If triangle abc is an isosceles triangle with side lengths of 25, 25 and 48 centimeters, the area of triangle ABC is 600√(3) square centimeters.
To find the area of an isosceles triangle, we need to first determine the length of the altitude or height that is perpendicular to the base of the triangle.
In an isosceles triangle, the altitude divides the base into two equal parts, creating two right triangles. Using the Pythagorean theorem, we can find the length of the altitude.
Let x be the length of the altitude. Then, we have:
(25/2)^2 + x^2 = 25^2
625/4 + x^2 = 625
x^2 = 625 - 625/4
x^2 = 468.75
x = √(468.75)
x = 5√(75)
Now that we know the length of the altitude, we can find the area of the triangle using the formula:
Area = (1/2) x base x height
In this case, the base of the triangle is 48 cm and the height is 5sqrt(75) cm. Therefore, we have:
Area = (1/2) x 48 x 5√(75)
Area = 120√(75)
Area = 120 x 5√(3)
Area = 600√(3) cm^2
To learn more about area click on,
https://brainly.com/question/14442919
#SPJ4
What is the equation for a cosecant function with vertical asymptotes found at x equals pi over 2 plus pi over 2 times n comma such that n is an integer?
f (x) = 2cscx
g(x) = 4csc2x
h(x) = 4csc3x
j of x is equal to 2 times cosecant of the quantity x over 2 end quantity
The equation for a cosecant function with vertical asymptotes found at x equals pi over 2 plus pi over 2 times n, where n is an integer, is [tex]f(x) = csc(x - \pi/2)[/tex] .
What is the cosecant function ?
The cosecant function is a trigonometric function that is defined as the reciprocal of the sine function. It is denoted as csc(x) and is defined for all values of x except where sin(x) is equal to zero. The graph of the cosecant function shows a series of vertical lines where the function is undefined, called vertical asymptotes. The value of the cosecant function oscillates between positive and negative infinity as it approaches these asymptotes. The cosecant function is used in trigonometry and calculus to model periodic phenomena such as sound and light waves.
Determining the equation for a cosecant function with vertical asymptotes :
The cosecant function has vertical asymptotes at the zeros of the sine function, which are given by
[tex]x = \pi/2 + n\times\pi[/tex], where n is an integer.
To shift the graph of the cosecant function horizontally by [tex]\pi/2[/tex] units to the right, we subtract [tex]\pi/2[/tex] from the input variable x, so the equation becomes [tex]f(x) = csc(x - \pi/2)[/tex].
[tex]f(x) = csc(x - \pi/2)[/tex] is the equation for a cosecant function with vertical asymptotes found at [tex]x = \pi/2 + n\pi[/tex], where n is an integer.
[tex]g(x) = 4csc(2x)[/tex] is the equation for a cosecant function with period pi, amplitude 4, and vertical asymptotes found at [tex]x = \pi/2 + n\pi[/tex], where n is an integer.
[tex]h(x) = 4csc(3x)[/tex] is the equation for a cosecant function with period [tex]2\pi/3[/tex], amplitude 4, and vertical asymptotes found at [tex]x = \pi/6 + n\pi,[/tex] where n is an integer.
[tex]j(x) = 2csc(x/2)[/tex] is the equation for a cosecant function with period 4pi, amplitude 2, and vertical asymptotes found at [tex]x = 2n\pi[/tex], where n is an integer.
To know more about cosecant function visit :
brainly.com/question/15385462
#SPJ1
determine the length of the third side of a triangle from the choices provided if the first two sides measure 10 and 12.(1 point) responses
The length of the third side of a triangle provided if the first two sides measure 10 and 12 is 2 < c < 22.
Three sides and three angles make up each triangle. These triangle sides are straight line segments that meet at each of the triangle's vertices to produce a closed three-sided shape. Each side of a right-angled triangle is given a name. The hypotenuse of a right-angled triangle is its longest side, the base is its lowest side, and the perpendicular, which stands next to the right angle, is its standing line.
