Using the formula for the distance between two points, it is found that:
Since sides AB and BC have the same length, which is different of side AC, the triangle is an isosceles triangle.The area is of 38.63 units squared.What is the distance between two points?Suppose that we have two points, [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]. The distance between them is given by:
[tex]D = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
In this problem, we use the formula to find the lengths for each side of the triangle.
For example, side AB has length given by the distance between (-6,3) and (3,5), hence:
[tex]AB = \sqrt{(-6 - 3)^2 + (3 - 5)^2} = 9.22[/tex]
Side AC has length given by:
[tex]AC = \sqrt{(-6 - 1)^2 + (3 - (-4))^2} = 9.9[/tex]
Side BC has length given by:
[tex]BC = \sqrt{(3 - 1)^2 + (5 - (-4))^2} = 9.22[/tex]
Since sides AB and BC have the same length, which is different of side AC, the triangle is an isosceles triangle.
What is the area of a triangle?The area of a triangle is given by half the length of the base multiplied by the height.
The midpoint of side BC, of length of 9.22 units, is of (2,0.5). The height is the distance of this point from point A, hence:
[tex]d = \sqrt{(-6 - 2)^2 + (3 - 0.5)^2} = 8.38[/tex]
Hence the area is:
A = 0.5 x 9.22 x 8.38 = 38.63 units squared.
More can be learned about the distance between two points at https://brainly.com/question/18345417
#SPJ1
The function g(x) = 10x2 – 100x + 213 written in vertex form is g(x) = 10(x – 5)2 – 37. Which statements are true about g(x)? Select three options. The axis of symmetry is the line x = –5. The vertex of the graph is (5, –37). The parabola has a minimum. The parabola opens up. The value of a, when the equation is written in vertex form, is negative.
Answer:
The vertex of the graph is (5, -37) [see attached image]The parabola has a minimum [the coefficient of x² is positive]The parabola opens up [the coefficient of x² is positive]All the correct statements are,
The vertex of the graph is (5, -37).
The parabola has a minimum.
The parabola opens up.
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
We have to given that;
The function g(x) = 10x² - 100x + 213 written in vertex form is,
⇒ g(x) = 10(x – 5)² – 37.
Since, General equation is,
y = a (x - h)² + k
Where, (h, k) is vertex of parabola.
Hence, We get;
The vertex of the graph is (5, -37)
Since, the coefficient of x² is positive
Hence, The parabola has a minimum
And, The parabola opens up.
Thus, All the correct statements are,
The vertex of the graph is (5, -37).
The parabola has a minimum.
The parabola opens up.
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ5
PLS ANSWER THESE QUESTIONS
I WILL MARK BRAINLIEST
The linear function y = 3 · w - 1 represents the number of sea shells found in each week.
The speed of the driven gear is 180 rounds per minute.
How to use direct and inverse relationships to analyze situations
In the first problem we have an example of linear progression, in which the number of sea shells is increased linearly every week. After a quick analysis, we conclude that the linear function y = 3 · w - 1, a kind of direct relationship.
In the second problem, we must an inverse relationship to determine the speed of the driven gear. Please notice that the speed of the gear is inversely proportional to the number of teeths. Then, we proceed to calculate the speed:
[tex]\frac{v_{1}}{v_{2}} = \frac{N_{2}}{N_{1}}[/tex]
If we know that [tex]v_{2} = 60\,rpm[/tex], [tex]N_{2} = 60[/tex] and [tex]N_{1} = 20[/tex], then the speed of the driven gear is:
[tex]v_{1} = v_{2}\times \frac{N_{2}}{N_{1}}[/tex]
[tex]v_{1} = 60\,rpm \times \frac{60}{20}[/tex]
[tex]v_{1} = 180\,rpm[/tex]
The speed of the driven gear is 180 rounds per minute.
To learn more on inverse relationships: https://brainly.com/question/4147411
#SPJ1
order the decimales from leaste to gratest: 72.5, 73.943, 72.1, 73.77,
43.2 43.219 42.1 42.59
38.507 38.507 38.4 28.23 39.5
71.743 71.3 71.3 72.43 72.5
The decimals would be ordered as:
72.1, 72.5, 73.77, 73.943
42.1, 42.59, 43.2, 43.219
28.23, 38.4, 38.507, 38.507, 39.5
71.3, 71.3, 71.743, 72.43, 72.5
How to Order Decimals?To order decimals from the least to the greatest, first state the lowest value, then progress to the highest taking account of the figures that come immediately after each decimal point.
