When[tex]P = 0, Q[/tex]must be in the range between [tex]4.3 kN and 12.9 kN[/tex] to prevent either cable from becoming slack.
We may examine the forces operating on the beam to find the range of values for Q. The sum of the vertical forces must be zero when [tex]P = 0,[/tex]which indicates that the beam is in equilibrium. Our result is the equation:
[tex]Q + 7.5 - 3 - 4 = 0[/tex]
When Q is solved for, we obtain [tex]Q = 0.5 kN to 12.9 kN.[/tex] To prevent either wire from going slack, we must also ensure that both cables are under positive stress. We can accomplish this by searching for the extreme values of Q in each cable's tensions.
[tex]Q = 0.5 kN[/tex]results in a positive 7.5 kN tension in cable AB. However, cable DE's tension is negative[tex](-2.5 kN)[/tex], indicating that cable DE is under tension. is loose.
[tex]Q = 12.9 kN[/tex] results in a positive [tex]3.4 kN[/tex] tension in cable DE. Cable AB, however, has negative tension [tex](-5.4 kN),[/tex] indicating that it is slack.
The range of Q values that satisfy the requirement that neither cable sags when [tex]P = 0 is 4.3 kN to 12.9 kN.[/tex]
learn more about cables here:
https://brainly.com/question/14300574
#SPJ4
Please do help me. Nonsense answers will be reported.
An object is thrown horizontally with a speed of 30 m/s from the top of a building. Complete the table below for the indicated time interval. Use g≈ 10 m/s²)
The time that was taken for the movement of the item is observed as 3 seconds.
How do you use the equations of motion?The equations of motion describe the motion of objects in terms of their position, velocity, acceleration, and time.
For the equation;
v = u + at
This equation relates the final velocity (v) of an object to its initial velocity (u), acceleration (a), and time (t). If three of these variables are known, the equation can be rearranged to solve for the unknown variable.
We know that;
v = u - gt
We know that the object would come to rest after being thrown.
0 = 30 - 10t
-30 = - 10t
t = 3 seconds
Learn more about equations of motion:https://brainly.com/question/29278163
#SPJ1
P1. A -15 nC point charge is placed on the x- y plane at the point (8, 16) m and receives a force of
(21 +4j) N.
Calculate the electric field vector at the point (8,16) m.
b. Determine the magnitude and the sign of the point charge that is placed at the origin and
that produces the electric field that you calculated in a.
a) We can use Coulomb's law to calculate the electric field vector at the point (8,16) m due to the point charge placed on the x-y plane.
The electric field vector is given by E = F/q, where F is the force exerted on the point charge and q is the magnitude of the charge. The force exerted on the charge is (21 + 4j) N. The magnitude of the charge is given by q = F/E, where E is the electric field at the point (8,16) m. Therefore, we have:
E = F/q = (21 + 4j) N / (-15 nC) = (-1.4 - 0.267j) x 10⁶ N/C
So, the electric field vector at the point (8,16) m is (-1.4 - 0.267j) x 10⁶N/C.
b) To determine the magnitude and sign of the point charge that produces the electric field calculated in part (a), we can use the formula for the electric field of a point charge. The electric field at a point P due to a point charge q located at the origin is given by:
E = kq/r²
where k is the Coulomb constantq is the charge of the point charge, and r is the distance between the point charge and point P. We can rearrange this equation to solve for q:
q = Er²/k
Substituting the valuesfor E and r (r = sqrt(8² + 16²) = 17.89 m) we get:
q = (-1.4 - 0.267j) x 10^6 N/C x (17.89 m)² / (8.99 x 10⁹ N m²/C²) = -5.37 nC
So, the magnitude of the point charge is 5.37 nC and its sign is negative, indicating that it is an additional negative charge placed at the origin that produces the electric field calculated in part (a).
To know more about magnitude , visit :
https://brainly.com/question/14452091
#SPJ1
The electric field vector at the point (8, 16) m is (-5.53i - 11.07j) N/C. and
the magnitude of the point charge is 2.11 nC and the sign is negative, indicating that it is the same as the original point charge placed on the x-y plane.
The steps are as following to calculate the given question :-
a. To calculate the electric field vector at the point (8, 16) m due to the -15 nC point charge, we can use Coulomb's law:
The distance between the two points is given by:
r = sqrt[(8-0)^2 + (16-0)^2] = 17.8885 m
The electric field vector is given by:
E = k*q/r^2 * r_hat
where k is the Coulomb constant (k = 9x10^9 N*m^2/C^2), q is the charge of the point charge, r_hat is the unit vector pointing from the point charge to the point of interest.
Since the point charge is negative, the electric field vector points towards the point charge. Therefore, r_hat = -icosθ - jsinθ, where θ is the angle between the vector pointing from the point charge to the point of interest and the x-axis.
θ = atan2(16, 8) = 63.43 degrees
So, r_hat = -0.4472i - 0.8944j
Plugging in the values, we get:
E = (9x10^9 Nm^2/C^2)(-15x10^-9 C)/(17.8885m)^2 * (-0.4472i - 0.8944j)
E = -5.53i - 11.07j N/C
Therefore, the electric field vector at the point (8, 16) m is (-5.53i - 11.07j) N/C.
b. To find the magnitude and sign of the point charge that produces this electric field, we can use the formula:
E = k*q/r^2
where E is the magnitude of the electric field, k is the Coulomb constant, q is the charge of the point charge, and r is the distance between the point charge and the point of interest.
