of the liquid

Answers

Answer 1

The density of the liquid is 0.5 g/cm³. to calculate the density, we use the formula: density = mass/volume.

The mass of the liquid can be found by subtracting the mass of the empty density bottle from the mass of the bottle filled with liquid.

For water: mass of liquid = 70g - 20g = 50g.

For the second liquid: mass of liquid = 55g - 20g = 35g.

Since the volume of the density bottle remains the same for both liquids, the density can be calculated as mass of liquid/volume of the bottle.

For water: density = 50g/100cm³ = 0.5 g/cm³.

For the second liquid: density = 35g/100cm³ = 0.35 g/cm³.

Therefore, the density of the liquid is 0.5 g/cm³.

Learn more about subtracting here:

https://brainly.com/question/13619104

#SPJ11


Related Questions

david bowie changed his original name to avoid confusion with which famous dave?

Answers

David Bowie changed his original name (David Robert Jones) to avoid confusion with Davy Jones, a member of the popular band The Monkees.

Bowie didn't want to be associated with Davy Jones and sought a distinct identity for his own career in music. Davy Jones was a British singer and actor who gained fame as a member of The Monkees in the 1960s. As David Robert Jones began his own musical journey, he decided to adopt the stage name "David Bowie" to prevent any potential confusion between the two artists. Bowie's new name not only provided him with a unique identity but also allowed him to craft a distinct image and persona that would define his groundbreaking and influential career in music and art.

Learn more about David Bowie here:

https://brainly.com/question/30761795

#SPJ11

Oblem 26. 53 - Enhanced - with Feedback


You have a semicircular disk of glass with an index of


ofraction of n = 156 (Figure 1) You may want to review


Pages 929 - 936)


Part A


Find the incident angle o for which the beam of light in the figure will hit the indicated point on the screen


ΨΗ ΑΣΦ


?


Submit


Request Answer


Provide Feedback


gure


1 of 1

Answers

The incident angle θ for which the beam of light in the figure will hit the indicated point on the screen is 60 degrees.

In this question, we need to find the incident angle for which the beam of light in the figure will hit the indicated point on the screen. We have a semicircular disk of glass with an index of fraction of n = 156 (Figure 1). We are given that the refractive index of the glass is n = 1.56. Using Snell's law,n1sinθ1=n2sinθ2where, n1= refractive index of the incident medium, n2= refractive index of the refracted medium, θ1= angle of incidence, θ2= angle of refraction. As air is the incident medium, the refractive index of air is 1.n1 = 1 and n2 = 1.56 sin(θ1) = 1.56sin(θ2)

As the angle of incidence (i) and the angle of reflection (r) are equal,i = rso, the angle between the incident ray and the normal, θ1 = 60°

Thus, sin(60) = 1.56sin(θ2)sin(θ2) = 0.63θ2 = 40.94°

As the light is refracted away from the normal, the angle of incidence is greater than the angle of refraction.

Hence, the incident angle of the beam of light is 60°.

learn more about incident angle Refer:

https://brainly.com/question/13200721

#SPJ11

a person in a rocking chair completes 17 cycles in 18 s . What are the periodand frequency of the rocking?

Answers

The period of the rocking chair is approximately 1.06 seconds per cycle, and the frequency is approximately 0.94 cycles per second (Hz).



The period is the time it takes to complete one cycle. To find the period, divide the total time by the number of cycles:
Period = Total time / Number of cycles
Period = 18 seconds / 17 cycles
Period ≈ 1.06 seconds per cycle

The frequency is the number of cycles completed in one second. To find the frequency, divide the number of cycles by the total time:
Frequency = Number of cycles / Total time
Frequency = 17 cycles / 18 seconds
Frequency ≈ 0.94 cycles per second (or Hertz, Hz)

To know more about frequency refer https://brainly.com/question/301048
#SPJ11

The period of rocking is 1.06 s and frequency of the rocking is 0.94 Hz (cycles per second).

The period (T) of a periodic motion is the time it takes for one complete cycle of the motion. i.e.,

T = (Total time taken) / (Number of cycles)

The frequency (f) of the motion is the number of cycles per unit time or in one second. i.e.,

f = (Number of cycles) / (Total time taken)

Frequency is also considered to be reciprocal of the period.

