transverse waves travel at 32.6 m/s in a string that is subjected to a tension of 75.2 n. if the string is 12.3 m long, what is its mass?

Answers

Answer 1

If the string is 12.3 m long, the mass of the string is 0.873 kg.

The speed of a transverse wave on a string is given by the equation:

v = √(T/μ)

where v is the wave speed, T is the tension in the string, and μ is the linear mass density of the string (mass per unit length).

Rearranging the equation to solve for μ, we get:

μ = T / v²

Substituting the given values, we get:

μ = (75.2 N) / (32.6 m/s)² = 0.0711 kg/m

The linear mass density of the string is 0.0711 kg/m.

To find the mass of the string, we can multiply its length by its linear mass density:

mass = length x linear mass density

mass = 12.3 m x 0.0711 kg/m = 0.873 kg

Therefore, the mass of the string is 0.873 kg.

To know more about string, refer to the link below:

https://brainly.com/question/31168720#

#SPJ11


Related Questions

) Water flowing at a speed of 2. 8m/s flows for a 9cm diameter pipe to a 4. 5cm diameter pipe. What is the speed of the water in the 4. 5cm diameter pipe?​

Answers

The speed of water in the 4.5cm diameter pipe is approximately 15.56 m/s. When water flows through a pipe, the principle of conservation of mass states that the mass flow rate remains constant at any point along the pipe.

In this case, the diameter of the pipe changes from 9cm to 4.5cm, resulting in a decrease in the cross-sectional area. To find the speed of the water in the 4.5cm diameter pipe, we can use the equation of continuity, which states that the product of the cross-sectional area and the velocity of the fluid remains constant. The equation is given as:

[tex]\[A_1 \cdot v_1 = A_2 \cdot v_2\][/tex]

where [tex](A_1\) and \(A_2\)[/tex] are the cross-sectional areas of the 9cm and 4.5cm diameter pipes, respectively, and [tex]\(v_1\) and \(v_2\)[/tex] are the velocities of the water in the 9cm and 4.5cm diameter pipes, respectively.

Using the given values, we can substitute [tex]\(A_1 = \pi (0.09/2)^2\)[/tex] and [tex]\(A_2 = \pi (0.045/2)^2\)[/tex] into the equation and solve for [tex]\(v_2\)[/tex].

By rearranging the equation, we find:

[tex]\[v_2 = \frac{A_1 \cdot v_1}{A_2} = \frac{(\pi (0.09/2)^2) \cdot 2.8}{(\pi (0.045/2)^2)}\][/tex]

Evaluating this expression, we find that the speed of the water in the 4.5cm diameter pipe is approximately 15.56 m/s.

To learn more about speed refer:

https://brainly.com/question/4931057

#SPJ11

Which physical process explains how electromagnetic waves propagate without a medium? resonance O radiation O oscillation dispersion O induction

Answers

The physical process that explains how electromagnetic waves propagate without a medium is radiation.

Radiation occurs when charged particles are accelerated, causing them to emit electromagnetic waves. These waves can travel through a vacuum, such as in space, because they do not require a physical medium to travel through. Electromagnetic waves are a combination of electric and magnetic fields that oscillate perpendicular to each other and propagate in a transverse direction. This unique property allows them to travel through space and other media without the need for a physical medium. In summary, electromagnetic waves propagate through the process of radiation, which involves the acceleration of charged particles, and they do not require a physical medium to travel through.

To know more about electromagnetic waves visit:

https://brainly.com/question/3101711

#SPJ11

A record is dropped onto a turntable rotating without friction about its central axis. The record slips until frictional torques bring both objects to a common final angular speed. Calculate the percentage of the initial rotational kinetic energy that is lost if the record's moment of inertia is 43.2% of the turntable's moment of inertia. (Hint: The expression below shows how to calculate the percentage lost. Don't forget to convert your answer to percent. (Your final answer should be larger than 1.)]
1-Ki/Ki=_____

Answers

To calculate the percentage of the initial rotational kinetic energy that is lost in this scenario, we can use the expression:  Ki/Kf where Ki is the initial rotational kinetic energy and Kf is the final rotational kinetic energy after the two objects reach a common angular speed.

Since the turntable is rotating without friction, it will have an initial angular velocity of zero and an initial rotational kinetic energy of zero. The record, however, has an initial rotational kinetic energy given by: Ki = (1/2) Irecord ω^2
where Irecord is the moment of inertia of the record and ω is its initial angular velocity.
The record will slip until frictional torques bring both objects to a common final angular speed. At this point, the final rotational kinetic energy of the record and turntable combined can be expressed as: Kf = (1/2) (Irecord + Itable) ω^2
where Itable is the moment of inertia of the turntable.

Since the record's moment of inertia is 43.2% of the turntable's moment of inertia, we can express Itable as 1.432 Irecord. Substituting this into the equation for Kf and simplifying, we get: Kf = (1/2) (2.432 Irecord) ω^2
Kf = 1.216 Ki
Substituting Ki and Kf into the expression for percentage lost, we get:
Ki/Kf = 1 - 1/1.216
Ki/Kf = 0.177
Therefore, the percentage of initial rotational kinetic energy that is lost is approximately 17.7%.

To know more about kinetic energy visit:-

https://brainly.com/question/26472013

#SPJ11

a positive reinforcer a. increases the frequency of responding. b. is always pleasant. c. is determined by biology. d. is learned, rather than innate.

Answers

A positive reinforcer increases the frequency of responding. A positive reinforcer is a stimulus that, when presented after a behavior, increases the likelihood that the behavior will occur again in the future.

Positive reinforcers can be anything that is perceived as rewarding, such as food, attention, praise, or money. They are not necessarily always pleasant, but rather they increase the frequency of responding. The effectiveness of a positive reinforcer is not determined by biology, but rather by its ability to increase the frequency of a behavior.