Plugging in the values, we get:
E = (9x10^9 N*m^2/C^2)*q/(17.8885m)^2
-11.07 N/C = (9x10^9 N*m^2/C^2)*q/(17.8885m)^2
Solving for q, we get:
q = -2.11x10^-9 C
Therefore, the magnitude of the point charge is 2.11 nC and the sign is negative, indicating that it is the same as the original point charge placed on the x-y plane.
To know more about charge visit :-
https://brainly.com/question/18102056
#SPJ1
Constants I Periodic Table Suppose two parallel-plate capacitors have the same charge Q, but the area of capacitor 1 is A and the area of capacitor 2 is 2A
Two parallel-plate capacitors with the same charge Q but different areas (A and 2A) can be compared by looking at the capacitance. The capacitance of the second capacitor is double that of the first due to the increase in area.
Two parallel-plate capacitors with the same charge Q but different areas (A and 2A) can be compared by looking at the capacitance, which is defined as the ratio of the charge stored on the capacitor to the voltage applied across the plates. The capacitance C of a capacitor is given by the equation C=Q/V. Therefore, the capacitance of the first capacitor, C1, is C1=Q/V, and the capacitance of the second capacitor, C2, is C2=(2Q)/V. It is seen that the capacitance of the second capacitor is double that of the first. This is because the area of the second capacitor is double that of the first. Therefore, the same charge Q stored on the first capacitor is distributed over twice the area in the second capacitor, resulting in the capacitance being double. This can be mathematically expressed as C2 = 2C1. Thus, two parallel-plate capacitors with the same charge Q but different areas (A and 2A) can be compared by looking at the capacitance. The capacitance of the second capacitor is double that of the first due to the increase in area.
To learn more about Capacitors :
https://brainly.com/question/27753307
#SPJ11
moving water can be used as an energy source. select all the characteristics of this energy source that apply.
The above-listed characteristics apply to moving water as an energy source. Thus, moving water can be used as an energy source.
The following are the characteristics of moving water as an energy source:
It is a renewable energy source. It is a clean energy source. It is available in many different forms. It is the least expensive energy source to generate.Water is an excellent resource for producing electricity since it is clean, renewable, and is available in many different forms. When water moves, it has the potential to generate energy, which can be harnessed in several ways to produce electricity. As a result, moving water is an excellent source of renewable energy, as it is available in many different forms and can be used in a variety of ways.The above-listed characteristics apply to moving water as an energy source. Thus, moving water can be used as an energy source.
for such more question on energy source
https://brainly.com/question/19887979
#SPJ11
A compact car can climb a hill in 10 s. The top of the hill is 30 m higher than the bottom, and the car’s mass is 1,000 kg What is the power output of the car?
Answer:
the power output of the car is 29.43 kW (rounded to two decimal places).
Explanation:
To find the power output of the car, we need to use the formula:
power = work / time
where work is the change in potential energy of the car as it climbs the hill, which can be calculated using the formula:
work = force x distance
where force is the force required to lift the car against gravity, which is given by:
force = mass x gravity
where mass is the mass of the car, and gravity is the acceleration due to gravity (9.81 m/s^2).
So, the force required to lift the car against gravity is:
force = 1000 kg x 9.81 m/s^2 = 9810 N
The distance the car travels up the hill is 30 m.
Therefore, the work done by the car is:
work = force x distance = 9810 N x 30 m = 294300 J
The time taken by the car to climb the hill is 10 s.
Therefore, the power output of the car is:
power = work / time = 294300 J / 10 s = 29430 W
find the acceleration find the acceleration a of the sled. express your answer in terms of some or all of the variables s , v1 , and v2 .
General, acceleration (a) can be calculated using the following formula:
a = (v2 - v1) / t
where v1 is the initial velocity, v2 is the final velocity, and t is the time interval over which the change in velocity occurs.
If you know the values of s, v1, and v2, you may be able to solve for t using the following kinematic equation:
s = v1*t + (1/2)at^2
Once you have determined the time interval (t), you can plug the values of v1, v2, and t into the first formula to calculate the acceleration (a).
What is an acceleration ?Acceleration is the rate of change of velocity with respect to time. In other words, it is the measure of how quickly an object's velocity is changing. Acceleration can be in the direction of motion or opposite to it, depending on whether the object is speeding up or slowing down.
The standard unit of acceleration is meters per second squared (m/s^2). If an object's velocity changes by 1 meter per second (m/s) every second, its acceleration is said to be 1 m/s^2.
Accelerations can be either positive or negative. Positive acceleration occurs when an object's speed is increasing, while negative acceleration (also known as deceleration) occurs when an object's speed is decreasing.
To know more about Accelerations visit :
https://brainly.com/question/30660316
#SPJ1
TRUE/FALSE.The mass of the Sun compared to the mass of all the planets combined is like the mass of an elephant compared to the mass of a cat.
imagine that the blue light and orange light from the source were blocked. what color would how be present in the spectrum of light observed
Everything but blue & orange would now be present in the spectrum of light observed.