Each valid triangle has a side length that is smaller than the sum of the other two.
For a triangle whose sides are provided as positive integers a, b, and c, the following three inequalities result:
a+b > c, b+c > a, c+a > b.
It is also readable as
|a-b| < c < a+b.
Note that these inequalities can become equalities if you take into account degenerate triangles, where all of the vertices are on the same line (collinear), but since degenerate triangles aren't actually triangles, I didn't include them.
In response to your query, we may calculate c as follows if a = 10 and
b = 12:
2 < c < 22,
Learn more about Third side:
https://brainly.com/question/18737876
#SPJ4
A sweet factory produces 5 different chocolate bar math solution. The different flavors are always produce in the same proportions .For every 3 coconut flavored bars there are 5 honeycomb, 1 coffee, 3 orange and 4 strawberry .
How many coconut flavored bars are there if the total number of chocolate bars is 40.
iAnswer:
Step-by-step explanation:
I have no idea
1.
What is the average rate of change between
the points (3,9) and (5, 15)?
Therefore, the average rate of change between the points (3,9) and (5,15) is 3.
What is coordinates?Coordinates are a set of values that locate the position of a point in space. In mathematics, coordinates are used to represent the position of points on a plane or in space, using a set of numerical values that correspond to the distance along each axis from an origin point. In two-dimensional Cartesian coordinate systems, for example, a point is represented by two numbers (x, y) that indicate its position relative to the x and y axes. In three-dimensional Cartesian coordinate systems, a point is represented by three numbers (x, y, z) that indicate its position relative to the x, y, and z axes.
Here,
The average rate of change between the points (3,9) and (5,15) is the slope of the line passing through those two points. We can use the slope formula:
slope = (y2 - y1) / (x2 - x1)
where (x1, y1) = (3,9) and (x2, y2) = (5,15).
slope = (15 - 9) / (5 - 3)
= 6 / 2
= 3
To know more about coordinates,
https://brainly.com/question/16634867
#SPJ1
WILL GIVE BRAINLIEST NEED ANSWERS FAST!!!
Find the missing length indicated
Step-by-step explanation:
4)
based on similar triangles and the common ratio for all pairs of corresponding sides we know
LE/LM = LD/LK = DE/EM
because E and D are the midpoints of the longer sides, all of these ratios are 1/2.
1/2 = DE/8
8/2 = 4 = DE
5)
same principle as for 4)
BQ/BA = BR/BC = QR/AC
again, Q and R are the midpoints, so all these ratios are 1/2.
1/2 = QR/10
QR = 10/2 = 5
performed 100 trials of a simulation to see what difference in proportions would occur due to chance variation
Performing a simulation with 100 trials is a common technique used to assess the impact of chance variation on the results of an experiment or study. The simulation can help you understand how likely it is to see certain results due to chance variation alone, rather than any underlying difference in proportions.
To perform this simulation, you would first need to define the two proportions that you want to compare. For example, you might want to compare the proportion of people who prefer brand A to brand B in a survey.
Next, you would randomly assign each trial to either brand A or brand B based on the defined proportions. For example, if the proportion of people who prefer brand A is 0.6, you would assign 60 out of the 100 trials to brand A and 40 trials to brand B.
After assigning each trial, you would then calculate the difference in proportions between the two groups. This would give you a distribution of differences that you would expect to see due to chance variation alone.
If the observed difference falls within the range of differences expected due to chance variation, you can conclude that the difference in proportions you observed is not statistically significant and may be due to chance.
However, if the observed difference is larger than what you would expect to see due to chance variation, you can conclude that the difference is statistically significant and likely due to an underlying difference in proportions.
To know more about chance variation:
https://brainly.com/question/15784491
#SPJ4
Find the length of AD in the figure.