∴ [tex]f=\frac{1}{T}[/tex]

Now, given

No. of cycles completed = 17

Time taken for 17 cycles = 18 second.

Therefore,

Period, T = (total time) / (number of cycles)

               = 18 s / 17

               ≈ 1.06 s

And,

Frequency, f = (number of cycles) / (total time)

                    = 17 / 18 s

                    ≈ 0.94 Hz

Or, frequency can also be obtained as,

[tex]f=\frac{1}{T}[/tex]

  = 1/1.06

  ≈ 0.94 Hz.

Therefore, the period of rocking is 1.06 s and frequency of the rocking is 0.94 Hz (cycles per second).

Learn more about frequency here

brainly.com/question/26814984

#SPJ4

A square-wave inverter supplies an RL series load with R=25 ohms and L=25mH. The output frequency is 120 Hz. (a) Specify the dc source voltage such that the load current at the fundamental frequency is 2.0 A rms. (b) Determine the THD of the load current (until 9), show all your work. + Vdc

Answers

(a) The dc source voltage is 61.2 V.

(b) The THD of the load current is approximately 33.2%.

(a) To calculate the dc source voltage required to produce a load current of 2.0 A rms, we first need to calculate the impedance of the load at the fundamental frequency. The impedance can be calculated as Z = R + jωL, where R is the resistance of the load, L is the inductance of the load, and ω is the angular frequency.

ω = 2πf

ω = 2π x 120 Hz

ω = 753.98 rad/s

Z = 25 + j(753.98 x 0.025)

Z = 25 + j18.85 Ω

The rms value of the load current is given by I = V/Z, where V is the rms value of the voltage supplied by the inverter.

I = 2.0 A rms, Z = 25 + j18.85 Ω

Therefore, V = IZ

V = (2.0 A rms) x (25 + j18.85 Ω)

V = 61.2 + j45.35 V rms

The dc source voltage is the average value of the voltage waveform, which is equal to the rms value multiplied by π/2.

Vdc = (π/2) x 61.2 V rms ≈ 96.2 Vdc

(b) The total harmonic distortion (THD) of the load current is a measure of the distortion of the current waveform from a perfect sinusoid. It is defined as the square root of the sum of the squares of the harmonic components of the current waveform, divided by the rms value of the fundamental component.

THD = √[(I2² + I3² + ... + In²)/I1²] x 100%

where I1 is the rms value of the fundamental component, and I2, I3, ..., In are the rms values of the second, third, ..., nth harmonic components.

For a square-wave inverter, the load current waveform contains only odd harmonic components. The rms value of the nth harmonic component can be calculated as

In = (4Vdc/(nπZ)) x sin(nπ/2)

where n is the harmonic number.

Using this equation, we can calculate the rms values of the first three harmonic components of the load current.

I1 = 2.0 A rms (given)

I3 = (4 x 96.2 Vdc / (3π x 25 Ω)) x sin(3π/2)

I3 ≈ 0.632 A rms

I5 = (4 x 96.2 Vdc / (5π x 25 Ω)) x sin(5π/2)

I5 ≈ 0.254 A rms

The THD can now be calculated as

THD = √[(0.632² + 0.254²)/2.0²] x 100%

THD ≈ 33.2%

To learn more about total harmonic distortion, here

https://brainly.com/question/30198365

#SPJ4

A superconducting solenoid is to be designed to generate a magnetic field of 3.50 T. If the solenoid winding has 984 turns/m, what is the required current? (Mo = 417x 10-7 T-m/A) 2.8E+3 A 1.4E+3 A 4.5E+2 A 2.3E+2 A 9.0E+2 A

Answers

The required current for the superconducting solenoid is approximately 9.0E+2 A.

To calculate the required current for the superconducting solenoid, we can use the formula for the magnetic field strength (B) produced by a solenoid:
B = μ₀ * n * I
where B is the magnetic field strength (3.50 T), μ₀ is the permeability of free space (417 x 10^-7 T-m/A), n is the number of turns per meter (984 turns/m), and I is the current in amperes (A).
Rearranging the formula to solve for I:
I = B / (μ₀ * n)
Plugging in the given values:
I = 3.50 T / ((417 x 10^-7 T-m/A) * (984 turns/m))
I ≈ 9.0E+2 A
So, the required current for the superconducting solenoid is approximately 9.0E+2 A.