Spectrum refers to a range of different wavelengths of electromagnetic radiation. Electromagnetic radiation is a form of energy that travels through space and includes different types such as radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays. Each type of electromagnetic radiation has a different wavelength and frequency, and together they make up the electromagnetic spectrum.
The concept of spectrum is used in a variety of fields, including physics, astronomy, and telecommunications. The spectrum of electromagnetic radiation is essential for many technologies, such as radios and televisions, cell phones, and medical imaging devices, as they all rely on the transmission and reception of specific wavelengths of electromagnetic radiation.
To learn more about Spectrum visit here:
brainly.com/question/11837978
#SPJ4
Complete Question: -
Imagine that the blue light and orange light from the source were blocked. What color(s) would now be present in the spectrum of light observed?
determine a formula for velocity, period, and total energy of a hydrogen-like atom of atomic number z
The velocity, period, and total energy of a hydrogen-like atom with atomic number z can be calculated with the following formulas.
Velocity = 2*z²/(z²+1)
Period = 4π²/(z²*(z²+1))
Total Energy = -z²/2
The formula for velocity, period, and total energy of a hydrogen-like atom of atomic number z is given as follows: Velocity: v = Zc/n ... (1)Period: T = 2πa/v ... (2)
Total energy: E = -me^4z^2/8εo^2h^2n^2 ... (3)Where ,v is the velocity of the atom is the principal quantum number T is the period of the atom a is the radius of the orbit E is the total energy of the atom me is the mass of the electronεo is the permittivity of free space h is Planck's constant c is the speed of light.
For more such questions on velocity
https://brainly.com/question/26589212
#SPJ11
I’m so stuck I’ve attempted these questions so many times I really don’t know
Answer:
1st one 3N to the left to achieve equilibrium
2nd one 5N to the left to achieve equilibrium
3rd one 2N to the top to achieve equilibrium
4th one 8N to the right to achieve equilibrium
Explanation:
can you please help me ASAP
Answers :-
Atoms contain equal number of protons and electrons so they are neutral.An atoms loses or gains electron to form a species called ions .Cations have positive charge ions , which are formed by loss of electrons . For example Na loses one electron to become Na+ . On the anions are negatively charged species formed by gain of electrons . For example, Cl gains one electron to become Cl- .Ions are formed by loss or gain of electrons. Loss of electrons leads to the formation of cation, whereas gain of electrons leads to the formation of anion .Ions are charged species. They form ionic compounds which have high melting point , also they are insulators .A) Lithium has 1 electron in outer shell so it is relatively easier for lithium to lose one electron rather than gaining 7 electron to complete octet so Lithium forms a cation by losing one electron from its valence shell . B) The charge on its ion will be plus one .C) The ion will be named lithium ion .D) It is represented by symbol [tex]Li^+[/tex]The blanks for question 7 is as follows:-
1st row : Charge of the ion = +3
2nd row : Chemical symbol = I-
3rd row : Name of ion = Magnesium ion and type of ion = cation .
4th row : Chemical symbol = K+ , charge of the ion = +1 and type of ion = cation .
5th row : Name of ion = Nitride ion , charge of the ion = -3 , type of ion = anion .
and we are done!
Use the work energy theorem to rank the final kinetic energy of a ball based on the initial kinetic energy Ki, the magnitude of a constant force F on the ball, the displacement of the ball, d and the angle, theta between the displacement of the ball and the net force on the ball. Rank from greatest kinetic energy (1) to least kinetic energy (4).
a) Ki=150J F=10N d=15m theta=90 degrees
b) Ki=300J F=200N d=1.5m theta=180 degrees
c) Ki=200J F=25N d=4m theta= 0 degrees
d) Ki=450J F=15N d=30m theta=150 degrees
Explanation:
hope its help thank you
follow nyo po me
a. what are the physical processes by which atoms rearrange during phase transformations in the solid state (how do atoms rearrange in the solid state)?
The physical processes by which atoms rearrange during phase transformations in the solid state involve changes in the arrangement of the atoms in the lattice, which can be caused by changes in temperature, pressure, or both.
The physical processes by which atoms rearrange during phase transformations in the solid state involve changes in the arrangement of the atoms in the lattice.
This is typically done by changing the number of nearest neighbours of each atom or by introducing new lattice points in the solid structure. In some cases, atoms may even have to move from one position to another.
Common examples of phase transformations in the solid state include melting, recrystallization, and solidification.
Melting occurs when the thermal energy of the solid is increased and the atoms become mobile enough to break the bonds between them. This causes the solid to transition into a liquid phase.
Recrystallization occurs when the thermal energy of the solid is decreased, causing the atoms to return to their original positions and form a new, more ordered lattice.
Lastly, solidification is the reverse process of melting, where thermal energy is removed and the atoms return to their original positions in the lattice.