Answer:
[tex]\sqrt{122}[/tex] units
Step-by-step explanation:
To find the distance between points A(1,3) and D(2,-8), we can use the distance formula:
distance = [tex]\sqrt{(x2 - x1)^2 + (y2 - y1)^2}[/tex]
Plugging in the coordinates, we get:
distance = [tex]\sqrt{(2 - 1)^2 + (-8 - 3)^2}[/tex]
distance = [tex]\sqrt{1^2 + (-11)^2}[/tex]
distance = [tex]\sqrt{122}[/tex]
Therefore, the distance between points A(1,3) and D(2,-8) is [tex]\sqrt{122}[/tex] units.
Rewrite without parentheses.
-6xy²(8y^6-3x^4+4)
Simplify your answer as much as possible.
with step by step please
Answer: Sure! Here's how you can rewrite -6xy²(8y^6-3x^4+4) without parentheses:
Start by distributing the -6xy² to the terms inside the parentheses:
-6xy²(8y^6) - (-6xy²)(3x^4) - (-6xy²)(4)
Simplify each term using the product rule of exponents:
-48x y^8 + 18x^5 y^2 + 24xy²
So the final answer, without parentheses and simplified, is:
-48x y^8 + 18x^5 y^2 + 24xy²
Enjoy!
Step-by-step explanation:
Help would be greatly appreciated.
The description of the ensembles would be: 1. Students who attend both recitals, 2. Students who attend one of the two recitals, 3. students who attend both recitals, 4.The difference between the set P and U, that is, 3 students.
How to graph the information?To graph the information in a Venn diagram we must take into account the information in the statement. In this case we must place 6 students outside the circles because there are 6 who do not attend any activity.
So, there would be 34 remaining students, of which 20 go to the piano recital and 23 to the voice recital. So, we can establish that 20 go to both recitals, 3 go to the voice recital, and 1 go to the piano recital.
Learn more about Venn diagram in: https://brainly.com/question/29301560
#SPJ1
(c)yz dx + xz dy + xy dz, where c consists of straight-line segments joining (1, 0, 0) to (0, 1, 0) to (0, 0, 1) (d) x2 dx-xy dy + dz, where c is the parabola z = x2, y = 0 from (-1, 0, 1) to (1, 0, 1)
The value of the line integral is 1/2.
To evaluate this line integral, we need to parameterize the curve C that consists of straight-line segments joining (1, 0, 0) to (0, 1, 0) to (0, 0, 1).
Let's parameterize the first segment from (1,0,0) to (0,1,0) using t as the parameter
r(t) = (1-t) * <1,0,0> + t * <0,1,0>
= <1-t, t, 0>
where 0 ≤ t ≤ 1.
Now, let's parameterize the second segment from (0,1,0) to (0,0,1) using s as the parameter
r(s) = (1-s) * <0,1,0> + s * <0,0,1>
= <0, 1-s, s>
where 0 ≤ s ≤ 1.
We can then use the parameterization of C to evaluate the line integral:
∫_c yz dx + xz dy + xy dz
= ∫_0^1 yz dx/dt dt + xz dy/dt dt + xy dz/ds ds
= ∫_0^1 (t(1-t)) 0 dt + ((1-t)t) 0 dt + ((1-t)t) ds
= ∫_0^1 (1-t)t ds
= 1/2
Learn more about line integral here
brainly.com/question/12440198
#SPJ4
The given question is incomplete, the complete question is:
∫_c yz dx + xz dy + xy dz, where c consists of straight-line segments joining (1, 0, 0) to (0, 1, 0) to (0, 0, 1) Evaluate Line Integrals
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.
Match each expression to make pairs of equivalent expressions.
Answer:
Pair 1 Pair 2 Pair 3
a^6b^4 a^2b^2 a^-562
a^5b^3 a^-36-1 ab^-4
b^3 95 a^-46-2 a^-263
a^-362 66 ཚ
Find the surface area of the figure on the right.
The fig's right side of total surface = 42yds.
What is surface area?
A solid object's surface area is a measurement of the total area that the surface of the object takes up.