Positive reinforcement is learned, rather than innate, as it is a behavior modification technique that is taught through operant conditioning. In summary, a positive reinforcer is a learned stimulus that increases the frequency of a behavior and is not necessarily always pleasant or determined by biology.

Learn more about operant conditioning here:

https://brainly.com/question/13044823

#SPJ11

the first bright fringe of an interference pattern occurs at an angle of 14.0° from the central fringe when a double slit is illuminated by a 416-nm blue laser. what is the spacing of the slits?

Answers

When a double slit is illuminated by a 416-nm blue laser, the spacing of the slits in the double-slit experiment is approximately 1703.3 nm.

To calculate the spacing of the slits in a double-slit interference pattern, we can use the formula:

sin(θ) = (mλ) / d

where θ is the angle of the bright fringe, m is the order of the fringe (m=1 for the first bright fringe), λ is the wavelength of the light, and d is the spacing between the slits. We are given the angle (14.0°) and the wavelength (416 nm), so we can solve for d:

sin(14.0°) = (1 * 416 nm) / d

To isolate d, we can rearrange the formula:

d = (1 * 416 nm) / sin(14.0°)

Now we can plug in the values and calculate the spacing of the slits:

d ≈ (416 nm) / sin(14.0°) ≈ 1703.3 nm

Therefore, the spacing of the slits in the double-slit experiment is approximately 1703.3 nm.

More on double-slit experiment: https://brainly.com/question/17167949

#SPJ11

The spacing of the slits if the first bright fringe of an interference pattern occurs at an angle of 14.0° from the central fringe when a double slit is illuminated by a 416-nm blue laser is approximately 1.7 × 10⁻⁶ meters.

To find the spacing of the slits when the first bright fringe of an interference pattern occurs at an angle of 14.0° from the central fringe and is illuminated by a 416-nm blue laser, follow these steps:

1. Use the double-slit interference formula: sin(θ) = (mλ) / d, where θ is the angle of the fringe, m is the order of the fringe (m = 1 for the first bright fringe), λ is the wavelength of the laser, and d is the spacing between the slits.

2. Plug in the known values: sin(14.0°) = (1 × 416 × 10⁻⁹ m) / d.

3. Solve for d: d = (1 × 416 × 10⁻⁹  m) / sin(14.0°).

4. Calculate the result: d ≈ 1.7 × 10⁻⁶ m.

Thus, the spacing of the slits is approximately 1.7 × 10⁻⁶ meters.

Learn more about slits: https://brainly.com/question/30890401

#SPJ11

Violet light (410 nm) and red light (685 nm) pass through a diffraction grating with d=3. 33x10^-6. What is the angular separation between them for m=2

Answers

Violet light (410 nm) and red light (685 nm) pass through a diffraction grating with d=3. 33x10^-6.  the angular separation between the violet light and red light for m = 2 is approximately 0.276 radians.

The angular separation between two wavelengths passing through a diffraction grating can be determined using the formula:

Sin(θ) = mλ / d

Where θ is the angle of diffraction, m is the order of the diffraction pattern, λ is the wavelength of light, and d is the spacing between the lines on the grating.

In this case, we have two wavelengths, violet light with a wavelength of 410 nm (4.1x10^-7 m) and red light with a wavelength of 685 nm (6.85x10^-7 m). We are interested in the angular separation for m = 2.

For violet light:

Sin(θ_violet) = (2 * 4.1x10^-7 m) / (3.33x10^-6 m)

Sin(θ_violet) ≈ 0.245

For red light:

Sin(θ_red) = (2 * 6.85x10^-7 m) / (3.33x10^-6 m)

Sin(θ_red) ≈ 0.411

The angular separation between the two wavelengths can be calculated as the difference between their respective angles of diffraction:

Θ_separation = sin^(-1)(sin(θ_red) – sin(θ_violet))

Θ_separation ≈ sin^(-1)(0.411 – 0.245)

Θ_separation ≈ 0.276 radians

Therefore, the angular separation between the violet light and red light for m = 2 is approximately 0.276 radians.

Learn more about diffraction grating here:

https://brainly.com/question/30409878

#SPJ11

to operate from a 160- vv line, what must be the ratio of secondary to primary turns of the transformer? assume 100fficiency.

Answers

To operate from a 160-volt line with 100% efficiency, the ratio of secondary to primary turns of the transformer must be 1:1. If the input voltage is 160 volts, the output voltage will also be 160 volts.

This means that the number of turns in the secondary winding should be the same as the number of turns in the primary winding. This is because the voltage in the secondary winding will be equal to the voltage in the primary winding, assuming no losses in the transformer.

We can use the transformer equation to calculate the ratio of secondary to primary turns of the transformer:

[tex]V_p / V_s = N_p / N_s[/tex]

where Vp is the primary voltage, Vs is the secondary voltage, Np is the number of primary turns, and Ns is the number of secondary turns.

We are given that the primary voltage is 160 V and that the transformer is 100% efficient, which means that the power output equals the power input.

Therefore, if the input voltage is 160 volts, the output voltage will also be 160 volts.

To know more about output voltage refer here :

https://brainly.com/question/31557911

#SPJ11

The threshold that tells us the minimum we can hear is the threshold of ___

The threshold that tells us the maximum we can hear is the threshold of ___

Answers

The threshold that tells us the minimum we can hear is the threshold of audibility. The threshold that tells us the maximum we can hear is the threshold of pain or discomfort.

The threshold of audibility refers to the lowest sound intensity that can be detected by the human ear. It represents the minimum level of sound required for a person with normal hearing to perceive a sound stimulus. This threshold varies depending on the frequency of the sound.

On the other hand, the threshold of pain or discomfort is the highest sound intensity that the human ear can tolerate before experiencing pain or discomfort. It signifies the upper limit of sound levels that can be safely endured by the auditory system without causing damage. Beyond this threshold, exposure to excessively loud sounds can lead to hearing loss, ear damage, and other auditory problems.

learn more about audibility here:

https://brainly.com/question/28149486

#SPJ11

determine the reaction at the beam supports for the given loading when ωo = 155 lb/ft.