For similar question on physical processes
https://brainly.com/question/3140029
#SPJ11
you have a cubical box (sides all of length a) made of six metal plates which are insulated from each other. the left wall is located at x
The potential V(x, y, z) everywhere inside the box. Formulas give V=0 at the center of this cube. Is E=0 there[tex](A_{n,m}e^{a/2\sqrt{(n^{2}+m^{2})\pi^{2}/a^{2}}}+B_{n,m}e^{-a/2\sqrt{(n^{2}+m^{2})\pi^{2}/a^{2}}})=\frac{16V_{0}}{nm\pi^{2}}\: \: \: n,m =odd[/tex]
Laplace equation in cartesian co-ordinates is
[tex]\frac{\partial^2 V}{\partial x^2}+\frac{\partial^2 V}{\partial y^2}+\frac{\partial^2 V}{\partial z^2}=0[/tex]
Multiply both side by [tex]sin\left ( \frac{n'\pi x}{a} \right )sin\left ( \frac{m'\pi z}{a} \right )[/tex] and integrate over x and z from 0 to a
[tex]\int_{0}^{a}\int_{0}^{a}V_{0}sin\left ( \frac{n\pi x}{a} \right )sin\left ( \frac{m\pi z}{a} \right )dxdz=\frac{a^{2}}{4}(A_{n,m}e^{-a/2\sqrt{(n^{2}+m^{2})\pi^{2}/a^{2}}}+B_{n,m}e^{a/2\sqrt{(n^{2}+m^{2})\pi^{2}/a^{2}}})[/tex]
[tex](A_{n,m}e^{-a/2\sqrt{(n^{2}+m^{2})\pi^{2}/a^{2}}}+B_{n,m}e^{a/2\sqrt{(n^{2}+m^{2})\pi^{2}/a^{2}}})=\frac{4V_{0}}{a^{2}}\int_{0}^{a}sin\left ( \frac{n\pi x}{a} \right )dx \int_{0}^{a}sin\left ( \frac{m\pi z}{a} \right )dz[/tex]
[tex](A_{n,m}e^{-a/2\sqrt{(n^{2}+m^{2})\pi^{2}/a^{2}}}+B_{n,m}e^{a/2\sqrt{(n^{2}+m^{2})\pi^{2}/a^{2}}})=\frac{16V_{0}}{nm\pi^{2}}\: \: \: n,m =odd[/tex]
Now apply the final boundary condition V(x, y=a/2, z) = V0
Solving we get
[tex](A_{n,m}e^{a/2\sqrt{(n^{2}+m^{2})\pi^{2}/a^{2}}}+B_{n,m}e^{-a/2\sqrt{(n^{2}+m^{2})\pi^{2}/a^{2}}})=\frac{16V_{0}}{nm\pi^{2}}\: \: \: n,m =odd[/tex]
The Laplace equation is a partial differential equation that describes the behavior of a scalar field in space. In its simplest form, it states that the sum of the second partial derivatives of the scalar field with respect to each of the spatial dimensions is equal to zero. This means that the scalar field has no sources or sinks, and its value is determined only by the boundary conditions.
The Laplace equation has many applications in physics, engineering, and mathematics. For example, it can be used to model the behavior of electric and gravitational fields, fluid flow, and heat transfer. It is also used in solving problems involving potential functions, which arise in many areas of physics and engineering.
To learn more about Laplace equation visit here:
brainly.com/question/12978375
#SPJ4
Complete Question: -
You have a cubical box (sides all of length a) made of 6 metal plates which are insulated from each other. The left wall is located at y=-a/2, the right wall is at y=+a/2. Both left and right walls are held at constant potential V=V0. All four other walls are grounded. Find the potential V(x, y, z) everywhere inside the box. Do your formulas give V=0 at the center of this cube? Is E=0 there? (Should they be??)
Pete needs to be at work for 9.00am. He leaves his house at 7.30am and drives to the gym which is 12.5 miles away. Pete spends 45 minutes in the gym then drives the reaming 9 miles to work.
To determine the time Pete arrives at work, we can start by calculating the total time he spends on his commute and gym routine:
What time will Pete get to work?Time spent driving to the gym = 12.5 miles ÷ average speed
We don't know Pete's average speed, so we cannot calculate this.
Time spent in the gym = 45 minutes
Time spent driving from the gym to work = 9 miles ÷ average speed
Again, we don't know Pete's average speed, so we cannot calculate this.
Total time spent on commute and gym routine = time spent driving to gym + time spent in gym + time spent driving from gym to work
= Unknown + 45 minutes + Unknown
Next, we can convert the total time to hours and minutes:
Total time = (Unknown + 45 minutes + Unknown) ÷ 60
= (Unknown + Unknown) ÷ 60 + 45/60
= (2Unknown) ÷ 60 + 0.75
= (Unknown) ÷ 30 + 0.75
We know that Pete needs to arrive at work by 9.00am, so we can set up an equation:
Arrival time = 7.30am + Total time
9.00am = 7.30am + (Unknown/30) + 0.75
Solving for Unknown:
1.5 hours = Unknown/30
Unknown = 45 minutes
Therefore, Pete will arrive at work at 8.15am.
Learn more about time from
https://brainly.com/question/18252403
#SPJ1
The energy of a photon is inversely proportional to its wavelength. True or Flase
False. E=hf, where h is Planck's constant, c is the speed of light, f is the frequency, and is the wavelength; and E=hc/, where E is directly proportional to frequency and inversely proportional to wavelength.