The definition of arc length for one-dimensional curves and the definition of surface area for polyhedra (i.e., objects with flat polygonal faces), where the surface area is the sum of the areas of its faces, are both much simpler mathematical concepts than the definition of surface area when there are curved surfaces.
A smooth surface's surface area is determined using its representation as a parametric surface, such as a sphere.
This definition of surface area uses partial derivatives and double integration and is based on techniques used in infinitesimal calculus.
Henri Lebesgue and Hermann Minkowski at the turn of the century sought a general definition of surface area.
According to our question-
(17+17+8)yds
42yds
learn more about surface area click here:
https://brainly.com/question/16519513
#SPJ1
I’m the forest there were lions and tigers and bears the ratio of lions to tigers was 3 to 2 the ratio of tigers to bears was 3 to 4 if there were 9 lions how many bears were there
Answer:
There were 8 bears
Step-by-step explanation:
Letting L = number of lions, T = number of tigers and B = number of bears
L : T = 3 : 2
We can rewrite this as
L/T = 3/2
Cross multiply:
L x 2 = 3 x T
Divide by 3 to get
T = 2/3 L
Since L = 9
T = 2/3 x 9 = 6
In the other ratio we have
T : B = 3 : 4 which we can write as
T/B = 3/4
Cross multiply to get
4T = 3B
B = 4/3 T
Since T = 6, B = 4/3 x 6 = 8
Check
L : T = 9 : 6 = 3: 2 (by dividing both sides of : by 3)
T : B = 6 : 8 = 3:4 (by dividing both sides of : by 2)
Amadou is going to invest $16,000 and leave it in an account for 20 years. Assuming the interest is compounded quarterly, what interest rate, to the nearest tenth of a percent, would be required in order for Amadou to end up with $44,000?
which of the following is true about a sample statistic such as the sample mean or sample proportion?
D. A statistic is a random variable. A statistic is a figure calculated from a sample, such as the sample mean or the sample standard deviation.
Every statistic is a random variable since samples are chosen at random; these variations cannot be anticipated in advance. It has a mean, a standard deviation, and a probability distribution as a random variable. A statistic's sample distribution is its probability distribution. Generally, sample statistics are calculated to estimate the associated population parameters rather than being ends in themselves. The concepts of mean, standard deviation, and sampling distribution of a sample statistic are introduced in this chapter, with a focus on the sample mean.
Learn more about statistic here:
https://brainly.com/question/12393177
#SPJ4
Complete question:
which of the following is true about a sample statistic such as the sample mean or sample proportion?
A. A statistic is constant.
B. A statistic is always known.
C. A statistic is a parameter.
D. A statistic is a random variable.
Solve the following equation for
�
b. Be sure to take into account whether a letter is capitalized or not.
The solution for b is: b = r * (f - h²).
What is Equation?the definition of an equation is a mathematical statement that demonstrates that two mathematical expressions are equal. For instance, the equation 3x + 5 = 14 consists of the two expressions 3x + 5 and 14, which are separated by the 'equal' symbol.
According to question:To solve for b, we need to isolate the variable b on one side of the equation. We can do that by multiplying both sides of the equation by (f - h²):
[tex]$\frac{b}{(f - h^2)} = r * (f - h^2)[/tex]
Now, we can isolate b by multiplying both sides by (f - h^2) again:
b = r * (f - h²)
Therefore, the solution for b is: b = r * (f - h²).
To know more about Equation visit:
brainly.com/question/28243079
#SPJ1
Which of the following tables represents a linear relationship that is also proportional?
x 2 3 4
y −3 0 3
x 4 2 0
y −2 −1 0
x −2 1 4
y 0 1 2
x 0 1 2
y −4 0 4
Answer:
This table represents a linear relationship that is also proportional:
x 0 1 2
y −4 0 4
Answer:
The second table represents a linear relationship that is also proportional.
To check if a relationship is proportional, we need to see if the ratio of y to x is constant for all values of x and y. In other words, if we divide any y value by its corresponding x value, we should get the same number for all values.