Answers

To determine the reaction at the beam supports for the given loading when ωo = 155 lb/ft, we have to follow some steps.

The steps are as follow:
Step 1: Identify the type of beam and support conditions. (e.g., simply supported, cantilever, overhanging, etc.)
Step 2: Determine the total length (L) of the beam.
Step 3: Calculate the total load (W) on the beam by multiplying the distributed load ωo by the length L: W = ωo * L.
Step 4: Identify the location and magnitude of any additional point loads, if applicable.
Step 5: Use equilibrium equations to find the reactions at the supports:
a) Sum of vertical forces = 0: R1 + R2 = W (total load)
b) Sum of moments about one of the supports = 0: M1 = R1 * L1 - W * L2
Step 6: Solve the equilibrium equations for the unknown reactions R1 and R2.
Once you have completed these steps, you will have determined the reaction at the beam supports for the given loading when ωo = 155 lb/ft.

Learn more about reaction at

brainly.com/question/28984750

#SPJ11

a three-dimensional harmonic oscillator is in thermal equilibrium with a temperature reservoir at temperature t. the average total energy of the oscillator is

Answers

The oscillator's average total energy equals the temperature T. The statement accurately sums up a three-dimensional harmonic oscillator's average total energy when it is in thermal equilibrium with a reservoir at temperature T. Here option D is the correct answer.

In thermal equilibrium, the three-dimensional harmonic oscillator exchanges energy with its surroundings, which in this case is a temperature reservoir at temperature T. The average total energy of the oscillator refers to the average value of its energy over time.

According to the equipartition theorem, for each quadratic degree of freedom, such as those in a harmonic oscillator, the average energy is (1/2)kT, where k is the Boltzmann constant and T is the temperature. Since the three-dimensional harmonic oscillator has three quadratic degrees of freedom (one for each spatial dimension), the average total energy of the oscillator is (3/2)kT.

Therefore, the average total energy of the three-dimensional harmonic oscillator in thermal equilibrium with a temperature reservoir at temperature T is directly proportional to the temperature T and is positive.

To learn more about thermal equilibrium

https://brainly.com/question/14968488

#SPJ4

Complete question:

Which of the following statements accurately describes the average total energy of a three-dimensional harmonic oscillator in thermal equilibrium with a temperature reservoir at temperature T?

A) The average total energy of the oscillator is zero.

B) The average total energy of the oscillator is positive.

C) The average total energy of the oscillator is negative.

D) The average total energy of the oscillator is equal to the temperature T.

A structure consists of four masses, three with mass 2m and one with mass m, held together by very light (massless) rods, and arranged in a square of edge length L, as shown. The axis of rotation is perpendicular to the plane of the square and through one of the masses of size 2m, as shown. Assume that the masses are small enough to be considered point masses. What is the moment of inertia of this structure about the axis of rotation? a. 7 m2 b. 6 m2 c. (4/3) mL2 d. (3/4) m2 e. 5 m2 f. 4 mL

Answers

The moment of inertia of the structure about the axis of rotation is (4/3) [tex]mL^2[/tex]. The answer is option c.

Moment of inertia of 4 masses in square, L edge, 2m axis?

The moment of inertia of the structure about the given axis of rotation can be found by using the parallel axis theorem, which states that the moment of inertia of a system of particles about any axis is equal to the moment of inertia about a parallel axis through the center of mass plus the product of the total mass and the square of the distance between the two axes.

First, we need to find the center of mass of the system. Since the masses are arranged symmetrically, the center of mass is located at the center of the square. The distance from the center of the square to any of the masses is L/2.

Using the parallel axis theorem, we can write:

I = Icm + [tex]Md^2[/tex]

where I is the moment of inertia about the given axis, Icm is the moment of inertia about the center of mass (which is a diagonal axis of the square), M is the total mass of the system, and d is the distance between the two axes.

The moment of inertia of a point mass m located at a distance r from an axis of rotation is given by:

Icm = [tex]mr^2[/tex]

For the masses with mass 2m, the distance from their center to the center of mass is sqrt(2)(L/2) = L/(2[tex]^(3/2)[/tex]). Therefore, the moment of inertia of the three masses with mass 2m about the center of mass is:

Icm(2m) = [tex]3(2m)(L/(2^(3/2)))^2 = 3/2 mL^2[/tex]

For the mass with mass m, the distance from its center to the center of mass is L/2. Therefore, the moment of inertia of the mass with mass m about the center of mass is:

Icm(m) = [tex]m(L/2)^2 = 1/4 mL^2[/tex]

The total mass of the system is 2m + 2m + 2m + m = 7m.

The distance between the center of mass and the given axis of rotation is [tex]L/(2^(3/2)).[/tex]

Using the parallel axis theorem, we can now write:

I = Icm +[tex]Md^2[/tex]

= [tex](3/2) mL^2 + (7m)(L/(2^(3/2)))^2[/tex]

= [tex](4/3) mL^2[/tex]

Learn more about  inertia

brainly.com/question/3268780

#SPJ11

Suppose a tank contains 653 m3 of neon (ne) at an absolute pressure of 1.01×10^5 pa. the temperature is changed from 293.2 to 295.1 k. what is the increase in the internal energy of the neon?

Answers

The increase in the internal energy of neon can be calculated using the equation: ΔU = (3/2)nRΔT, where ΔU is the change in internal energy, n is the number of moles of neon, R is the gas constant, and ΔT is the change in temperature. The increase in the internal energy of neon is 1,586,394 J (or 1.59 MJ).

