The wavelength of visible light range of 400 to 750mm .what is the corresponding range of photon energies for visible light

Answers

Answer 1

Answer:

The range of the photon energies is between:

2.652 x 10⁻²⁵ J    to    4.973 x 10⁻²⁵ J

Explanation:

The energy of a photon is calculated using the following equation;

E = hf

where;

h is Planck's constant = 6.63 x 10⁻³⁴ Js

f is frequency of the photon

[tex]E = h \frac{c}{\lambda} \\\\where;\\\\\lambda \ is \ the \ wavelength\\\\c \ is \ the \ speed \ of \ light \ = 3\times 10^8 \ m/s\\\\When \ \lambda = 400 \ mm = 400 \ \times 10^{-3} \ m\\\\E = \frac{(6.63 \times 10^{-34})(3\times 10^8)}{400 \times 10^{-3}} \\\\E = 4.973 \times 10^{-25} \ J[/tex]

[tex]When \ \lambda = 750 \ mm = 750 \ \times 10^{-3} \ m\\\\E = \frac{(6.63 \times 10^{-34})(3\times 10^8)}{750 \times 10^{-3}} \\\\E = 2.652 \times 10^{-25} \ J[/tex]

The range of the photon energies is between:

2.652 x 10⁻²⁵ J    to    4.973 x 10⁻²⁵ J


Related Questions

When rebuilding her car's engine, a physics major must exert 405 N of force to insert a dry steel piston into a steel cylinder. What is the magnitude of the normal force in newtons between the piston and cylinder

Answers

Answer:

[tex]N=675N[/tex]

Explanation:

From the question we are told that:

Force [tex]F=405N[/tex]

Generally the equation for Normal force in this case is is mathematically given by

 [tex]F=\mu_s N[/tex]

Where

Static Friction=[tex]\mu_s[/tex]

 [tex]\mu_s=0.6[/tex]

Therefore

 [tex]N=\frac{F}{\mu_s}[/tex]

 [tex]N=\frac{405}{0.6}[/tex]

 [tex]N=675N[/tex]

A scooter is accelerated from rest at the rate of 8m/s

. How long will it take to cover

a distance of 32m?​

Answers

Explanation:

time=Distance/speed

t=32/8

t=4 seconds

Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks. Assume the dome has a diameter of 25.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 10^6 V/m.

Required:
a. What is the maximum potential of the dome?
b. What is the maximum charge on the dome?

Answers

Answer:

(a) V = 3.75 x 10^5 V

(b) q = 5.2 x 10^-6 C

Explanation:

Diameter, d = 25 cm

radius, r = 12.5 cm = 0.125 m

Electric field, E = 3 x 10^6 V/m

(a) The maximum potential is given by

[tex]V = E \times r \\\\V = 3\times 10^6\times 0.125\\\\V = 3.75\times10^5 V[/tex]

(b) The charge is given by

[tex]V = \frac{k q}{r}\\\\3.75\times10^5=\frac{9\times10^9\times q}{0.125}\\\\q = 5.2\times 10^{-6} C[/tex]

A bag contains lenses with focal lengths 10 cm, 20 cm and 25 cm which are not marked with their focal length. Describe a simple activity to identify the three types lenses
pls give the answer ASAP!!!!!​

Answers

Explanation:

ehb-pynw-ayo

joi n fast

The ejection seat has an acceleration of 8gees (8xgravity or ~80m/s/s). He has a mass of 70kg. The total force on him from the chair/rocket would be ?

(80m/s/s)(70kg)=5600N
(80m/s/s)(70kg)=5600N + Fg = 5600N+(70kg)(9.8N/kg)~5600N+700N=6300N
(80m/s/s)(70kg)=5600N - Fg = 5600N+(70kg)(9.8N/kg)~5600N-700N=4900N
I need the time

please explain need this ASAP

Answers

I assume you're talking about a pilot. If the ejection seat has an acceleration of 8g, then it would exert a normal force of 8g (70 kg) ≈ 5600 N.

(This is assuming the pilot is flying horizontally at a constant speed, and the seat is ejected vertically upward.)

To reiterate, this is *only* the force exerted by the seat on the pilot. Contrast this with the net force on the pilot, which would be the normal force minus the pilot's weight, 5600 N - (70 kg)g ≈ 4900 N.