The inverse relationship between a photon's energy and what?With respect to the wavelength of the radiation, photon energy is inversely proportional.
What is a photon's wavelength-related energy?Two formulas can be used to determine a photon's energy: E = h f is a formula that can be used if the photon's frequency is known. This equation, sometimes known as Planck's equation, was created by Max Planck.
To know more about wavelength visit:-
https://brainly.com/question/11625774
#SPJ1
what is the distance between two vehicles of mass 5 metric tons if the gravitational force between this 1.6*10^-5N? (G=6.7*10^-11N m^2kg^-2)
Answer:
10m
Explanation:
r=√Gm1m2Fg
r=√[(6.7×10−11 N m2 kg−2)(5000 kg)(5000 kg) / 1.6×10−5 N}
what determines the size of a launch window? answer specifically and detail.
Explanation:
The size of a launch window is determined by a variety of factors, including the position of the launch site, the desired orbit, the position of the destination, and the characteristics of the spacecraft being launched.
One of the most important factors is the position of the launch site relative to the desired orbit. The launch site must be positioned in such a way that the rocket can achieve the required velocity and trajectory to reach the desired orbit. The angle and speed at which the rocket is launched are also crucial, as they affect the amount of fuel required and the trajectory of the rocket.
The position of the destination is another factor that affects the size of the launch window. For example, if the spacecraft is bound for a planet that is moving in its orbit, the launch window must be adjusted to account for the changing position of the planet.
In addition, the characteristics of the spacecraft being launched, such as its size, weight, and propulsion system, can also affect the size of the launch window. A larger spacecraft may require more fuel and a longer burn time, which may limit the available launch window.
Overall, the size of a launch window is determined by a complex set of factors, including the position of the launch site, the desired orbit, the position of the destination, and the characteristics of the spacecraft being launched. Launch planners use sophisticated computer models and simulations to calculate the optimal launch window based on these factors.
Two blocks of unequal mass are tied together with a massless string that does not stretch and connected via a frictionless and massless pulley. Mass one, M1, rests on a frictionless table top. Mass two, M2, is released and both blocks begin to move....
The blocks accelerate at the same rate since they are connected. What is the acceleration?
The blocks accelerate at the same charge for the reason that they're linked. The acceleration is a value between zero and g.
Acceleration is a physical concept that refers to the rate of change of an object's velocity with respect to time. When an object's velocity changes, either by speeding up or slowing down, it is said to be accelerating.
Acceleration plays an important role in many aspects of physics, from the motion of celestial bodies to the behavior of particles in a particle accelerator. The magnitude of acceleration is the rate at which an object's velocity changes, and it is measured in units of meters per second squared (m/s^2) in the International System of Units (SI). There are several factors that can cause an object to accelerate, such as a force acting on it, a change in its direction of motion, or a combination of both.
To learn more about Acceleration visit here:
brainly.com/question/30660316
#SPJ4
Problem 1: In Fig. 1, find an expression for the acceleration of
m 1
. The pulleys are massless and frictionless. a) Write down the relation between the magnitudes of the accelerations of the two blocks,
a 1
and
a 2
(it is not
a 1
=a 2
, and the vectors in Fig. 1 are not drawn to scale). An argument that could help is that the total length of the rope stays constant during the motion. b) Write down Newton's second law for each block. Do not miss FIG. 1: The scheme for Problem 1 the fact that block
m 2
experiences tension forces from both ends of the rope passing through its pulley. Using the acceleration constraint from part a), work out the formula for the acceleration
a 1
in terms of
m 1
,m 2
, and
g
. c) What is the value of
a 1
, if
m 1
=3 kg
, and
m 2
=1 kg
? (Answer:
a 1
=1.5 m/s 2
.)
a) The relation between the magnitudes of the accelerations of the two blocks is a1=2a2, since the total length of the rope stays constant during the motion.
b) For block m1, Newton's second law states that Fnet = m1a1, where Fnet is the net force on m1. Since the pulleys are massless and frictionless, the net force is the tension force T1 in the rope. Therefore, T1 = m1a1.
For block m2, Newton's second law states that Fnet = m2a2, where Fnet is the net force on m2. In this case, Fnet is equal to the sum of the tension forces in both ropes, T1 and T2. Therefore, T1 + T2 = m2a2.
Using the acceleration constraint from part a), the formula for the acceleration a1 in terms of m1, m2, and g can be expressed as follows:
T1 = m1a1 = 2a2T2 = 2m2a22 = 2m2g = m1a12
Therefore, a12 = 2m2g/m1
c) If m1=3 kg and m2=1 kg, then the value of a1 is a1 = √(2m2g/m1) = √(2(1 kg)(9.8 m/s2)/(3 kg)) = 1.5 m/s2.
For more such questions on accelerations
https://brainly.com/question/31168671
#SPJ11
What type of electromagnetic wave is sent as a signal by a cell phone to the
nearest cell tower?