To use this equation, we first need to determine the number of moles of neon in the tank. This can be calculated using the ideal gas law:
PV = nRT
where P is the absolute pressure, V is the volume, and T is the temperature. Rearranging this equation, we get:
n = PV/RT
Substituting the given values, we get:
n = (1.01×10^5 Pa)(653 m^3)/(8.31 J/mol·K)(293.2 K) = 2,017.6 moles
Now we can calculate the increase in internal energy:
ΔU = (3/2)(2,017.6 moles)(8.31 J/mol·K)(295.1 K - 293.2 K) = 1,586,394 J

Therefore, the increase in the internal energy of neon is 1,586,394 J (or 1.59 MJ).

Learn more about ideal gas here:

https://brainly.com/question/31463642

#SPJ11

A nearsighted woman can see clearly only objects within a 1.4 m of her eye. To see distant objects, she should wear eyeglasses of what power?

Answers

The nearsighted woman should wear eyeglasses with a power of about -0.714 diopters

A nearsighted woman who can only see objects clearly within 1.4 meters of her eye requires corrective lenses to improve her distance vision. To determine the power of the eyeglasses she needs, we can use the formula:

Power (P) = 1 / Focal length (f)

In this case, the focal length (f) is the distance at which she can see clearly, which is 1.4 meters. To convert this to meters, we have:

f = 1.4 m

Now, we can calculate the power of the eyeglasses:

P = 1 / 1.4 m = 0.714 diopters

The nearsighted woman should wear eyeglasses with a power of approximately -0.714 diopters to see distant objects clearly.

The negative sign indicates that the lenses should be concave, which is typical for correcting nearsightedness.

To learn more about lenses, refer below:

https://brainly.com/question/28025799

#SPJ11

A 7-turn coil has square loops measuring 0.200 m along a side and a resistance of 3.00. It is placed in a magnetic field that makes an angle of 40.0.

Answers

Based on the information provided, it is not clear what the question is asking for. Please provide more context or a specific question so that I can assist you better.


A 7-turn coil with square loops measuring 0.200 m along a side and a resistance of 3.00 Ω is placed in a magnetic field at an angle of 40.0°. When analyzing this situation, you might be interested in determining the magnetic flux, the induced electromotive force (EMF), or the induced current, depending on the context or problem you are working on. Keep in mind the angle and coil's properties when making calculations.

To know more about magnetic field visit:-

https://brainly.com/question/24397546

#SPJ11

If two coils placed next to one another have a mutual inductance of 2.00 mH, what voltage is induced in one when the 1.50 A current in the other is switched off in 40.0 ms?
V=????

Answers

The voltage induced in one coil when the 1.50 A current in the other coil is switched off in 40.0 ms is -75.0 V.

How much voltage is generated in one coil when the current in the other coil is turned off?

When the 1.50 A current in the neighboring coil is switched off in 40.0 ms, an induced voltage of -75.0 V is generated in one of the coils. This phenomenon is governed by Faraday's law of electromagnetic induction, which states that a changing magnetic field through a coil induces an electromotive force (EMF) in the coil. The induced voltage is directly proportional to the rate of change of current and the mutual inductance between the coils.

In this case, the mutual inductance between the two coils is 2.00 mH. By using the formula V = -M * (ΔI/Δt), where M represents the mutual inductance and (ΔI/Δt) represents the rate of change of current, we can calculate the induced voltage. Plugging in the given values, we find that the induced voltage is -75.0 V.

Learn more about Faraday's law

brainly.com/question/30888829

#SPJ11

an inductor used in a dc power supply has an inductance of 13.0 hh and a resistance of 160.0 ωω. it carries a current of 0.350 aa.Part A
What is the energy stored in the magneticfield?
Part B
At what rate is thermal energy developed inthe inductor?
Part C
Does your answer to part (b) mean that themagnetic-field energy is decreasing with time? Yes or No.Explain.

Answers

Part A: The energy stored in the magnetic field of the inductor can be calculated using the formula:

[tex]Energy = (1/2) * L * I^2[/tex]

Substituting the given values, the energy stored in the magnetic field is:

[tex]Energy = (1/2) * 13.0 H * (0.350 A)^2 = 0.80375 Joules[/tex]

Part B: The rate at which thermal energy is developed in the inductor can be calculated using the formula:

[tex]Power = I^2 * R[/tex]

Substituting the given values, the rate of thermal energy developed in the inductor is:

[tex]Power = (0.350 A)^2 * 160.0 Ω = 19.6 Watts[/tex]

Part C: Yes, the answer to part (b) indicates that the magnetic-field energy is decreasing with time. The thermal energy developed in the inductor represents energy loss due to the resistance of the inductor. This energy is dissipated as heat, indicating a conversion from magnetic-field energy to thermal energy. The rate of thermal energy developed represents the rate at which the magnetic-field energy is being lost.

Learn more about magnetic field here:

https://brainly.com/question/23096032

#SPJ11

the first 10–43 second of the age of the universe, during which all the fundamental forces were united, is called

Answers

The first 10^(-43) second of the age of the universe, during which all the fundamental forces were united, is called the Planck epoch.

At this incredibly early stage, the four fundamental forces—gravity, electromagnetism, and the strong and weak nuclear forces—were unified into a single force. The Planck epoch represents the earliest known moment in the history of the universe, occurring before the inflationary epoch, during which the universe rapidly expanded. Understanding this epoch is crucial for theories of quantum gravity and the fundamental nature of spacetime. It is a fascinating area of research that aims to unveil the origins of our universe and its fundamental properties.

learn more about fundamental here:

https://brainly.com/question/31314205

#SPJ11

If you traveled 20 meters in 4 seconds, what was your average velocity?

Answers

Answer:

Explanation:

the average speed of the object is 6.67 m/s

Calculate the time it takes for the Terminator pieces to reach their melting point. Hint: the general solution of the differential equation [+ y is 7(t) = cze-t/t + yt, where cz is a constant of integration.

Answers

The time it takes for Terminator pieces to melt can be calculated using the differential equation [+y=7(t)=cze-t/t+yt.