For more such questions on solenoid , Visit:

https://brainly.com/question/25562052

#SPJ11

To determine the required current for the superconducting solenoid, we need to use the formula for the magnetic field generated by a solenoid: B = u * n * I, where B is the magnetic field, u is the permeability of free space (given as Mo in this case), n is the number of turns per unit length (984 turns/m), and I is the current.

Rearranging the formula, we get : I = B / (u * n)

Plugging in the given values, we get : I = 3.50 T / (417x10^-7 T-m/A * 984 turns/m) = 2.8E+3 A

Therefore, the required current for the superconducting solenoid to generate a magnetic field of 3.50 T with 984 turns/m is 2.8E+3 A.

Learn more about current here : brainly.com/question/13076734

#SPJ11

If a person goes to the bottom of a very deep mine shaft on a planet of uniform density, which of the following is true? 2. (A) The person's weight is exactly the same as at the surface. (B) The person's weight is less than at the surface. (C) The person's weight is greater than at the surface. (D) The person's weight may increase or decrease, depending on the density of the planet.

Answers

If a person goes to the bottom of a very deep mine shaft on a planet of uniform density, then the person's weight is exactly the same as at the surface. Option(A) is true.

The force of gravity is directly proportional to the mass of the planet and inversely proportional to the square of the distance between the person and the center of the planet.

Gravity is a fundamental force that governs the motion of objects in the universe. It is an attractive force between any two objects with mass or energy, and its strength depends on the mass and distance between the objects.

Since the planet has uniform density, the mass beneath the person cancels out, resulting in no change in weight.

To learn more about density refer here:

https://brainly.com/question/29775886#

#SPJ11

The waters off the coast of Iceland are filled with pods of killer whales, which migrate there during the summer. Wildlife parks that rely on the killer whales for entertainment hunt the killer whale almost exclusively in the water of Iceland, because strict sanctions forbid them from doing so off the coast of North America, an area also abundant in killer whales. Since Iceland recently gave in to pressure from international groups opposed to the hunting of killer whales, it too will forbid the hunting of killer whales off its coast. Therefore, all wildlife parks will be forced to end their shows featuring killer whales once their current killer whales are unable to perform. " All of the following cast doubt on the conclusion of the argument EXCEPT?

Answers

The fact that Iceland recently gave in to pressure from international groups opposed to the hunting of killer whales and will forbid the hunting of killer whales off its coast does not cast doubt on the conclusion of the argument.

It actually supports the conclusion that all wildlife parks will be forced to end their shows featuring killer whales once their current killer whales are unable to perform.

The argument states that wildlife parks rely on hunting killer whales exclusively in the waters of Iceland because they are forbidden to do so off the coast of North America. If Iceland also forbids hunting, the parks will no longer have a source of killer whales, which will ultimately lead to the end of their shows. The conclusion is directly supported by the premise, and there is noccontradictory information provided that would cast doubt on this logical chain of reasoning.

Learn more about  pressure here:

https://brainly.com/question/29341536

#SPJ11

consider the following steady, two dimensional velocity field: v = (u, v) = (0.5 1.2 x)i (-2.0 -1.2 y)j is there a stagnation point in this flow field? if so where is it?

Answers

Yes, there is a stagnation point in this flow field. The stagnation point is the point where the velocity of the fluid is zero. To find the stagnation point, we need to solve for when u = 0 and v = 0. From the velocity field given, we have:

u = 0.5x
v = -2y - 1.2x

Setting u = 0, we get:

0.5x = 0

Solving for x, we get:

x = 0

Setting v = 0, we get:

-2y - 1.2x = 0

Substituting x = 0, we get:

-2y = 0

Solving for y, we get:

y = 0

Therefore, the stagnation point is at (0,0).


To determine if there is a stagnation point in the given two-dimensional velocity field, v = (u, v) = (0.5 + 1.2x)i + (-2.0 - 1.2y)j, follow these steps:

1. A stagnation point occurs when both the u and v components of the velocity field are zero. So, we need to solve the following system of equations:

0.5 + 1.2x = 0
-2.0 - 1.2y = 0

2. To find the x-coordinate of the stagnation point, rearrange the first equation and solve for x:

3. To find the y-coordinate of the stagnation point, rearrange the second equation and solve for y

To know more about velocity visit:

https://brainly.com/question/17127206

#SPJ11

A charge q1 = 2 µc is at the origin, and a charge q2 = 10 µc is on the x axis at x = 10 m. find the force on charge q2 . the colulomb constant is 8.98755 × 109 n · m 2 /c 2 . answer in units of n.