Let's check the ratio for each table:
Ratio for the first table:
-3/2 = -1.5
0/3 = 0
3/4 = 0.75
The ratio is not constant, so this relationship is not proportional.
Ratio for the second table:
-2/4 = -0.5
-1/2 = -0.5
0/0 = undefined
The ratio is constant (-0.5), so this relationship is proportional.
Ratio for the third table:
0/(-2) = 0
1/1 = 1
2/4 = 0.5
The ratio is not constant, so this relationship is not proportional.
Ratio for the fourth table:
-4/0 = undefined
0/1 = 0
4/2 = 2
The ratio is not constant, so this relationship is not proportional.
Therefore, the second table is the only one that represents a linear relationship that is also proportional.
Samir's statement shows a previous balance of $5,336.22, a payment of $607, and a
new transaction totaling $186. What is his new balance if his APR is 29.0%? Round
answer to hundredths place if answer does not have a hundredths place this use
zeros so it does. Do not include the units. Be sure to attach work for credit
Your Answer:
Samir's new balance is $5,044.17.
To calculate Samir's new balance, add the previous balance, subtract the payment, add the new transaction, and multiply by the interest rate for one period. The following formula can be used to calculate the interest for a single period:
balance * APR / 12 = interest
where APR stands for annual percentage rate and 12 represents the number of months in a year.
When we apply this formula to Samir's balance and APR, we get:
5336.22 * 0.29 / 12 = 128.95 in interest
As a result, the total new balance is:
5336.22 - 607 + 186 + 128.95 = 5044.17
We get the following when we round to the nearest hundredth:
$5,044.17
As a result, Samir now has a balance of $5,044.17.
To know more similar question visit:
https://brainly.com/question/30938788
#SPJ1
Six friends play a carnival game in which a person throws darts at balloons. Each person throws the same number of darts and then records the portion of the balloons that pop. A piece of paper shows the portion of balloons that popped in a game of darts. The portions are, Whitney, 16 percent; Chen, start fraction 2 over 25 end fraction; Bjorn, 0.06; Dustin, start fraction 1 over 50 end fraction; Philip, 0.12; Maria, 0.04. Find the mean, median, and MAD of the data. The mean is . The median is . The mean absolute deviation is .
The MAD of the portions of popped balloons is 0.046.
Define mean absolute deviationThe Mean Absolute Deviation (MAD) is a measure of the average distance between each data point and the mean of the data set. It gives an idea of how spread out the data is around the mean.
To find the mean, median, and MAD (mean absolute deviation) of the given data, we first need to find the average value of the portions of popped balloons.
Mean = (16% + 2/25 + 0.06 + 1/50 + 0.12 + 0.04) / 6
Mean = 0.0975
Therefore, the mean of the portions of popped balloons is 0.0975.
To find the median, we need to first arrange the portions in ascending order:
0.04, 0.06, 1/50, 2/25, 0.12, 16%
Median = (1/50 + 0.06) / 2
Median = 0.035
Therefore, the median of the portions of popped balloons is 0.035.
To find the MAD, we first need to find the absolute deviations of each portion from the mean. We can do this by subtracting the mean from each portion and taking the absolute value:
|0.16 - 0.0975| = 0.0625
|2/25 - 0.0975| = 0.0525
|0.06 - 0.0975| = 0.0375
|1/50 - 0.0975| = 0.0475
|0.12 - 0.0975| = 0.0225
|0.04 - 0.0975| = 0.0575
The MAD is the average of these absolute deviations:
MAD = (0.0625 + 0.0525 + 0.0375 + 0.0475 + 0.0225 + 0.0575) / 6
MAD = 0.046
Therefore, the MAD of the portions of popped balloons is 0.046.
To know more about medians, visit:
https://brainly.com/question/28060453
#SPJ1
Put 132, 127, 106, 140, 158, 135, 129, 138 in order
Answer: 106 127 129 132 135 138 140 158
Step-by-step explanation:
can you find c and b?
c=?
b=?