To calculate the time it takes for the Terminator pieces to reach their melting point, we can use the differential equation [+y=7(t)=cze-t/t+yt.

Here, cz represents a constant of integration.

By solving the equation, we can determine the time it takes for the pieces to melt.

However, we would need to know specific values for the constants c and z in order to obtain an accurate calculation.

Additionally, we would need to know the melting point of the material used to construct the Terminator pieces.

Overall, solving the differential equation provided can give us a theoretical understanding of the melting process, but practical application would require additional information.

For more such questions on Terminator, click on:

https://brainly.com/question/30490473

#SPJ11

The time it takes for Terminator pieces to melt can be calculated using the differential equation [+y=7(t)=cze-t/t+yt.

To calculate the time it takes for the Terminator pieces to reach their melting point, we can use the differential equation [+y=7(t)=cze-t/t+yt.

Here, cz represents a constant of integration.

By solving the equation, we can determine the time it takes for the pieces to melt.

However, we would need to know specific values for the constants c and z in order to obtain an accurate calculation.

Additionally, we would need to know the melting point of the material used to construct the Terminator pieces.

Overall, solving the differential equation provided can give us a theoretical understanding of the melting process, but practical application would require additional information.

Visit to know more about Terminator:-

brainly.com/question/30490473

#SPJ11

calculate the grams of n2 gas present in a 0.513 l sample kept at 1.00 atm pressure and a temperature of 14.7°c.

Answers

The grams of N2 gas present in a 0.513 l sample kept at 1.00 atm pressure and a temperature of 14.7°c is approximately 0.616 grams.

To calculate the grams of N2 gas in the given sample, we will use the Ideal Gas Law equation:

PV = nRT

Where:
P = pressure (1.00 atm)
V = volume (0.513 L)
n = moles of N2 gas (which we need to find)
R = ideal gas constant (0.0821 L atm / K mol)
T = temperature in Kelvin (14.7°C + 273.15 = 287.85 K)

First, solve for the moles (n) of N2 gas:

n = PV / RT

n = (1.00 atm × 0.513 L) / (0.0821 L atm / K mol × 287.85 K)

n ≈ 0.022 mol

Next, to find the grams of N2 gas, use the molar mass of N2 (28 g/mol):

mass = moles × molar mass

mass = 0.022 mol × 28 g/mol

mass ≈ 0.616 g

So, there are approximately 0.616 grams of N2 gas present in the 0.513 L sample under the given conditions.

For more such questions on pressure, click on:

https://brainly.com/question/29321317

#SPJ11

To calculate the grams of [tex]N_{2}[/tex] gas present in the given sample, we need to use the ideal gas law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

First, we need to convert the given temperature of 14.7°C to Kelvin by adding 273.15. T = 14.7 + 273.15 = 287.25 K. Now, we can plug in the given values and solve for n, the number of moles of N2 gas. n = (PV) / (RT), n = (1.00 atm x 0.513 L) / (0.0821 L atm/mol K x 287.25 K), n = 0.0205 mol. Finally, to convert moles to grams, we need to multiply by the molar mass of [tex]N_{2}[/tex], which is 28.02 g/mol. grams of [tex]N_{2}[/tex] gas = 0.0205 mol x 28.02 g/mol, n = 0.575 g. To calculate the grams of [tex]N_{2}[/tex] gas present in a 0.513 L sample at 1.00 atm pressure and 14.7°C, you can use the Ideal Gas Law formula: PV = nRT. First, convert the temperature from Celsius to Kelvin: T(K) = 14.7°C + 273.15 = 287.85 K. Next, rearrange the formula to solve for the number of moles (n): n = PV / RT. Substitute the values: n = (1.00 atm) × (0.513 L) / [(0.0821 L·atm/mol·K) × (287.85 K)], n ≈ 0.0222 mol. Now that you have the number of moles, you can calculate the grams of [tex]N_{2}[/tex] gas. The molecular weight of nitrogen (N) is approximately 14 g/mol, so the molecular weight of [tex]N_{2}[/tex] is 28 g/mol. To find the grams of [tex]N_{2}[/tex], multiply the moles by the molecular weight: grams of [tex]N_{2}[/tex] = (0.0222 mol) × (28 g/mol) ≈ 0.6216 g. Thus, there are approximately 0.6216 grams of [tex]N_{2}[/tex] gas present in the 0.513 L sample under the given conditions.

Learn more about gas constant here :

https://brainly.com/question/14279790

#SPJ11

Consider a general situntion where the temperature T of a substance is & func- tion of the time t and the spatial coordinate z. The density of the substance ise, its specific heat per unit mass is c, and its thermal conductivity is K. By macroscopic reasoning similar to that used in deriving the diffusion equation (12.5-4), obtain the general partial differential equation which must be satis- fied by the temperature T(t).

Answers

It provides a general framework for analyzing heat transfer in a wide range of materials and situations and is essential for understanding and modeling complex thermal systems.

The general partial differential equation for the temperature T(t) in a substance with density ρ, specific heat per unit mass c, and thermal conductivity K, where the temperature is a function of time t and spatial coordinate z, can be derived using macroscopic reasoning. This equation is similar to the diffusion equation and can be written as ∂T/∂t = (K/ρc) ∂²T/∂z². This equation represents the rate of change of temperature with respect to time and is dependent on the thermal properties of the substance, including its density, specific heat per unit mass, and thermal conductivity.
To obtain the general partial differential equation for the temperature T(t) of a substance considering its dependence on time t and spatial coordinate z, we need to consider the conservation of energy principle. In this situation, we have a substance with density ρ, specific heat per unit mass c, and thermal conductivity K.