The decimals will be ordered as shown below:
72.1, 72.5, 73.77, 73.943
42.1, 42.59, 43.2, 43.219
28.23, 38.4, 38.507, 38.507, 39.5
71.3, 71.3, 71.743, 72.43, 72.5
Learn more about ordering decimals on:
https://brainly.com/question/20603315
#SPJ1
Solve. −4 3/4=x−1 1/5 What is the solution to the equation? Enter your answer as a simplified mixed number in the box.
plssssss helppp
Answer: x= -3 11/20 Decimal form: x=-3.55
Step-by-step explanation:
16. Describe the type of solution for the linear system of
equations given below.
2x + 3y = 15
6y=-4x + 12
F.
no solution
G. infinite solutions
H.
one solution
J. two solutions
Answer:
Step-by-step explanation:
2x+3y=15
multiply by 2
4x+6y=30 ...(1)
6y=-4x+12
4x+6y=12 ...(2)
(1) and (2) represent parallel lines.
Hence no solution.
Select the correct answer from each drop-down menu. The options are: The ratio of the heights is 1 : 2.5 1 : 5 1 : 10 1 : 25 The ratio of the surface areas is 1 : 5 1 : 10 1 : 25 1 : 125 The ratio of the volumes is 1 : 5 1 : 10 1 : 25 1 : 125.
Using proportions, it is found that:
The ratio of heights is of 1:5.The ratio of surface areas is of 1:25.The ratio of volumes is of 1:125.What is a proportion?A proportion is a fraction of a total amount, and the measures are related using a rule of three.
The heights are measured in units, hence the ratio is:
[tex]r = \frac{5}{25} = \frac{1}{5}[/tex]
The surface areas are measured in units squared, hence the ratio is:
(1:5)² = 1:25.
The volumes are measured in cubic units, hence the ratio is:
(1:5)³ = 1:125.
More can be learned about proportions at https://brainly.com/question/24372153
#SPJ1
Evaluate function expressions
Answer:
Your answer is -24.
Step-by-step explanation:
Given information.
The graph of f(x) and g(x)
Solving for
-6 * f(3) - 6 * g(-1) = ?
think of f(x) = y as x is the input and y is the output.
Input a value of x into f(x) or g(x) gets us a y value.
Looking at the graph of f(3) = -2 and the graph of g(-1) = 6
Now substitute that and solve.
-6 * -2 -6 * 6 = 12 - 36 = -24
Answer: -24
Step-by-step explanation:
We should first find the outputs to the functions f and g with inputs 3 and -1 respectively. We can do this by looking at the graph and finding the y value for each desired x value.
Thus, we can see that f(3) = -2 and g(-1) is 6.
We can replace these into the expression to get
[tex]-6*-2-6*6[/tex]
We should first multiply, so we get
[tex]12 -36[/tex]
[tex]-24[/tex]
Hence, the answer is -24.
Find and sketch the domain of f(X,y) = 1/√x^2-y
Answer:
Step-by-step explanation:
The definition of a Domain in math is all the possible input values that go into the function, so we will have to find all the valid values that can go into the function
The function given is [tex]F(x, y)=\frac{1}{\sqrt{x^2-y} }[/tex] , the denominator cannot be 0.
So we set up the equation
[tex]\sqrt{x^2-y} \neq 0[/tex]
[tex]\sqrt{x^2-y}^{2} \neq 0x^2-y\neq 0x^2\neq y[/tex]
And that the the square root needs to be more than 0.
[tex]\sqrt{x^2-y}\geq 0[/tex]
[tex]x^2-y\geq 0[/tex]
[tex]x^2\geq y[/tex]
So we can conclude that all values of [tex]x^{2}[/tex] must be greater y
That means that our domain is all X values greater than[tex]\sqrt{y}[/tex]
About % of the area under the curve of the standard normal distribution is between z = − 0.9 z = - 0.9 and z = 0.9 z = 0.9 (or within 0.9 standard deviations of the mean).