The value of the constant c that makes the following function are c = 0.
What is constant ?Constant is a term used to describe a value that remains unchanged or fixed throughout a program or process. It can be a numeric value, a character value, a string, or a Boolean (true/false) value. Common examples of constants include physical constants, mathematical constants, and programming-language keywords.A constant is a value that does not change, regardless of the conditions or context in which it is used. Common examples of constants include mathematical values such as pi (3.14159), physical constants such as the speed of light (299,792,458 m/s), and other constants such as the universal gravitational constant (6.67408 × 10−11 m3 kg−1 s−2).
To learn more about constant
https://brainly.com/question/27598477
#SPJ1
Therefore, c must equal 0 in order for the two sides of the function to be equal. and The one with the greater absolute value is b = 10.
What is function?A function is a block of code that performs a specific task. It is a subprogram or a set of instructions that can be used multiple times in a program.
27. For the function to be continuous at x = 7, the limit of the function as x approaches 7 from the left must equal the limit of the function as x approaches 7 from the right.
This means that the value of y as x approaches 7 must be the same on both the left and right sides of the point.
Since the left side of the function is y = c*y + 3, the right side of the function must also be equal to y = c*y + 3.
Therefore, c must equal 0 in order for the two sides of the function to be equal.
28. In order for the function to be continuous at x = 5, the value of y at x = 5 must be the same on both the left and right sides of the point.
Since the left side of the function is y = b - 2x, the right side of the function must also be equal to y = b - 2x.
Therefore, b must equal 10 in order for the two sides of the function to be equal.
To learn more about function
https://brainly.com/question/11624077
#SPJ1
Complete Question:
your friend claims the geometric mean of 4 and 9 is 6, and then labels the triangle, as shown. is your friend correct? explain your reasoning.
The correct option is -C: No, 6 is the geometric mean of 4 and 9, however if the altitude is 6, then the hypotenuse is the geometric mean of the two segments.
Explain about the geometric mean?An average technique multiplies several values and determines the number's root is known as the geometric mean. You locate the nth root for their product for a collection of n numbers. This descriptive statistic can be used to sum up your data.
Mean Geometric The square root of the product of two numbers is the geometric mean amongst them. The geometric mean of two positive numbers an as well as b is the positive number x as in percentage Cross multiplication results in x² = ab,.
For the given question.
geometric mean of a and b :
From the drawn diagram.
a = 4
b = 9
x = √ab
x = √9*4
x = 6
geometric mean: 6
Applying the altitude rule:
h² = x.y
6² = 9*4
36 = 36
Thus, the geometric mean calculated by friend is correct but the marking on the diagram is wrong.
Know more about the geometric mean
https://brainly.com/question/3336179
#SPJ1
can someone help?
solve for x, using the secant lines
10cm, 7cm, 7cm. round to the nearest tenth
x = 4.9
Solution:
We can use the intersecting chords formula:
[tex]\text{(segment piece) x (segment piece) = (segment piece) x (segment piece)}[/tex][tex]7\times7 = 10x[/tex]
[tex]49 = 10x[/tex]
Divide each side by 10[tex]49\div10=10x\div10[/tex]
[tex]4.9 = x[/tex]
Therefore, x = 4.9.
Which is NOT a solution to
cosØ=3√2
Select one:
a.−π/6
b.5π/6
c.11π/6
d.π/6
Answer:
b. 5π/6 is not a solution to cosØ=3√2.
Calculate the following limits?
The answer of the given question based on the limits the answers are as follows, (a) lim f(x) = 1 , (b) lim f(x) = 3 , (c) lim f(x) = 3.
What is Graph?A graph is visual representation of data that shows the relationship between two or more variables. Graphs can be used to display wide variety of information, including numerical data, functions, and networks. The most common types of graphs like line graphs, bar graphs, scatter plots, and pie charts.