A. Gamma rays
B. Microwaves
C. X-rays
D Ultraviolet
Answer:B. Microwaves
Explanation:
Hope this helped you. Pls brainliest! :D
For small bodies with high thermal conductivity, the features surrounding the medium that favor lumped system analysis
The medium should be a poor conductor of heat
The medium should be motionless
Small bodies with high thermal conductivity, the medium should be a poor conductor of heat and should be motionless in order to favour lumped system analysis.
For small bodies with high thermal conductivity, the features surrounding the medium that favor lumped system analysis are that the medium should be a poor conductor of heat and the medium should be motionless.
In other words, for small bodies with high thermal conductivity, the thermal energy will stay confined within the boundaries of the medium if it is a poor conductor of heat and the medium is not moving. This allows the energy to be spread evenly throughout the system, which is why lumped system analysis can be used.
Lumped system analysis is a method used to analyse heat transfer and energy flow within a system. It assumes that thermal energy is transferred across a body of homogeneous material and can be used to calculate the temperature of an object at different points in the body.
The effectiveness of this method relies on the heat capacity of the medium and its thermal conductivity, which is why it is most suitable for small bodies with high thermal conductivity.
For large bodies, or bodies with low thermal conductivity, distributed system analysis is typically used instead of lumped system analysis. This method assumes that the body has different thermal properties at different points, and calculates the temperature at those points based on their respective thermal properties.
For similar questions on thermal conductivity
https://brainly.com/question/29419715
#SPJ11
A 68 kg
man's arm, including the hand, can be modeled as a 79-cm
-long uniform cylinder with a mass of 3.3 kg. In raising both his arms, from hanging down to straight up, by how much does he raise his center of gravity?
Answer:
Explanation:
We can calculate the change in the man's center of gravity by considering the initial and final positions of the center of gravity of his arms.
Assuming the man's arms are initially hanging down by his sides, the center of gravity of his arms is located at the midpoint of the cylinder, which is at a distance of L/2 = 79/2 = 39.5 cm from the shoulder joint.
When the man raises his arms straight up, the center of gravity of his arms is located at the top of the cylinder, which is at a distance of L = 79 cm from the shoulder joint.
The change in the man's center of gravity is therefore:
Δh = h_final - h_initial
= L - L/2
= 79 cm - 39.5 cm
= 39.5 cm
Therefore, the man raises his center of gravity by 39.5 cm when he raises both his arms from hanging down to straight up.
A length of clear plastic tubing is bent into a vertical U, as shown in the figure, and two liquids that do not mix are poured into it. Liquid A,
0.96 x 10³ Kg/m³ is the density of liquid B in kilograms per cubic meter. if liquid A has a density of ρA = 1.8 x 10³ Kg/m³.
As the system is under equilibrium, then pressure due to liquid columns on both hans must be equal.
Therefore, d₁C = d₂ρAg + d₃ρBg
or, ρB = d₁-d₂/d₃ ρA
density ρB = 10.6-7.3/6.2 x 1.8 x 10³ Kg/m³
= 0.96 x 10³ Kg/m³
In an equilibrium system, conflicting forces or processes are in a stable state because they have balanced each other out. An equilibrium system in chemistry develops when the rates of a chemical reaction's forward and reverse reactions are equal, resulting in a constant concentration of products and reactants. A mechanical, thermal, or dynamic equilibrium is one in which the forces, temperatures, or velocities are constant.
Learn more about Density here:
https://brainly.com/question/29775886
#SPJ1
Review Constants Spheres A (mass 0.020 kg), B (mass 0.030 kg), and C (mass 0.050 kg), are each approaching the origin as they slide on a frictionless air table. The initial velocities of A and B are given in (Figure 1). All three spheres arrive at the origin at the same time and stick together. Part A What must the x-component of the initial velocity of C be if all three objects are to end up moving at 0.50 m/s in the +x-direction after the collision? Express your answer with the appropriate units. IT μΑ ? m VCE = 0.26 Figure 1 of 1 S y B Submit Previous Answers Request Answer UB = 0.50 m/s X Incorrect; Try Again; 4 attempts remaining Part B 60° VA = 1.50 m/s 0 X UC A What must the y-component of the initial velocity of C be if all three objects are to end up moving at 0.50 m/s in the to-direction after the collision? Express your answer with the appropriate units.
The y-component of the initial velocity of C be if all three objects are to end up moving at 0.50 m/s in the y-direction after the collision with the velocity -0.44 m/s.
Part A,
the x-component of the initial velocity of C must be 0.26 m/s. To answer Part B, the y-component of the initial velocity of C must be -0.44 m/s.
To solve this problem, we can use the law of conservation of momentum. This states that the total momentum before the collision is equal to the total momentum after the collision.
We can use this to calculate the velocity of C in each direction.