If instead the seat ejects the pilot directly downward, the force exerted by the seat would have the same magnitude of 5600 N, but its direction would be reversed to point downward, making it negative. But the net force would change to -5600 N - (70 kg)g ≈ -6300 N

A 1200-kg car is being driven up a 5.0o hill. The frictional force is directed opposite to the motion of the car and has a magnitude of f = 524 N. A force F is applied to the car by the road and propels the car forward. In addition to these two forces, two other forces act on the car: its weight W and the normal force FN directed perpendicular to the road surface. The length of the road up the hill is 290 m. What should be the magnitude of F, so that the net work done by all the forces acting on the car is +150 kJ?

Answers

I suppose the hill makes an angle of 5.0° with the horizontal.

• F acts parallel to the road and in the direction of the car's motion, so it contributes a positive amount of work, F (290 m).

• Friction does negative work on the car since it opposes the car's motion. As the car moves up the slope, the work done by friction is (-524 N) (290 m) = -151,960 J.

• The car's weight has components that act parallel and perpendicular to the road. The parallel component has a magnitude of W sin(5.0°) and points down the slope, so it contributes negative work of -(1200 kg) g sin(5.0°) ≈ 1,024.95 J. The perpendicular component of W does not do any work.

• The normal force FN also doesn't do any work to move the car up the slope because it points perpendicular to the road, so we can ignore it, too.

The net work done on the car is then

F (290 m) + (-151,960 J) + 1,024.95 J = 150,000 J

==>   F (290 m) ≈ 300,935 J

==>   F ≈ (300,935 J) / (290 m) ≈ 1,037.71 N

1. An AAMU basketball player is 2.03 meters tall. What is his height given in US customary units of feet and
inches?

Answers

Answer:

His height is 6.66 feet or 79.92 inches.

Explanation:

Given that,

An AAMU basketball player is 2.03 meters tall.

Let h is the height.

We know that,

1 m = 3.28 feet

So,

2.03 m = 6.66 feet

Also,

1 m = 39.37 inches

2.03 m = 79.92 inches

Hence, this is the required solution.

please helpp!
convert 1N into dyne
In the given relation F=ma a stands for write there SI unit​

Answers

Answer:

a. 1 Newton = 100000 Dyne

b. a represents acceleration.

Explanation:

Newton is the standard unit (S.I) of measurement of force. Converting 1 Newton to dyne we have;

1 Newton = 10⁵ Dyne

1 Newton = 100000 Dyne

Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.

Mathematically, it is given by the formula;

Force = mass * acceleration

[tex] F = ma[/tex]

Hence, we can deduce that a represents the acceleration of an object and it's measured in meters per seconds square.

What must be true if energy is to be transferred as heat between two bodies in physical contact?

1-The two bodies must have different volumes.

2-The two bodies must be at different temperatures.

3-The two bodies must have different masses.

4-The two bodies must be in thermal equilibrium.

Answers

Answer:

answer is d

Explanation:

i hope this helps you

A power plant generates 150 MW of electrical power. It uses a supply of 1000 MW from a geothermal source and rejects energy to the atmosphere. Find the power to the air and how much air should be flowed to the cooling tower (kg/s) if its temperature cannot be increased more than 10oC.

Answers

Answer:

- the power to the air is 850 MW

- mass flow rate of the air is 84577.11 kg/s

Explanation:

Given the data in the question;

Net power generated; [tex]W_{net[/tex] = 150 MW

Heat input; [tex]Q_k[/tex] = 1000 MW

Power to air = ?

For closed cycles

Power to air Q₀ = Heat input; [tex]Q_k[/tex] - Net power generated; [tex]W_{net[/tex]

we substitute

Power to air Q₀  = 1000 - 150

Q₀ = 850 MW

Therefore,  the power to the air is 850 MW

given that ΔT = 10 °C

mass flow rate of air required will be;

⇒ Q₀ / CpΔT

we know that specific heat of air at p=c ; Cp = 1.005 kJ/kg.K

we substitute

⇒ ( 850 × 10³ ) / [ 1.005 × 10 ]

⇒ ( 850 × 10³ ) / 10.05

84577.11 kg/s

Therefore, mass flow rate of the air is 84577.11 kg/s

Which of the following phenomenon odd called photoelectric effect?