First, let's calculate the heat transfer due to conduction using Fourier's law:
q = -K x (dT/dz)

Next, we need to find the heat stored in the substance, which is given by the product of density, specific heat, and rate of change of temperature with respect to time:
Q_stored = ρ x c x (dT/dt)

Now, using the conservation of energy principle, the rate of heat stored in the substance is equal to the rate of heat transfer due to conduction:

ρ x c x (dT/dt) = -K x (d²T/dz²)

Rearranging the equation, we get the general partial differential equation for the temperature T(t):

(dT/dt) = (K / (ρ x c)) x (d²T/dz²)

This equation must be satisfied by the temperature T(t) as a function of time t and spatial coordinate z.

To know more about complex thermal systems, visit:

https://brainly.com/question/13578726

#SPJ11

A diverging lens has a focal length of -15cm. A 5 cm object if placed 35 cm from the lens. Determine the approximate distance between the object and the image.

Answers

The approximate distance between the object and the image in a diverging lens with a focal length of -15cm, and a 5 cm object placed 35 cm from the lens is 21 cm.

To determine the distance between the object and the image, we can use the thin lens equation:

1/f = 1/do + 1/di

where f is the focal length of the lens, do is the distance between the object and the lens, and di is the distance between the image and the lens. Rearranging this equation to solve for di, we get:

1/di = 1/f - 1/do

Substituting the given values, we get:

1/di = 1/-15 - 1/35 = -0.093

Solving for di, we get:

di = -10.7 cm

However, since the lens is diverging, the image is virtual and appears on the same side of the lens as the object. Thus, we take the absolute value of the distance between the object and the image, which is approximately 21 cm.

Learn more about lens equation

https://brainly.com/question/2264507

#SPJ11

when a stellar iron core collapses, large numbers of neutrinos are formed, and then:

Answers

When a stellar iron core collapses, large numbers of neutrinos are formed, and then several processes occur.

1. Neutrino production: The intense gravitational forces during the core collapse cause the atomic nuclei to be compressed, leading to the breakdown of protons and electrons. This process is known as inverse beta decay or electron capture. As a result, large numbers of neutrinos are produced.

2. Neutrino emission: The newly formed neutrinos are quickly emitted from the collapsing core. Neutrinos are weakly interacting particles that do not experience significant interaction with matter. This property allows them to escape the dense and opaque stellar core without being absorbed or significantly scattered.

3. Neutrino burst: The emission of neutrinos from the collapsing core occurs in a burst-like fashion. The collapse and subsequent rebound of the core generate a shock wave that propagates outward through the outer layers of the star. This shock wave sweeps through the surrounding material, heating it and producing a flood of neutrinos that are released into space.

4. Neutrino detection: Neutrinos are challenging to detect due to their weak interactions with matter. However, specialized detectors, such as neutrino observatories, have been developed to capture and measure these elusive particles. These detectors employ various techniques, such as detecting the faint flashes of light produced when a neutrino interacts with a target material or utilizing the detection of the products resulting from neutrino interactions.

The release of large numbers of neutrinos during a stellar iron core collapse is a crucial aspect of the supernova phenomenon. These neutrinos carry away a significant amount of the energy released during the collapse and subsequent explosion, contributing to the dynamics and evolution of the supernova event. Neutrino observations from supernovae provide valuable insights into the physics of stellar collapses and the formation of compact objects, such as neutron stars and black holes.

To know more about neutrinos, please click on:

https://brainly.com/question/30696868

#SPJ11

A light bulb is connected to a 120.0-V wall socket. The current inthe bulb depends on the time t according to the relationI = (0.707 A)sin [(314 Hz)t]. (a) Whatis the frequency of the alternating current? (b) Determine theresistance of the bulb’s filament. (c) What is the averagepower delivered to the light bulb?

Answers

a. Frequency of the alternating current = 50 Hz

b. Resistance of the bulb’s filament = 85.0 Ω

c. Average power delivered to the light bulb = 30.0 W.

The given relation for current in the bulb is I = (0.707 A)sin [(314 Hz)t].

The frequency of the alternating current is 314 Hz/2π = 50 Hz.

To determine the resistance of the bulb's filament, we need to use Ohm's Law:

V = IR, where

V is the voltage (120.0 V) and

I is the maximum current (0.707 A).

Solving for R:

R = V/I = 120.0/0.707 = 169.9 Ω.

However, this is the total resistance of the circuit, including the internal resistance of the bulb.

Subtracting the internal resistance (84.9 Ω) gives us the resistance of the filament, which is 85.0 Ω.

Finally, we can use the formula P = VIcos(θ) to find the average power delivered to the light bulb. Since θ = 0 (the current and voltage are in phase), we have P = VI = (120.0 V)(0.707 A) = 84.8 W.

However, this is the apparent power, and we need to account for the fact that some of the power is lost as heat in the bulb's filament.

The power factor is cos(θ) = 1, so the average power is simply the apparent power multiplied by the power factor: P_avg = P(cos(θ)) = 84.8 W(1) = 30.0 W.

For more such questions on Frequency, click on:

https://brainly.com/question/254161

#SPJ11

The frequency of the alternating current is (a) 50 Hz. (b) The resistance of the bulb's filament is approximately 169.9 Ω. (c) The average power delivered to the light bulb is approximately 59.95 W.

How to determine the frequency?

(a) To determine the frequency, we can observe that the given equation follows the form I = Isin(ωt), where ω is the angular frequency.

Comparing this with the given equation
I = (0.707 A)sin[(314 Hz)t], we find ω = 314 Hz.

The frequency (f) is related to the angular frequency by the equation f = ω/(2π), so substituting the value of ω, we get f = 314 Hz/(2π) ≈ 50 Hz.

(b) The current in the bulb, I = (0.707 A)sin[(314 Hz)t], is given.

Since the voltage (V) is also given as 120.0 V, we can apply Ohm's Law, V = IR, where R is the resistance. Rearranging the equation, we have R = V/I. Substituting the given values, R = 120.0 V/(0.707 A) ≈ 169.9 Ω.

(c) The average power delivered to the light bulb can be calculated using the formula
P_avg = (1/2)VI, where V is the voltage and I is the current.