We know that A and B have an initial velocity in the x-direction of 0.50 m/s and 1.50 m/s respectively, and the velocity in the y-direction is 0 m/s for both. We also know that the total mass is 0.100 kg. So the total initial momentum in the x-direction is:
[tex]Momentum_x = (mass_A x velocity_A_x) + (mass_B x velocity_B_x)[/tex]
= (0.020 kg x 0.50 m/s) + (0.030 kg x 1.50 m/s) = 0.080 kg m/s
We also know that the final velocity of the three objects is 0.50 m/s in the x-direction and the total mass is 0.100 kg. So the total final momentum in the x-direction is:
[tex]Momentum_x = (mass_total x velocity_final_x)[/tex] = (0.100 kg x 0.50 m/s) = 0.050 kg m/s
Using the law of conservation of momentum, we can solve for the velocity of C in the x-direction:
0.080 kg m/s = [tex](mass_C x velocity_C_x) + 0.050 kg m/s velocity_C_x[/tex] = (0.080 kg m/s - 0.050 kg m/s) / 0.050 kg = 0.26 m/s
Part B,
we can do the same process in the y-direction. We know that the initial velocities of A and B are 0 m/s in the y-direction, and the total mass is 0.100 kg.
So the total initial momentum in the y-direction is:
[tex]Momentum_y = (mass_A x velocity_A_y) + (mass_B x velocity_B_y)[/tex]
= (0.020 kg x 0 m/s) + (0.030 kg x 0 m/s) = 0 kg m/s
We also know that the final velocity of the three objects is 0.50 m/s in the y-direction and the total mass is 0.100 kg.
So the total final momentum in the y-direction is:
[tex]Momentum_y = (mass_total x velocity_final_y)[/tex] = (0.100 kg x 0.50 m/s) = -0.050 kg m/s
Using the law of conservation of momentum, we can solve for the velocity of C in the y-direction:
0 kg m/s =[tex](mass_C x velocity_C_y)[/tex] + (-0.050 kg m/s)
[tex]velocity_C_y[/tex] = (-0.050 kg m/s) / 0.050 kg = -0.44 m/s
For more such questions on collision , Visit:
https://brainly.com/question/7221794
#SPJ11
For which of the following types of electromagnetic radiation will diffraction most likely occur as the wave passes through a classroom doorway? A) X-rays, because of their high energy. B) Visible light, because that type of electromagnetic radiation is most abundant. C) Radio waves, because of their wavelength. D) Diffraction will occur equally for all electromagnetic waves.
Option C, Because of the wavelength of radio waves and other forms of electromagnetic radiation, diffraction is most likely to occur as the wave travels through a classroom doorway.
Diffraction is the bending of waves around barriers or through apertures that are equivalent to or smaller than the wavelength of the wave.
Because radio waves have longer wavelengths than visible light and X-rays, they are more likely to diffract while passing through a similar-sized aperture, such as a classroom doorway.
Because X-rays have considerably shorter wavelengths and visible light has wavelengths in between, diffraction is less likely to occur in this scenario for these forms of electromagnetic energy. As a result, option C is the right answer.
To learn more about Radio waves at
https://brainly.com/question/13989450
#SPJ4
calculate the power rating of an immersion heater used for 10 minutes to increase the temperature of 10kg of water by 15k (specific heat capacity of water equal4200j/kg/k)
Answer: 1,050W is the power rating of immersion heater
calculate the bearing stress in a screw with mean diameter 6 mm and pitch 1 mm that is carrying a load of 275 n. the number of engaged threads is 3
The bearing stress in the given screw is 3.32 N/mm².
The bearing stress for a screw with a mean diameter of 6 mm, a pitch of 1 mm, and 3 engaged threads carrying a load of 275 n is calculated using the formula:
Bearing Stress (σ) = (Load / (π * Mean Diameter * No. of Engaged Threads))
σ = (275 N / (π * 6 mm * 3))
σ = 23.31 MPa (megapascals)
The bearing stress in a screw with mean diameter 6 mm and pitch 1 mm that is carrying a load of 275 N can be calculated as follows:Given,Mean diameter, d = 6 mmPitch, p = 1 mmLoad, W = 275 NNumber of engaged threads, n = 3The formula to calculate the bearing stress is given by;`Bearing stress = W/(A * n)`Where A is the area of the threaded section of the screw. It is given by;`A = (π/4) * (d - 0.9382p)²
`Now, substitute the given values in the formula for A.`A = (π/4) * (6 - 0.9382 × 1)²`Solving the above equation, we get`A = 26.22 mm²`Now, substitute the values of A, W, and n in the formula for bearing stress.`Bearing stress = W/(A * n)``= 275/(26.22 × 3)``= 3.32 N/mm²`
For more such questions on stress
https://brainly.com/question/24063626
#SPJ11
Can someone check my answers? If they’re incorrect can you correct me? Image below. Thank you.
Kinetic energy is the energy that an entity has as a result of its movement. If we want to accelerate an object, we must impart power to it. Using power needs us to put in effort.
What is kinetic energy called?In physics, an object's kinetic energy is the type of energy it has as a result of its velocity. It is described as the amount of effort required to propel an entity of a given mass from rest to a given velocity. The body retains its kinetic energy after gaining it during acceleration unless its pace alters. The body does the same amount of effort when slowing down from its present speed to rest.
A kinetic energy is any term in a system's Lagrangian that contains a time component, as well as the second term in a Taylor expansion of a particle's relativistic energy.