Answers

The force on charge q2 is approximately 179.751 N.

The force between two point charges can be found using Coulomb's law:
F = (k * q1 * q2) / r^2
Where F is the force between the charges, k is the Coulomb constant (8.98755 × 10^9 N·m^2/C^2), q1 and q2 are the magnitudes of the charges in Coulombs, and r is the distance between the charges in meters.
In this case, q1 = 2 µC and q2 = 10 µC. The distance between the charges is the distance between the origin and the point on the x-axis where q2 is located, which is 10 m.
So, we can calculate the force on q2 as follows:
F = (8.98755 × 10^9 N·m^2/C^2) * (2 µC) * (10 µC) / (10 m)^2
F = (8.98755 × 10^9 * 2 * 10) / 100
F = 1.79751 × 10^9 / 100
F = 1.79751 × 10^7 N
The force on charge q2, we can use Coulomb's Law. Coulomb's Law states that the force (F) between two point charges is directly proportional to the product of their charges (q1 and q2) and inversely proportional to the square of the distance (r) between them:
F = k * (q1 * q2) / r^2
In this case, q1 = 2 µC, q2 = 10 µC, r = 10 m, and the Coulomb constant (k) is 8.98755 × 10^9 N·m^2/C^2.
The charges to Coulombs: q1 = 2 × 10^-6 C and q2 = 10 × 10^-6 C.
F = (8.98755 × 10^9 N·m^2/C^2) * ((2 × 10^-6 C) * (10 × 10^-6 C)) / (10 m)^2
F = (8.98755 × 10^9 N·m^2/C^2) * (2 × 10^-5 C^2) / (100 m^2)
F = 179.751 N

To know more about force visit:-

https://brainly.com/question/13191643

#SPJ11

Show that the principal stresses in a thin-walled closed-end, linear elastic cylinder (shown below), subjected to internal pressure P in equilibrium are given by: sigma_z = PR/2t sigma_theta = PR/t sigma_T 0 Where R is the radius, L the length and t the wall thickness (t << R) of the vessel. State all assumptions

Answers

Assumptions:

The cylinder is thin-walled, which means that the thickness of the cylinder wall is much smaller than the radius of the cylinder (t << R).

The material of the cylinder is linear elastic, which means that Hooke's law applies to it.

The cylinder is in a state of static equilibrium, which means that the internal pressure is balanced by the forces in the wall of the cylinder.

Analysis:

Consider a small segment of the cylinder wall with a length of "dl" and an angle of "dθ" as shown in the figure below:

Thin-walled cylinder diagram

The forces acting on this segment are:

The force due to the internal pressure, which acts perpendicular to the segment and has a magnitude of Pdl.

The force due to the stress in the circumferential direction, which acts tangentially to the segment and has a magnitude of σθdl.

The force due to the stress in the axial direction, which acts parallel to the segment and has a magnitude of σzdl.

Using the equilibrium conditions, we can write:

∑Fx = 0 ==> σθ dl - σθ (dθ + dl) + σz (R + t/2) dθ - σz (R - t/2) dθ = 0

∑Fy = 0 ==> Pdl - σzdl + σzdl = 0

Simplifying these equations and dividing by dl, we get:

σθ - σθ' + σz(R/t + 1/2) - σz(R/t - 1/2) = 0

P - σz = 0

where σθ' is the circumferential stress on the opposite side of the cylinder wall.

We can solve these equations for the stresses in terms of the pressure P, the radius R, and the wall thickness t:

σz = P(R/t)/2

σθ = P(R/t)

σT0 = 0 (there is no radial stress)

Therefore, the principal stresses in a thin-walled closed-end, linear elastic cylinder subjected to internal pressure P in equilibrium are given by:

σz = P(R/t)/2

σθ = P(R/t)

σT0 = 0

These equations are valid under the assumptions stated above.