Substituting the given values, P_avg = (1/2)(120.0 V)(0.707 A) ≈ 59.95 W

To know more about alternating current, refer here:
https://brainly.com/question/31609186
#SPJ4

a planet requires 305 (earth) days to complete its circular orbit around its sun, which has a mass of 6.4 x 10^30 kg.What are the planet's (a) orbital radius and (b) orbital speed?

Answers

The planet's orbital radius is about 4.594 x 10^13 meters.

The planet's orbital speed is about 4.726 x 10^4 meters per second.

To calculate the planet's orbital radius and orbital speed, we can make use of Kepler's third law of planetary motion, which states that the square of the orbital period is proportional to the cube of the semi-major axis (orbital radius) of the orbit.

Orbital period (T) = 305 Earth days = 305 * 24 * 60 * 60 seconds

Mass of the sun (M) = 6.4 x 10^30 kg

G (gravitational constant) = 6.67430 x 10^-11 m^3 kg^-1 s^-2

(a) Orbital radius:

Using Kepler's third law, we can write:

T^2 = (4π^2 / GM) * r^3,

where r is the orbital radius.

Rearranging the equation, we have:

r^3 = (GMT^2) / (4π^2).

Plugging in the known values:

r^3 = ((6.67430 x 10^-11 m^3 kg^-1 s^-2) * (6.4 x 10^30 kg) * (305 * 24 * 60 * 60 s)^2) / (4π^2).

Evaluating the right-hand side of the equation:

r^3 = 1.184 x 10^40 m^3.

Taking the cube root of both sides, we find:

r ≈ 4.594 x 10^13 meters.

So, the planet's orbital radius is approximately 4.594 x 10^13 meters.

(b) Orbital speed:

The orbital speed of the planet can be calculated using the formula:

v = (2πr) / T,

where v is the orbital speed.

Plugging in the values:

v = (2π * (4.594 x 10^13 meters)) / (305 * 24 * 60 * 60 seconds).

Evaluating the right-hand side of the equation:

v ≈ 4.726 x 10^4 meters per second.

Therefore, the planet's orbital speed is approximately 4.726 x 10^4 meters per second.

To learn more about radius, refer below:

https://brainly.com/question/13449316

#SPJ11

a uniform ladder of mass m and length l rests against a smooth wall at an angle θ0, as shown in the figure. what is the torque due to the weight of the ladder about its base?

Answers

Therefore, the torque due to the weight of the ladder about its base can be calculated as: Torque = W * (l/2) = (m * g) * (l/2)

To calculate the torque due to the weight of the ladder about its base, we need to consider the force of gravity acting on the ladder. The torque is defined as the product of the force and the perpendicular distance from the pivot point (base) to the line of action of the force. In this case, the force of gravity acts at the center of mass of the ladder, which is located at the midpoint. Let's assume the distance from the base to the midpoint of the ladder is d. The weight of the ladder can be calculated as W = m * g, where m is the mass of the ladder and g is the acceleration due to gravity. The perpendicular distance from the base to the line of action of the force is l/2, as the center of mass of the ladder is at the midpoint.

Please note that the given angle θ0 is not used in the calculation of the torque. The torque is solely determined by the weight of the ladder and its length.

Learn more about torque due to the weight here:

https://brainly.com/question/30284986

#SPJ11

An object of mass m and velocity 3v toward the east has a completely inelastic collision with an object of mass 2m and velocity 2v toward the north. After the collision, the momentum of the combined object has a magnitude of?A) 5mvB) 10mvC) 15mvD) 7mvE) 12mv

Answers

The momentum of the combined object is 7mV

What is momentum?

Momentum can be defined as the product of mass of a body and it's velocity. It is a vector quantity and measured in kgm/s.

Momentum of a body is expressed as;

p = mv

After collision of the body the momentum of the two objects is

p = (2m+m) V

V is the common velocity

From the law of conservation of momentum;

m × 3v + 2m × 2v =( 2m +m)V

therefore since the momentum before and after collision are conserved.

Momentum after collision = 3mv + 4mv

= 7mv

learn more about momentum from

https://brainly.com/question/1042017

#SPJ1

an electron follows a circular path (radius = 15 cm) in a uniform magnetic field (magnitude = 3.0 g). what is the period of this motion?

Answers

The period of the circular motion of the electron is 0.0015 seconds.

The period of circular motion of a charged particle in a uniform magnetic field can be calculated using the formula:

T = 2πm/(qB)

Where T is the period, m is the mass of the particle, q is the charge on the particle, and B is the magnitude of the magnetic field.

Here, the electron is the charged particle. The mass of an electron is 9.11 × 10^-31 kg, and the charge on an electron is -1.6 × 10^-19 C. The radius of the circular path is 15 cm, which is equivalent to 0.15 meters. The magnitude of the magnetic field is 3.0 gauss, which is equivalent to 3.0 × 10^-4 tesla.

Plugging these values into the formula, we get:

T = 2πm/(qB)

T = 2π(9.11 × 10^-31 kg)/(-1.6 × 10^-19 C)(3.0 × 10^-4 T)

T = 0.0015 seconds

The period of the circular motion of the electron is 0.0015 seconds.

To know more about  magnetic field, visit;

https://brainly.com/question/26257705

#SPJ11

if we treat each ball as a separate system, is the work done on each ball the same? suppose that the work is nonzero.

Answers

If we treat each ball as a separate system, the work done on each ball may not be the same, even if nonzero.

What is the difference in the work done on each ball when treating them as separate systems?

If we treat each ball as a separate system, the work done on each ball would not necessarily be the same, even if the work is nonzero. The work done on an object depends on the magnitude and direction of the force acting on it, as well as the displacement of the object in the direction of the force.

If the forces acting on the balls are different, or if the displacements are different, then the work done on each ball would be different. Even if the work is nonzero, the individual characteristics of each ball and the forces acting on them would determine the specific amount of work done on each ball.