A. High energy electrons impinge on a metallic Annie which emits electrons

B. A high energy photon emits photons as it slows down

C. A metal absorbs a quanta of light and then emits electrons

D. Two electrons are created from a quanta of light.

Answers

two electrons are created from a quanta of kight

what affects our utility​

Answers

Answer:

Energy Bill fluctuations are inevitable and depend on a variety of different factors. Two of the most important are the current weather your home is experiencing and the current price per Kilowatt Hour (which fluctuates more than you might think).

Utility is a term in economics that refers to the total satisfaction received from consuming a good or service. Economic theories based on rational choice usually assume that consumers will strive to maximize their utility. ... In practice, a consumer's utility is impossible to measure and quantify.

A 50 g copper calorimeter contains 250 g of water at 20 C. How much steam be condensed into the water to make the final temperature of the system 50 C. ( specific heat water= 4200 J/Kg C , specific heat copper= 390 J/Kg C

Answers

Answer:

Approximately [tex]13\; \rm g[/tex] of steam at [tex]100\; \rm ^\circ C[/tex] (assuming that the boiling point of water in this experiment is [tex]100\; \rm ^\circ C\![/tex].)

Explanation:

Latent heat of condensation/evaporation of water: [tex]2260\; \rm J \cdot g^{-1}[/tex].

Both mass values in this question are given in grams. Hence, convert the specific heat values from this question to [tex]\rm J \cdot g^{-1}[/tex].

Specific heat of water: [tex]4.2\; \rm J \cdot g^{-1}\cdot \rm K^{-1}[/tex].

Specific heat of copper: [tex]0.39\; \rm J \cdot g^{-1}\cdot K^{-1}[/tex].

The temperature of this calorimeter and the [tex]250\; \rm g[/tex] of water that it initially contains increased from [tex]20\; \rm ^\circ C[/tex] to [tex]50\; \rm ^\circ C[/tex]. Calculate the amount of energy that would be absorbed:

[tex]\begin{aligned}& Q(\text{copper}) \\ =\;& c \cdot m \cdot \Delta t \\ =\;& 0.39\; \rm J \cdot g^{-1}\cdot K^{-1} \times 50\; \rm g \times (50\;{\rm ^\circ C} - 20\;{\rm ^\circ C}) \\ =\; & 585\; \rm J \end{aligned}[/tex].

[tex]\begin{aligned}& Q(\text{cool water}) \\ =\;& c \cdot m \cdot \Delta t \\ =\;& 4.2\; \rm J \cdot g^{-1}\cdot K^{-1} \times 250\; \rm g \times (50\;{\rm ^\circ C} - 20\;{\rm ^\circ C}) \\ =\; & 31500\; \rm J \end{aligned}[/tex].

Hence, it would take an extra [tex]585\; \rm J + 31500\; \rm J = 32085\; \rm J[/tex] of energy to increase the temperature of the calorimeter and the [tex]250\; \rm g[/tex] of water that it initially contains from [tex]20\; \rm ^\circ C[/tex] to [tex]50\; \rm ^\circ C[/tex].

Assume that it would take [tex]x[/tex] grams of steam at [tex]100\; \rm ^\circ C[/tex] ensure that the equilibrium temperature of the system is [tex]50\; \rm ^\circ C[/tex].

In other words, [tex]x\; \rm g[/tex] of steam at [tex]100\; \rm ^\circ C[/tex] would need to release [tex]32085\; \rm J[/tex] as it condenses (releases latent heat) and cools down to [tex]50\; \rm ^\circ C[/tex].

Latent heat of condensation from [tex]x\; \rm g[/tex] of steam: [tex]2260\; {\rm J \cdot g^{-1}} \times (x\; {\rm g}) = (2260\, x)\; \rm J[/tex].

Energy released when that [tex]x\; {\rm g}[/tex] of water from the steam cools down from [tex]100\; \rm ^\circ C[/tex] to [tex]50\; \rm ^\circ C[/tex]:

[tex]\begin{aligned}Q = \;& c \cdot m \cdot \Delta t \\ =\;& 4.2\; {\rm J \cdot g^{-1}\cdot K^{-1}} \times (x\; \rm g) \times (100\;{\rm ^\circ C} - 50\;{\rm ^\circ C}) \\ =\; & (210\, x)\; \rm J \end{aligned}[/tex].

These two parts of energy should add up to [tex]32085\; \rm J[/tex]. That would be exactly what it would take to raise the temperature of the calorimeter and the water that it initially contains from [tex]20\; \rm ^\circ C[/tex] to [tex]50\; \rm ^\circ C[/tex].

[tex](2260\, x)\; {\rm J} + (210\, x)\; {\rm J} = 32085\; \rm J[/tex].

Solve for [tex]x[/tex]:

[tex]x \approx 13[/tex].

Hence, it would take approximately [tex]13\; \rm g[/tex] of steam at [tex]100\; \rm ^\circ C[/tex] for the equilibrium temperature of the system to be [tex]50\; \rm ^\circ C[/tex].

3. What is electric current?
The flow of moving electrons

electrons that move one time

Answers

Answer:

An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. ... In electric circuits the charge carriers are often electrons moving through a wire.

Answer:

The flow of moving electrons

why acceleration independent variable​

Answers

Answer:

Explanation:Force and acceleration are directly proportional. ... Mass and acceleration are inversely proportional. In this situation, acceleration changes in response to a change of mass, so mass is the independent variable and acceleration is the dependent variable.

What is the torque in ( lbs-ft ) of a man pushing on a wrench with 65 lbs of force 8 unches from the nut / bolt he is trying to turn?

Answers

Explanation:

The torque [tex]\tau[/tex] is given by

[tex]\tau=Fd = (65\:\text{lbs})(\frac{8}{12}\:\text{ft}) = 43.3\:\text{lbs-ft}[/tex]

explanation on energy from air pressure light from water pressure​

Answers

I don’t know but I will figur it out

Question 2:
Inclined Plane
A block (M) weighs 25-N, rests on an inclined plane when it is joined by a sting to a support
(S) as shown in the figure' below. Use g=10 N/Kg.
(S)
B
M
List and classify the forces acting on (M).
Représent, without scaling, the forces acting on (M).
Find the mass of (M).
74. If the string were cut, (M) does not slide. Explain this phenomenon.
15. Determine the mass and weight of (M) on moon.
06​

Answers

Answer:

we need the block

Explanation:

1×2 =4 lest 74 =345

In which states of matter will a substance have a fixed volume?
O A. Liquid and solid
O B. Solid and gas
O C. Plasma and gas
O D. Liquid and gas

Answers

Answer:

A. liquid and solid

Explanation:

A train mass of 2000kg and speed 35 m/s collides and sticks to an identical train that is initially at rest .After the collision (a) what is the final speed of the entangled system?
(b) what is the kinetitic energy of the system? compare the final kinetic energy to initial kinetic energy?

Answers

Answer:

The system would be moving at [tex]17.5\; \rm m \cdot s^{-1}[/tex].

The kinetic energy of this system would be [tex]612500\; \rm J \![/tex] after the collision.

[tex]612500\; \rm J[/tex] (same amount) of kinetic energy would be lost.

Explanation:

The momentum of an object is the product of its mass [tex]m[/tex] and its velocity [tex]v[/tex]. That is: [tex]p = m \cdot v[/tex].

Assume that external forces (e.g., friction) have no effect on this system.  The total momentum of this system would stay the same before and after the collision.

Initial momentum of this system:

Moving train: [tex]\begin{aligned}p &= m \cdot v \\ &= 2000\; \rm kg \times 35\; \rm m \cdot s^{-1} \\ &= 70000\; \rm kg \cdot m \cdot s^{-1}\end{aligned}[/tex].Since the other train wasn't moving before the collision, its initial momentum would be [tex]0[/tex].

Hence, the momentum of this system would be [tex]70000\; \rm kg \cdot m \cdot s^{-1}[/tex] before the collision.

Under the assumptions, the collision would not change the momentum of this system. Hence, the momentum of this system would continue to be [tex]70000\; \rm kg \cdot m \cdot s^{-1}[/tex] after the collision.

However, with two identical trains stuck to each other, the mass of this system would be twice that of just one train: [tex]m = 2 \times 2000\; \rm kg[/tex].

Calculate the new velocity of this system:

[tex]\begin{aligned} v &= \frac{p}{m}\\ &= \frac{70000\; \rm kg \cdot m \cdot s^{-1}}{2 \times 2000\; \rm kg} = 17.5\; \rm m\cdot s^{-1}\end{aligned}[/tex].

Calculate the kinetic energy of this system before and after the collision.