Graphs are widely used in many fields, like science, economics, engineering, and social sciences, to help people understand and analyze complex data. They are powerful tool for visualizing trends, patterns, and relationships, and are often used to communicate findings to wider audience.
a) The limit of f(x) as x approaches 2 from the left:
We can see from the graph that as x approaches 2 from the left, f(x) approaches 1. Therefore, we can write:
lim f(x) = 1
x→2-
b) The limit of f(x) as x approaches 2 from the right:
Similarly, as x approaches 2 from the right, f(x) approaches 3. Therefore:
lim f(x) = 3
x→2+
c) The limit of f(x) as x approaches 2:
Since the limit from the left and the limit from the right exist and are equal, we can say that the limit of f(x) as x approaches 2 exists and equals the common value of the left and right limits. Therefore:
lim f(x) = 3
x→2
To know more about Variable visit:
https://brainly.com/question/2466865
#SPJ1
Solve the given initial-value problem. y''' − 2y'' + y' = 2 − 24ex + 40e5x, y(0) = 1 2 , y'(0) = 5 2 , y''(0) = − 11 2
Answer:
Step-by-step explanation:
To solve the initial-value problem y''' − 2y'' + y' = 2 − 24ex + 40e5x, y(0) = 1/2, y'(0) = 5/2, y''(0) = −11/2, we first find the characteristic equation by assuming that y = e^(rt):
r^3 - 2r^2 + r = 0
r(r^2 - 2r + 1) = 0
r(r-1)^2 = 0
r = 0, 1, 1
Therefore, the general solution to the homogeneous equation y''' − 2y'' + y' = 0 is:
y_h = c1 + c2e^x + c3xe^x
To find the particular solution to the non-homogeneous equation y''' − 2y'' + y' = 2 − 24ex + 40e5x, we guess a particular solution of the form:
y_p = Ax^2e^5x + Be^x
y_p' = (2Ax + 5Ax^2)e^5x + Be^x
y_p'' = (10Ax^2 + 4Ax + 25Ax^2)e^5x + Be^x
y_p''' = (70Ax^2 + 60Ax + 10A + 25Ax^2)e^5x + Be^x
Substituting these expressions into the original equation, we get:
(70Ax^2 + 60Ax + 10A + 25Ax^2)e^5x + Be^x − 2[(10Ax^2 + 4Ax + 25Ax^2)e^5x + Be^x] + [(2Ax + 5Ax^2)e^5x + Be^x] = 2 − 24ex + 40e5x
Simplifying, we get:
(45Ax^2 + 2Ax − 2)e^5x + Be^x = 2 − 24ex + 40e5x
Equating the coefficients of the like terms on both sides, we get:
45A = 40
2A − 2 = 0
B = 2
Therefore, the particular solution is:
y_p = 8/9 x^2e^5x + 2e^x
The general solution to the non-homogeneous equation is therefore:
y = c1 + c2e^x + c3xe^x + 8/9 x^2e^5x + 2e^x
Using the initial conditions y(0) = 1/2, y'(0) = 5/2, y''(0) = −11/2, we get:
c1 + c2 + 2 = 1/2
c2 + 2c3 + 5/2 = 5/2
2c2 + 10/9 + 10 = -11/2
Solving this system of equations, we get:
c1 = 1/9
c2 = -25/18
c3 = 0
Therefore, the solution to the initial-value problem y''' − 2y'' + y' = 2 − 24ex + 40e5x, y(0) = 1/2, y'(0) = 5/2, y''(0) = −11/2 is:
y = 1/9 - 25/18e^x + 8/9
Two particles, P and Q, move along a straight line.
The fixed point O lies on this line.
The displacement of P from O at time t seconds is s metres, where
s=t³-4t²+5t for t > 1
The displacement of Q from O at time t seconds is x metres, where
x=t²-4t+4 for t>1
Find the range of values of where t > 1 for which both particles are moving in the
same direction along the straight line.
The range of values for t where both particles are moving in the same direction along the straight line is 1 < t < 2 or t > 2.