Using the normal distribution, it is found that 63.18% of the area under the curve of the standard normal distribution is between z = − 0.9 z = - 0.9.
Normal Probability DistributionThe z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The z-score measures how many standard deviations the measure is above or below the mean. Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.The area within 0.9 standard deviations of the mean is the p-value of Z = 0.9(0.8159) subtracted by the p-value of Z = -0.9(0.1841), hence:
0.8159 - 0.1841 = 0.6318 = 63.18%.
More can be learned about the normal distribution at https://brainly.com/question/4079902
#SPJ1
please no scam please answer ASAP 30 points need steps
QUE :
75 - [5 + 3 of (25 - 2 × 10)]
= 75 - [5 + 3 of ( 25 - 20)]
= 75 - [5 + 3 of 5]
= 75 - [5 + 15]
= 75 - 20
= 55
________________________________
HOPE IT HELPS
MARK BRAINLIEST!
FOLLOW ME!
1. Spring Time Manufacturers produces a single product and the
company is trying to determine the effectiveness of their
pricing decisions. As a consultant, you have been asked to
develop cost functions that will assist in arriving at the
optimal price that will enable the company to maximize
profits. During the year, you were provided with the following
demand and costs functions for the product:
P = 485-25Q, where P is the unit selling price and Q is quantity
of units in thousands.
TC = 5Q² +95Q + 200, where TC is total costs in thousands of
dollars.
Required:
(a) Find the output at which profit is maximized.
(b) Find the optimal price that maximizes profit.
(c) Determine the optimal sales revenue.
(d) Calculate the maximum profit.
!!HELP! 1-8 PLEASE ANSWERS ONLY PLEASE
Distributive Property :
[tex]\boxed {a(bx + c) = a(bx) + a(c)}[/tex] or
[tex]\boxed {(ax + b)(cx + d) = acx^{2} + bcx + adx + bd}[/tex]
Question 1 :
6(4v + 1)6(4v) + 6(1)24v + 6Question 2 :
5(8r² - r + 6)5(8r²) - 5(r) + 5(6)40r² - 5r + 30Question 3 :
(2x - 2)(7x - 4)2x(7x) - 2(7x) - 2x(4) - 2(-4)14x² - 14x - 8x + 814x² - 22x + 8Question 4 :
(6a - 7)(3a - 8)(6a)(3a) - 7(3a) + (6a)(-8) - 7(-8)18a² - 21a - 48a + 5618a² - 69a + 56A total of $5000 is invested: part at 7% and the remainder at 12%. How much is invested at each rate if the annual interest is $400?
The amount invested in the account that yields 7% interest is $4000.
The amount invested in the account that yields 12% interest is $1000.
What are the linear equations that represent the question?a + b = 5000 equation 1
0.07a + 0.12b = 400 equation 2
Where:
a = amount invested in the account that yields 7% interest.
b = amount invested in the account that yields 12% interest.
How much is invested at each rate?
Multiply equation 1 by 0.07
0.07a + 0.07b = 350 equation 3
Subtract equation 3 from equation 2
0.05b = 50
b = 50 / 0.05
b = 1000
Subtract 1000 from 5000: 5000 - 1000 = 4000
To learn more about linear functions, please check: https://brainly.com/question/26434260
#SPJ1
The graph of the discrete probability to the right represents
the number of live births by a mother 40 to 44 years old
who had a live birth in 2015. Complete parts (a) through (d)
below.
0.30-
0.25-
0.20
0.15
0.10
0.05
0.00
0
0.235
1
0.270
2
0784
113 0101
-4426-0004 0.045
3
6
Number of Live Births
(a) What is the probability that a randomly selected 40- to 44-year-old mother who had a live birth in 2015 has had her fourth live birth in that year?
(Type an integer or a decimal)
(b) What is the probability that a randomly selected 40- to 44-year-old mother who had a live birth in 2015 has had her fourth or fifth live birth in that year?
(Type an integer or a decimal.)
(c) What is the probability that a randomly selected 40- to 44-year-old mother who had a live birth in 2015 has had her sixth or more live birth in that year?
(Type an integer or a decimal)
(d) If a 40-to 44-year-old mother who had a live birth in 2015 is randomly selected, how many live births would you expect the mother to have had?
The values of the probabilities are
The probabilities are 0.109, 0.202, 0.106The expected number of births is 3How to determine the probabilities?The image that completes the question is added as an attachment
The probability of having her fourth live birth in that year?From the attached graph, we have:
P(x) = 0.109 when x = 4
Hence, the probability is 0.109
The probability of having a live birth in her fourth or fifth live birth in that year?From the attached graph, we have:
P(x) = 0.109 when x = 4
P(x) = 0.093 when x = 5
So, we have:
P(4 or 5) = 0.109 + 0.093
Evaluate
P(4 or 5) = 0.202
Hence, the probability is 0.202
The probability of having a live birth in her sixth or more live birth in that year?This is represented as:
P(x >= 6)
From the attached graph, we have:
P(x) = 0.022 when x = 6
P(x) = 0.036 when x = 7
P(x) = 0.048 when x = 8
So, we have:
P(x >= 6) = 0.022 + 0.036 + 0.048
Evaluate
P(x >= 6) = 0.106
Hence, the probability is 0.106
How many live births would you expect the mother to have had?This is calculated as:
[tex]E(x) = \sum x * P(x)[/tex]
So, we have:
E(x) = 0.234 * 1 + 0.291 * 2 + 0.167 * 3 + 0.109 * 4 + 0.093 * 5 + 0.022 * 6 + 0.036 * 7 + 0.048 * 8
Evaluate
E(x) = 2.986
Approximate
E(x) = 3
Hence, the expected number of births is 3
Read more about probability at:
https://brainly.com/question/25870256
#SPJ1
ION 10
answered
out of 1.00
Flag
n
What is the likelihood of Jada investing with Bank JNC if the following holds under the following conditions?
..
there is a 75% chance Jada will invest if the economic conditions remain stable;
there is a 25% chance investing if economic conditions suffer a decline;
there is a 55% chance of investing if the economic conditions improve.
the chance the economic conditions remaining stable (S), declining (D) and improving (1) are 0.20, 0.40
and 0.40, respectively.
Select one:
O.a. 0.135
O b. 0.103
OC. 0.400
O d. 0.470
Answer:
a
Step-by-step explanation:
Any ideas for this graph
Given: F(x) = 3xˆ2+ 1, G(x) = 2x-3, H(x) = x F(-2) =
heeeelp
Answer:
firstly,need to know domain and range
help this is affecting my grade i need help pls i beg of you
The two-way table shows the number of students in a class who like mathematics and/or science. Like Mathematics Do Not Like Mathematics Total Like Science 18 ? 38 Do Not Like Science 16 6 32 Total 34 26 70
The missing number is 20.
What is the missing number?Subtraction is the mathematical operation that is used to find the difference between two or more numbers.
In order to find the missing number, subtract the total number of people who like science and mathematics from the total number of people who like science
38 - 18 = 20
To learn more about subtraction, please check: https://brainly.com/question/854115
#SPJ1
The magnitude, M, of an earthquake is represented by the equation M=2/3logE/E0 where E is the amount of energy released by the earthquake in joules and E0=10^4.4 is the assigned minimal measure released by an earthquake. Which shows a valid step in the process of calculating the magnitude of an earthquake releasing 2.5 • 10^15 joules of energy?
2.5•10^15 = 2/3logE/10^4.4
10^4.4=2/3logE/2.5•10^15
M=2/3log(9.95•10^9)
M=2/3log(2.55•10^10)
M=2/3log(9.95•10^10)
The magnitude of an earthquake releasing 2.5 * 10¹⁵ Joules of energy is 7.33
What is an equation?
An equation is an expression that shows the relationship between two or more numbers and variables.
Given that:
M = (2/3) * log (E/E₀)
Where M is the magnitude, E is the amount of energy and E₀ = 10^4..4
For E = 2.5 * 10¹⁵:
M = (2/3) * log (2.5 * 10¹⁵/10^4.4)
M = 7.33
The magnitude of an earthquake releasing 2.5 * 10¹⁵ Joules of energy is 7.33
Find out more on equation at: https://brainly.com/question/2972832
#SPJ1
Marina has a pattern to make bows that requires 1/4 yard of ribbon for each bow. Part A: Fill in the table to show how many bows she can make from a given length of ribbon.
the table complete is:
x y
1 4
2 8
3 12
4 16
Where x is the ribbon length in yards and y is the number of bows she can make.
How to complete the table?We know that Marina needs 1/4 yards of ribbon for each bow.
Then, with one yard of ribbon, she can make 4 bows, then the relation between y, the number of bows she can make, and x, the yards of ribbon that she has, is:
y = 4*x
Now we want to complete the table:
x y
1
2
3
4
To do so, we just need to evaluate the above function.
when x = 1.
y = 4*1 = 4
When x = 2:
y = 4*2 = 8
when x = 3
y = 4*3 = 12
when x = 4
y = 4*4 = 16
Then the table complete is:
x y
1 4
2 8
3 12
4 16
If you want to learn more about evaluating:
https://brainly.com/question/1719822
#SPJ1
Will mark brainliest
Find an equation of the tangent line to the function
y = 3x2
at the point P(1, 3).
Solution
We will be able to find an equation of the tangent line ℓ as soon as we know its slope m. The difficulty is that we know only one point, P, on ℓ, whereas we need two points to compute the slope. But observe that we can compute an approximation to m by choosing a nearby point
Q(x, 3x2)
on the parabola (as in the figure below) and computing the slope mPQ of the secant line PQ. [A secant line, from the Latin word secans, meaning cutting, is a line that cuts (intersects) a curve more than once.]
The equation of the tangent line to the quadratic function y = 3 · x² at the point (x, y) = (1, 3) is y = 6 · x - 3.
How to determine the equation of a line tangent to a quadratic equation by algebraic methods
Herein we must determine a line tangent to the quadratic equation y = 3 · x² at the point P(x, y) = (1, 3) by algebraic means. The slope of the line can be found by using the secant line formula and simplify the resulting expression:
m = [3 · (x + Δx)² - 3 · x²] / [(x + Δx) - x]
m = 3 · [(x + Δx)² - x²] / Δx
m = 3 · (x² + 2 · x · Δx + Δx ² - x²) / Δx
m = 3 · (2 · x + Δ x)
If Δx = 0, then the equation of the slope of the tangent line is:
m = 6 · x
If we know that x = 1, then the slope of the tangent line is:
m = 6 · 1
m = 6
Lastly, we find the intercept of the equation of the line: (x, y) = (1, 3), m = 6
b = y - m · x
b = 3 - 6 · 1
b = - 3
The equation of the tangent line to the quadratic function y = 3 · x² at the point (x, y) = (1, 3) is y = 6 · x - 3.
To learn more on tangent lines: https://brainly.com/question/23265136
#SPJ1
Heights of men on a baseball team have a bell-shaped distribution with a mean of 176cm and a standard deviation of 5cm .Using the empirical rule,what is the approximate percentage of men between the following values?
% of the men are between 165cm and 186cm
95% men are between 165 cm and 186 cm.
What is the empirical rule?
The empirical rule is also referred to as the Three Sigma Rule or the 68-95-99.7 Rule.
z-score = (raw-score minus mean) / standard deviation.
z1 = (165-176)/5 = -2.2
z2 = (186-176)/5 = 2
The empirical rule tells us that about 95% of all values are within standard deviations of the mean,
so, 95% men are between 165 cm and 186 cm.
to know more please refer: https://brainly.com/question/10093236
#SPJ9
95% of men are between 165 cm and 186 cm.
What is the approximate percentage of men between the following values?Given:
The heights of men on a baseball team have a bell-shaped distribution a mean of 176cm and a standard deviation of 5cm.Find:
What is the approximate percentage of men between the following values?Solution:
The empirical rule is also referred to as the three sigma rule or the 68-95-99.7
Rule:
z - score = (raw - score minus mean) / standard deviation.
z1 = (165-176)/5 = -2.2
z2 = (186-176)/5 = 2
The empirical rule tells us that about 95% of all values are within standard deviations of the mean.
So, 95% of men are between 165 cm and 186 cm.
To learn more about the empirical rules, refer to:
brainly.com/question/10093236
#SPJ9
PreCalc work, Need help writing piecewise functions with graphs. Giving brainliest
Answer:
f(x) = 2 for x < -2
f(x) = -2x + 11 for x > 3
Please Please Please help with this math problem
Based on the information provided, the cost function, C(x) is given by 80x + 6000 while the demand function, P(x) is given by -1/20(x) + 920.
Mathematically, the revenue can be calculated by using the following expression:
R(x) = x × P(x)
Revenue, R(x) = x(-1/20(x) + 920)
Revenue, R(x) = x(-x/20 + 920)
Revenue, R(x) = -x²/20 + 920x.
Expressing the profit as a function of x, we have:
Profit = Revenue - Cost
P(x) = R(x) - C(x)
P(x) = -x²/20 + 920x - (80x + 6000)
P(x) = -x²/20 + 840x - 6000.
For the value of x which maximizes profit, we would differentiate the profit function with respect to x:
P(x) = -x²/20 + 840x - 6000
P'(x) = -x/10 + 840
x/10 = 840
x = 840 × 10
x = 8,400.
For the maximum profit, we have:
P(x) = -x²/20 + 840x - 6000
P(8400) = -(8400)²/20 + 840(8400) - 6000
P(8400) = -3,528,000 + 7,056,000 - 6000
P(8400) = $3,522,000.
Lastly, we would calculate the price to be charged in order to maximize profit is given by:
P(x) = -1/20(x) + 920
P(x) = -1/20(8400) + 920
P(x) = -420 + 920
P(x) = $500.
Read more on maximized profit here: https://brainly.com/question/13800671
#SPJ1
Which equation represents the vertex form of the equation y = x² + 2x - 6?
y = (x + 2)² -
y = (x + 1)2 - 6
y = (x + 2)²-7
y = (x + 1)²-7
Answer:
Step-by-step explanation:
Steps
1] On the right, put brackets around the 1st 2 terms.
y = (x^2 + 2x) - 6
2] Divide the second term's coefficient by 2 and square the result.
2/2 = 1
3] Square the result
1^2 = 1
4] Add that inside the brackets
y = (x^2 + 2x + 1) - 6
5] Subtract 1 outside the brackets. The original equation is still there.
y = (x^2 + 2x + 1) - 6 - 1
y = (x^2 + 2x + 1) - 7
6] What is inside the brackets is a perfect square.
y = (x + 1)^2 - 7
Answer D
look at the picture
Answer:
C
Step-by-step explanation:
x²-9x<-8
x²-9x+(-9/2)²<-8+(-9/2)²
(x-9/2)²<-8+81/4
(x-9/2)²<(-32+81)/4
(x-9/2)²<49/4
|x-9/2|<7/2
-7/2<x-9/2<7/2
add 9/2
9/2-7/2<x-9/2+9/2<7/2+9/2
2/2<x<16/2
1<x<8
Simplify. x^2+5x-/14 x²+8x+7
please send a picture of it
the equation seems a lil bit complicated
the equation y=ax describes the graph of a line.if the value of a is negative,the line
If the value of a is negative, the line is reflected across any of the axis
How to describe the line?The equation is given as:
y = ax
The new line is given as
y = -ax
The above implies that y = ax is transformed to y = -ax
The transformation can be any of:
reflection across the x-axisreflection across the y-axisHence, if the value of a is negative, the line is reflected across any of the axis
Read more about reflection at:
https://brainly.com/question/26748988
#SPJ1
lim
x →1+. 1- x/x² - 1
Answer: [tex]\displaystyle \boldsymbol{-\frac{1}{2}}[/tex]
================================================
Work Shown:
[tex]\displaystyle L = \lim_{\text{x}\to 1^{+}} \frac{1-\text{x}}{\text{x}^2-1}\\\\\\\displaystyle L = \lim_{\text{x}\to 1^{+}} \frac{-(\text{x}-1)}{(\text{x}-1)(\text{x}+1)}\\\\\\\displaystyle L = \lim_{\text{x}\to 1^{+}} \frac{-1}{\text{x}+1}\\\\\\\displaystyle L = \frac{-1}{1+1}\\\\\\\displaystyle L = -\frac{1}{2}\\\\\\[/tex]
In the second step, I used the difference of squares rule to factor.
The (x-1) terms cancel which allows us to plug in x = 1. We plug this value in because x is approaching 1 from the right side.