Before the collision:

[tex]\begin{aligned}& \text{KE(before)} \\ =\; & \text{KE(moving train)} + \text{KE(stationary train)}\\ =\; & \frac{1}{2} \, m(\text{one train}) \cdot (v(\text{moving train}))^{2} + 0 \\ = \; &\frac{1}{2} \times 2000 \times (35\; \rm m\cdot s^{-1})^{2} \\ = \; & 1225000\; \rm J \end{aligned}[/tex].

After the collision:

[tex]\begin{aligned}& \text{KE(after)} \\ =\; & \frac{1}{2} \, m(\text{two trains}) \cdot v^{2} \\ = \; &\frac{1}{2} \times (2\times 2000\; \rm kg) \times (17.5\; \rm m\cdot s^{-1})^{2} \\ = \; & 612500\; \rm J \end{aligned}[/tex].

Change to the kinetic energy of this system:

[tex]1225000\; \rm J - 612500\; \rm J = 612500\; \rm J[/tex].

A 1500kg car is travelling at v=30m/s. The cars kinetic energy is? *

A) 45000J
B) 1350000J
C) 22500J
D)675000J

show your work please

Answers

Hi there!

[tex]\large\boxed{\text{D. 675000J}}[/tex]

Use the following formula to solve:

KE = 1/2mv², where:

KE = kinetic energy

m = mass (kg)

v = velocity (m/s)

Therefore:

KE = 1/2(1500)(30)²

KE = 1/2(1500)(900)

KE = 675000 J

Which hand position should be avoided in fitness walking?

flexing wrists

relaxing fingers

clenching fists

keeping hands loose

Answers

Answer:

The answer should be clenching fists

What is this sport ⚽⚾

Answers

Answer:

sports are all forms of physical activity that contribute to physical fitness, mental well-being and social interaction.

hope it is helpful to you

You are driving home from school steadily at 97 km/h for 190 km . It then begins to rain and you slow to 60 km/h instantly. You arrive home after driving 4.0 hours.

how far is your hometown from school?

Answers

Please delete my answer. I made a mistake

A car changes speed from 27m/s to 5m/s in 50m. The acceleration is: *
A) 7m/s2
B) 7.04m/s2
C) -7.04m/s2
D) 0.22m/s2
show your work please

Answers

by using v ^2 = u^2 + 2as we can find "a"

25 = 729 + 2 × a × 50

25 = 729 + 100a

a = - 7.04

so the answer is B



Question: A car of mass 500kg travelling at 12m/s enters a stretch of road where there's a constant resistive force of 8000N. The car comes to a stop due to this resistive force. Calculate the distance travelled by the car before stopping.​

Answers

Answer:

ans: 2.25 meter

explanation

use following equations

F = ma

V = U + aT

S = UT + 1/2 aT^2

A professional boxer hits his opponent with a 1035 N horizontal blow that lasts 0.175 s. The opponent's total body mass is 120 kg and the blow strikes him near his center of mass and while he is motionless in midair. Determine the following.(a) The opponent's final velocity after the blow(b) Calculate the recoil velocity of the opponent's 5.0-kg head if hit in this manner, assuming the head does not initially transfer significant momentum to the boxer's body.

Answers

Answer:

(a) vf = 1.51 m/s

(b) vf = 36.22 m/s

Explanation:

The rate of change of momentum is equal to the force:

[tex]F = \frac{mv_f-mv_i}{t}[/tex]

[tex]Ft = m(v_f-v_i)[/tex]

where,

F = Force = 1035 N

t = time = 0.175 s

vi = initial speed = 0 m /s

vf = final speed = ?

(a)

m = mass of body = 120 kg

Therefore,

[tex](1035\ N)(0.175\ s)=(120\ kg)(v_f - 0\ m/s)\\\\v_f = \frac{181.125\ Ns}{120\ kg} \\\\[/tex]

vf = 1.51 m/s

(b)

m = mass of head = 5 kg

Therefore,

[tex](1035\ N)(0.175\ s)=(5\ kg)(v_f - 0\ m/s)\\\\v_f = \frac{181.125\ Ns}{5\ kg} \\\\[/tex]

vf = 36.22 m/s

Show that the speed with which a projectile leaves the ground is equal to its speed just before it strikes the ground at the end of its journey, assumilng the firing level equals the landing level.

Answers

Answer:

Thus, the velocity at the time of strike is same as the velocity at the time of projection.

Explanation:

Let a projectile is projected vertically upwards with a speed of u and reaches to the maximum height H.

At maximum height , the speed is zero and then the projective comes back on the ground.

Use the third equation of motion

[tex]v^2 = u^2 + 2 g h \\\\0 = u^2 - 2 g H\\\\\u =\sqrt{2gH}[/tex]

Now let the velocity at the time of strike is v'.

Use third equation of motion, here initial velocity is zero.  

[tex]v'^2 = 0 + 2 g H \\\\v = \sqrt{2gH}[/tex]

Thus, the velocity at the time of strike is same as the velocity at the time of projection.

A total positive charge of 12.00 mC is evenly distributed on a straight thin rod of length 6.00 cm.
A positive point charge, Q = 4.00 nC, is located a distance of 5.00 cm above the midpoint of the
rod. What will be the electrical force on the point charge?

Answers

It’s not in English can you change it please


Write the prime factorization of 32. Use exponents when appropriate and order the factors
from least to greatest

Answers

The answer should be as follows: 1,2,4,8,16,32
1 2 4 8 16 32 -there we go :)
Other Questions
A student must use an object attached to a string to graphically determine the gravitational field strength near Earth's surface. The student attaches the free end of the string to the ceiling and pulls the object-string system so that the string makes an angle of 5 degrees from the object's vertical hanging position. The student then releases the object from rest and uses a stopwatch to measure the time it takes for the object to make one complete oscillation. Which of the following is the next step that will allow the student to determine the gravitational field strength? ) Repeat the experiment by adding additional mass to the object for multiple trials B) Repeat the experiment by changing the length of the string for multiple trials C) Repeat the experiment by changing the angle that the string makes with the object's vertical hanging position D) Repeat the experiment by measuring the time it takes to make two oscillations, three oscillations, and additional oscillations for multiple trials measurement plays an important role in our daily life. give two improvements the manufacturer would need to make to this investigation HELPPP ME PLEASEEEE asappp Help me with this question Ramesh went from place A to place B and then from place B to place CA is 10.8 km from B and place B is 15.5 km from place C, Rahul went from place A to place D and then place D to place C, distance between place A and D is 11.7 km and distance between place D and place C is 18.2 km, Who travelled more distance and by how much, also calculate the total distance between place A and place D and express the total distance in M,CM and KM. On August 1, a $43,200, 8%, 3-year installment note payable is issued by a company. The note requires equal payments of principal plus accrued interest of $16,763.05. The entry to record the first payment on July 31 would include:________A. Debit to Interest Expense of 3,192.00B. Credit to cash 14,183.96C. Credit to Notes payable of 17,375.96D. Debit to Cash of 17,375.96E. Debit to Notes payable of 17,375.96 Ammonium sulfate (NH4)2SO4 is made by reacting 25.0 L of 3.0 mol/L H2SO4 with 3.1 103 L of NH3 at a pressure of 0.68 atm and a temperature of 298 K according to the following reaction .NH3(g) + H2SO4(aq) (NH4)2SO4 (aq) How many grams of ammonium sulfate are produced? the reasons why socio economic issues pose a challenge to businesses What effect does Hughes achieve by repeating the phrase "does it" in "Harlem"?Short words and hard consonants create a sense of angry uncertainty.Short words and questions demonstrate Hughes's confidence.The repetition creates a sense of peace and serenity for the reader.The repetition highlights Hughess feelings of self-respect. how does emily dickinson use dashes in poem 26 Find the value of the variable(s). If your answer is not an integer, leave it in simplest radical form. Solve:n = 84O n = 20 n = 12 n = 240 n = 32 Larry is paid 8.5% of all sales plus 4.25% of sales over $6800. Find Larry's gross pay from total sales of $12,200. ...................... If a drug or medication is misused repeatedly, it is being____?abusedused The area of a circle is 42.29m2.Find the length of the diameter rounded to 1 DP. A cyclist travels 3 miles in 15 minutes and then a further 7 miles in 25 minutes without stopping.Calculate the cyclist's average speed in mph. Semi-fixed Cost will beA. zero if output were zero and would change erratically as output increasedB. more than zero if no products were made and would then increase in direct proportion to outputC. zero when output is zero and would increasein direct proportion to outputD. a fixed amount when output was zero and would not increase in direct proportion to output 9.Write the equation of a line through points (5, 5) and (1, 0) in point-slope form.