What is derivative of a function?A function's derivative is a gauge of how quickly the function is altering at a specific moment. It is that point's tangent line's slope to the function. The limit of the difference quotient as the change in x becomes closer to zero is the definition of the derivative, which is represented by the symbols f'(x) or dy/dx.
Given the displacement of the two particles, the velocity of the given particles can be calculated using the derivative of the distance as follows:
s=t³-4t²+5t
s'(t) = 3t² - 8t + 5 and,
x=t²-4t+4
x'(t) = 2t - 4
Case 1: Both velocities are positive
s'(t) > 0 and x'(t) > 0
3t² - 8t + 5 > 0 and 2t - 4 > 0
t < 1 or t > 2
Case 2: Both velocities are negative
s'(t) < 0 and x'(t) < 0
3t² - 8t + 5 < 0 and 2t - 4 < 0
1 < t < 2
Therefore, the range of values for t where both particles are moving in the same direction along the straight line is 1 < t < 2 or t > 2.
Learn more about derivative here:
https://brainly.com/question/25324584
#SPJ1
There is 32 students in class.8 boys out of 20 wear cap and 8 girls out of 12 wear spectacles find the probability that the student is boy who wears cap or girls who doesn't wear spectacles
Answer:
Boy = 40%
Girl = 66.6%
Step-by-step explanation:
1) Work out probability that student is a boy who wears cap
8 boys out of 20 wears a cap so to find the probability we have to do 8 divided by 20
8 ÷ 20 = 0.40.4 × 100 = 40%2) Work out probability for girls who doesn't wear spectacles
To find the probability of girls who doesn't wear spectacles we have to do 8 divided by 12
8 ÷ 12 = 0.666...(recurring)0.666...(recurring) × 100 = 66.6%Hope this helps, have a lovely day! :)
Best describes , whats the best possible answer
Answer:
D?
Step-by-step explanation:
I'm not completely sure, but there are 2 different 180 degree lines that y falls on. On one line (y+70=180) it is for sure 110 degrees
When measured on the other line it is (y+70+x=180) I'm not too familiar with this??
(cosθsinθ−sinθcosθ)
How was this matrix derived?
the matrix [cosθ sinθ; -sinθ cosθ] represents the rotation of a vector by an angle θ in the counterclockwise direction.
The matrix you have provided is the 2x2 rotation matrix for rotating a vector in the two-dimensional plane by an angle of θ in the counterclockwise direction.
To understand how this matrix is derived, let's consider a vector v = [x, y] in the two-dimensional plane. We want to rotate this vector by an angle of θ in the counterclockwise direction.
We can represent the vector v as a column matrix [x, y] and then multiply it by a rotation matrix R(θ) to obtain the rotated vector. The rotation matrix R(θ) is defined as follows:
cos(θ) -sin(θ)
sin(θ) cos(θ)
Multiplying the vector v by the rotation matrix R(θ) gives:
[x', y'] = [x, y] * R(θ)
[x', y'] = [x cos(θ) - y sin(θ), x sin(θ) + y cos(θ)]
Thus, the rotated vector v' is given by:
v' = [x', y'] = [x cos(θ) - y sin(θ), x sin(θ) + y cos(θ)]
We can see that the elements of the rotation matrix R(θ) correspond to the cosine and sine of the rotation angle θ. The matrix element in the first row and first column (cosθ) gives the amount of x that is rotated into the x' direction, while the matrix element in the first row and second column (-sinθ) gives the amount of y that is rotated into the x' direction. Similarly, the matrix element in the second row and first column (sinθ) gives the amount of x that is rotated into the y' direction, while the matrix element in the second row and second column (cosθ) gives the amount of y that is rotated into the y' direction.
Thus, the matrix [cosθ sinθ; -sinθ cosθ] represents the rotation of a vector by an angle θ in the counterclockwise direction.
To know more about rotation matrix click here:
brainly.com/question/30585139
#SPJ4