To know more about Hooke's law refer here

https://brainly.com/question/29126957#

#SPJ11

Consider the de Broglie wavelength of an electron What is the de Broglie wavelength of an electron traveling at a speed of 5.0×106 m/s? Give your answer in pm ト Grade Summary Deductions Potential pm 0% 100% Submissions tan() | π | ( 789 cosO cotanO asin0 acos0 atan acotan0 sinh coshO tanh0 cotanh0 °Degrees -Radians sin Attempts remaining: 999 % per attempt) detailed view 0 END vo DELCLEAR Submit I give up! Hints: for a .0%-deduction. Hints remaining: 0 Feedback: 5%-deduction per feedback.

Answers

The de Broglie wavelength of an electron traveling at a speed of 5.0 x 10^6 m/s is approximately 0.145 picometers (pm).

What is the equation for calculating the de Broglie wavelength of an electron, and what is the de Broglie wavelength of an electron traveling at a speed of 5.0 x 10^6 m/s?

The de Broglie wavelength of an electron is given by the equation:

λ = h/mv

Where λ is the de Broglie wavelength, h is Planck's constant, m is the mass of the electron, and v is the velocity of the electron.

Substituting the given values, we get:

λ = h/(mv) = (6.626 x 10^-34 J s)/(9.11 x 10^-31 kg x 5.0 x 10^6 m/s)

λ = 0.145 pm (rounded to three significant figures)

Therefore, the de Broglie wavelength of an electron traveling at a speed of 5.0 x 10^6 m/s is approximately 0.145 picometers (pm).

Learn more about De-Broglie.

brainly.com/question/17295250

#SPJ11

You put a 51.7 gram mass on a spring, set it in motion with a small amplitude, and count 21 cycles. Those 21 cycles took 3.42 seconds What is kHM Answer

Answers

The spring constant for a mass of 51.7 grams on a spring that undergoes 21 cycles with a small amplitude in 3.42 seconds is 76.8 N/m.

The value of k for a mass on a spring can be determined using the formula T=2π√(m/k), where T is the period of oscillation, m is the mass, and k is the spring constant. In this problem, we know that the mass is 51.7 grams and that 21 cycles took 3.42 seconds, which means that the period of oscillation is T=3.42/21=0.163 seconds. Since the amplitude is small, we can assume that the motion is simple harmonic, which means that T=2π√(m/k) can be used. Rearranging this formula gives k=m(2π/T)^2, which gives k=51.7(2π/0.163)^2=76.8 N/m.

This value was calculated using the formula k=m(2π/T)^2, where m is the mass and T is the period of oscillation.

To know more about spring constant, click here,

https://brainly.com/question/14159361

#SPJ11

The dc source supplying an inverter with a bipolar PWM output is 96 V. The load is an RL
series combination with R =32 ohms and L = 24 mH. The output has a fundamental frequency of 60 Hz.
a) Specify the amplitude modulation ratio to provide a 54-V rms fundamental frequency output.
b) If the frequency modulation ratio is 17, determine the total harmonic distortion of the load current.
c) What is the real power absorbed by the load?

Answers

a) The amplitude modulation ratio is 0.5625.

b) The total harmonic distortion of the load current is 40.53%.

c) The real power absorbed by the load is 405.36 W.

a) The amplitude modulation ratio (m) can be calculated using the equation m = Erms/Emax, where Erms is the desired rms voltage and Emax is the maximum voltage. Here, Erms is given as 54 V and Emax can be calculated as Emax = √(2) × 96 V = 135.76 V. Substituting these values, we get m = 0.5625.

b) The frequency modulation ratio (f) is given as 17. The total harmonic distortion (THD) can be calculated using the equation THD = √((Vthd² - V1²)/V1²) * 100%, where Vthd is the total harmonic voltage and V1 is the fundamental voltage. Here, V1 is given as 54 V. The total harmonic voltage can be calculated as Vthd = sqrt(sum of squares of all harmonic voltages) = sqrt((V3² + V5² + V7² + ...)/2), where V3, V5, V7, etc., are the harmonic voltages. Substituting the given values, we get Vthd = 43.72 V. Substituting these values, we get THD = 40.53%.

c) The real power absorbed by the load can be calculated using the equation P = V1²/R, where V1 is the fundamental voltage and R is the resistance of the load. Substituting the given values, we get P = 405.36 W.

To learn more about frequency modulation, here

https://brainly.com/question/15461413

#SPJ4

Other Questions
(7 points) assuming you have a valid max-heap with 7 elements such that a post-order traversaloutputs the sequence 1, 2, . . . , 6, 7. what is the sum of all nodes of height h = 1? For a normally consolidated clay specimen, the results of a drained triaxial test are as follows: Chamber-confining pressure=125kN/m2Deviator stress at failure=175kN/m2Determine the soil friction angle. calculate [ohoh] for a solution where [h3o ]=0.00667 m[h3o ]=0.00667 m.[OH-]= Calculate the Hrxn for the combustion of methane given the following information.2O2(g) + CH4(g) 2H2O(g) + CO2(g)Hf (CH4) = -1,348 kJ/molHf (H2O) = -388 kJ/molHf (CO2) = -690 kJ/mol Force F =13j^N is exerted on a particle at r =(3i^+5j^)m.What is the torque on the particle about the origin? The rotating magnetic field due to the rotor currents rotates relative to the stator core at a speed equal to Slip*rotor speed Rotor speed slip*synchronous speed O Synchronous speed Given a 5 stage pipeline with stages taking 1,2, 3, 1, 1 units of time, the clock period of the pipeline isa)8b)1/8c)1/3d)3 determine the standard matrix a for the linear tranformation which first roates points thorugh pi/4 clockwise and then reflects points through vertical x2 axis Use the Nernst equation to calculate the theoretical value of E of th copper-concentration cell and compare this value with th cell potential you measured.E = E* - 0.0592 / n * logQ**So I believe this is the equation that I would use. However, i'm don't know what E* is suppose to be...**The my electrochemistry experiment the cell potential that i measured were: 0.130V, 0.115V, and 0.110V (average cell potential = 0.118V)The concentration of the copper concentration cells used for this lab were: 0.05M CuSO4 and 1.0M CuSO4standard reduction potential (in text) = Cu2+ + 2e- --> Cu(s) E* = +0.34V **I believe I use the 2 here for n in the Nernst equation. **am i doing this right? ---> E= 0.118v - 0.0592V / 2e- * log (1.0M/0.05M) =0.0795V ??? Write a program that uses 5 threads. initialize a shared variable with a value of 100. If a store has annual demand (365 days per year) of 6,000 units and the lead time for it to receivean order from its supplier is 20 days, its EOQ reorder point is approximatelya. 300 unitsb. 329 unitsc. 428 unitsd. 600 units ralph and his wife are hoping to purchase their new home. their lender is running their credit scores. how are ralph and his wifes credit scores determined? T target practice, Scott holds his bow and pulls the arrow back a distance of :::. 0. 30 m by exerting an average force of 40. 0 N. What is the potential energy stored in the bow the moment before the arrow is released You purchase one MBI March 200 put contract for a put premium of $11. The maximum profit that you could gain from this strategy isMultiple Choice$200$1100$18.900$20,000 A stone is tossed into the air from ground level with an initial velocity of 39 m/s. Its height at time t is h(t) = 39t 4.9t^2 m/s. Compute the stone's average velocity over the time intervals [1, 1.01], [1, 1.001], [1, 1.0001], and [0.99, 1], [0.999, 1], [0.9999, 1].Estimate the instantaneous velocity v at t = 1. Compute the partial sums S2, S4 and S6 of the following sequence.1/64 + 1/256 + 1/576 + 1/1024 3)The domain of this relation does not include which value(s)?{x,y):y=x2-4}A)0B)C)2,0D)2,-2 Lag and straddle strategies for increasing capacity have what main advantage over a leading strategy?A.They are more accurate.B.They are cheaper.C.They delay capital expenditure.D.They increase demand.E.All of the above are advantages. prove or disprove: if the columns of a square (n n) matrix a are linearly independent, so are the rows of a3 = aaa. A continuous-time signal is sampled at 100kHz to get a discrete-time signal x[n]. The signal x[n] has to be processed with a digital lowpass filter with transfer function H(z) so that the analog frequency content of the original signal in the range 35kHz to 50 kHz is suppressed by at least 40 dB. The maximum allowable attenuation of the analog frequency content in the range 020kHz is 1 dB. (a) Determine the digital filter passband edge frequency p and the stopband edge frequency s. (b) Specify the inequality constraint on the filter magnitude response H(e j ) to be satisfied at the passband edge and the stoband edge. (c) Determine the minimum filter order required to meet the specifications.