Learn more about kinetic energy
https://brainly.com/question/26472013
#SPJ1
a. The energy diagrams when the ball is just thrown into the air and when it reaches maximum height is attached below.
b. The initial kinetic energy of the ball is 19.96 J.
c. The total energy of the ball at any time during its flight is the sum of its kinetic and potential energy.
d. The potential energy of the ball at the maximum height is 23.67 J.
e. The acceleration due to gravity on this planet is approximately 6.49 m/s²
Give a brief account on law of conservation of energy.Law of conservation of energy is the physical principle that the energy of interacting bodies or particles in a closed system remains constant. The kinetic energy that an object loses as it moves upward against gravity is converted into potential or stored energy, which is converted into kinetic energy as the object accelerates as it returns to Earth.
a. Here are two energy diagrams:
Initial state: The ball is thrown with a speed of 23 m/s from ground level. At this point, it has only kinetic energy.
Maximum height: The ball reaches a maximum height of 32 m, where it has zero kinetic energy and maximum potential energy.
b. The initial kinetic energy of the ball can be calculated using the formula:
KE = 0.5 × m × v²
Where m is the mass of the ball (0.0755 kg) and v is initial velocity (23 m/s). Plugging in the values, we get:
KE = 0.5 × 0.0755 kg × (23 m/s)²
KE = 19.96 J
c. The total energy of the ball at any time during its flight is the sum of its kinetic and potential energy.
Total Energy = Kinetic Energy + Potential Energy
d. At the maximum height, the ball has zero kinetic energy and maximum potential energy. The potential energy of the ball can be calculated using the formula:
PE = m × g × h
where m is the mass of the ball, g is the acceleration due to gravity on the planet, and h is the height of the ball. We are given that the ball reaches a maximum height of 32 m, so we can plug in the values to get:
PE = 0.0755 kg × 9.8 m/s² × 32 m
PE = 23.67 J
e. To determine how strong gravity is on this planet, we can use the formula for the maximum height of a projectile:
h = (v² × sin²θ) / (2 × g)
where v is the initial velocity, theta is the angle of projection (which we don't know), h is the maximum height, and g is the acceleration due to gravity on the planet (which we want to find).
Since we don't know the angle of projection, we can assume that the ball was thrown at a 45-degree angle, which will give us the maximum height for a given initial velocity. Plugging in the values, we get:
32 m = (23 m/s)² × sin²(45) / (2 × g)
Simplifying, we get:
g = (23 m/s)² × sin²(45) / (2 × 32 m)
g = 6.49 m/s²
So the acceleration due to gravity on this planet is approximately 6.49 m/s²
To know more about conservation of energy, visit:
https://brainly.com/question/29775341
#SPJ1
Constants Find the equivalent resistance RA of the resistor network. Consider the network of four resistors shown in the diagram, where R1 = 2.00 2, R2 = 5.00 I2, R3 = 1.00 12, and R4 = 7.00 22. The resistors are connected to a constant voltage of magnitude V. (Figure 1) ► View Available Hint(s) R4 = 9.43 2 Submit Previous Answers Figure (< 1 of 2 Correct Part B Two resistors of resistance R5 = 3.00 $2 and R6 = 3.00 22 are added to the network, and an additional resistor of resistance R7 = 3.00 S2 is connected by a switch, as shown in the diagram..(Figure 2) Find the equivalent resistance Rp of the new resistor network when the switch is open. R R2 ► View Available Hint(s) IVO AO O 2 ? Part Find the equivalent resistance Rc of the resistor network described in Part B when the switch is closed. View Available Hint(s) V AC O ? RC =
The resistors are connected to a constant voltage of magnitude V the RA is 2.409Ω. The equivalent resistance RB of the new resistor network when the switch is open RB is 13.5 Ω. The equivalent resistance Rc of the resistor network described in Part B when the switch is closed RC is 8.6 Ω.
A)
The entire resistance of two resistors in parallel is given by means of:
1/RA = 1/(R1+R2) + 1/(R3+R4)
Substituting the expressions we derived above, we get:
1/RA = 1/[2.00Ω + (5.00Ω/12)V] + 1/[1.00Ω + (7.00Ω /22)V]
Solving for RA, we get:
RA = 2.409Ω
B)
Equivalent resistance, RB = (R1 + R6) R2/(R1 + R6 + R2) + R3 + R4 + R5
RB = (2 + 3) x 5/(2 + 3 + 5) + 1 + 7 + 3
RB = 13.5 Ω
C)
Equivalent resistance, RC = (R1 + R6) R2/(R1 + R6 + R2) + R3 + R7 x R4/(R7 + R4) + R5
RC = (2 + 3) x 5/(2 + 3 + 5) + 1 + (3 x 7/(3+7)) + 3
RC = 8.6 Ω
A resistor is an electrical component that restricts the flow of electrical current in a circuit. It is typically made of a material that has a high resistance to the flow of electricity, such as carbon, metal, or ceramics. They can be used to control the amount of current flowing through a circuit, to limit voltage, to adjust the gain of an amplifier, or to provide a load in a circuit. They are also used in electronic filters, timing circuits, and signal processing applications.
Resistors come in a variety of shapes and sizes, including through-hole, surface mount, and wirewound resistors. They are often color-coded to indicate their resistance value and tolerance, and their wattage rating determines the amount of power they can safely handle without overheating.
To learn more about Resistor visit here:
brainly.com/question/14883432
#SPJ4