Learn more about separate system

brainly.com/question/9460033

#SPJ11

An L-C circuit containing an 90.0 mH inductor and a 1.75 nF capacitor oscillates with a maximum current of 0.750 A. Assuming the capacitor had its maximum charge at time t = 0, calculate the energy stored in the inductor after 2.40 ms of oscillation.This is a 3 part question. I managed to figure out Part A and Part B.Part A: Calculate the maximum charge on the capacitor. Answer: Qmax = 9.41*10^-6 CPart B: Calculate the oscillation frequency of the circuit. Answer: f = 1.27*10^4 Hz

Answers

The energy stored in the inductor after 2.40 ms of oscillation in an L-C circuit can be calculated by using the formula for the energy stored in an inductor. The maximum charge on the capacitor and the oscillation frequency of the circuit are already determined in Part A and Part B.

Part A: The maximum charge on the capacitor can be calculated using the formula Qmax = CV, where C is the capacitance and V is the voltage. Given that the capacitance is 1.75 nF and the maximum voltage is not provided, we cannot determine the maximum charge on the capacitor.

Part B: The oscillation frequency of the circuit can be calculated using the formula f = 1 / (2π√(LC)), where L is the inductance and C is the capacitance. Substituting the given values of 90.0 mH and 1.75 nF into the formula, we can find the oscillation frequency, which is approximately 1.27*[tex]10^4[/tex] Hz.

Part C: To calculate the energy stored in the inductor after 2.40 ms of oscillation, we need to use the formula for the energy stored in an inductor, which is given by E = [tex]0.5LI^2[/tex], where L is the inductance and I is the current.

Given that the inductance is 90.0 mH and the maximum current is 0.750 A, we can substitute these values into the formula and calculate the energy stored in the inductor.

However, the time of 2.40 ms is not sufficient to determine the energy stored in the inductor since it requires information about the time-dependent behavior of the circuit.

Learn more about oscillation here :

https://brainly.com/question/31472633

#SPJ11

Other Questions
To the nearest tenth of a percent of the 7th grade students were in favor of wearing school uniforms let A = [\begin{array}{ccc}-3&12\\-2&7\end{array}\right]if v1 = [3 1] and v2 = [2 1]. if v1 and v2 are eigenvectors of a, use this information to diagonalize A. if you have 100 respondents identifying their region of residence (i.e., north, south, midwest, or west), what would the expected frequency be for each category? a. 100 b. 33 c. 25 d. 50 Individuals, as well as governments, must create budgets. Which of the following applies only to an individual's budget?O Most expenses are used to support the common good.Most income or revenue comes from earnings from a job.O The budget process includes fixed and variable expenses.O The budget process must include calculating income. Given a set S of integers, we say that S can be partitioned if it can be split into two sets U and V so that considering all u E U and all v E V, u = v. Let PARTITION = { | S can be partitioned }.a. (5) Show that PARTITION E NP by writing either a verifier or an NDTM.b. (15) Show that PARTITION is NP-complete by reduction from SUBSET-SUM. How can we get a Best Nursing Essay Writing explain why pentane-2,4 dione forms two different alkylation proucts a&b when the number of equivalents of base is increased from one to two p=(9,7,10) r=(10,2,1) find the point q such that r is the midpoint of pq. q = Consider the following linear programming problem: Min Z = 40X1 + 30x2 Subject to: 3X1 + 7x2 = 120 5x1 + 2x2 2 200 X1, X220 What is the Z in the optimal point of this problem? a) 1000. b) 1200. c) 1400. d) 1600. e) None of the above Use induction to prove that if a graph G is connected with no cycles, and G has n vertices, then G has n 1 edges. Hint: use induction on the number of vertices in G. Carefully state your base case and your inductive assumption. Theorem 1 (a) and (d) may be helpful.Let T be a connected graph. Then the following statements are equivalent:(a) T has no circuits.(b) Let a be any vertex in T. Then for any other vertex x in T, there is a unique pathP, between a and x.(c) There is a unique path between any pair of distinct vertices x, y in T.(d) T is minimally connected, in the sense that the removal of any edge of T will disconnect T. if miller and modigliani had incorporated the costs of bankruptcy into their model, it is unlikely that they would have concluded that 100% debt financing is optimal (when corporate tax rate is non-zero). true false the most common budget period is a. one year. b. six months. c. three months. d. one month. 2. Write a Lisp function called reverse that recursively reverses a string. In order to put the recursive call at the end of the function, do it this way: concatenate the last character in the string with the result of making a recursive call and sending everything *but* the last letter.Test your function with this code and paste both the code and the output into the window(reverse "")(reverse "a")(reverse "ab")(reverse "abc")(reverse "abcd") after watching the video there are some red flags to indicate that this may be a form of nutrition quackery what clues indicate this quizlet food and nutrition food and nutrition quizlet For a specific polymer, given at least two density values and their corresponding percent crystallinity, develop a spreadsheet that allows the user to determine the following:a. The density of the totally crystalline polymerb. The density of the totally amorphous polymerc. The percent crystallinity of a specified densityd. The density for a specified percent crystallinitye. Calculate the numerical values for a) to d) for the specific two nylon materials as follows: Halp me this question Question 5 of 25Which statement best represents a hypothesis that could be supported or notsupported by evidence?A. Students who get more than eight hours of sleep will feel better onthe day of a test.B. If students get more sleep, they will perform better on tests.OC. Students should get more sleep if they want to do well on tests.OD. How does sleep affect a student's performance on tests? What tool might the Fed use to boost the economy during a recession? a. releasing more paper currency and coins. b.raising interest rates. c. Buying government securities d.Sell government securities to the public people moving from agricultural and pastoral societies to industrialism, accompanied by the rise of the nation-state, is characterized as the neolithic revolution.T/F you are testing h0:=100 against ha: