The length of AD in the triangular prism is 9.8 cm.
The length of AD in the triangular prism can be found using Pythagoras' theorem, which states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.
The base of the prism is a right triangle, so:
AD² = AE² + ED²
AD² = 4² + 9²
AD² = √97
AD = √97
AD = 9.8 cm (rounded to 1 decimal)
Therefore, the length of AD in the triangular prism is 9.8 cm.
Learn more about Pythagoras' Theorem:
https://brainly.com/question/343682
#SPJ4
Complete Question:
Use Pythagoras' theorem to work out the length of AD in this triangular prism. Give your answer in centimeters (cm) to 1 decimal point.
A hawk flying at 19 m/s at an altitude of 228 m accidentally drops its prey. The parabolic trajectory of the falling prey is described by the equation y = 228 − x^2/57 until it hits the ground, where y is its height above the ground and x is its horizontal distance traveled in meters. Calculate the distance traveled by the prey from the time it is dropped until the time it hits the ground. Express your answer correct to the nearest tenth of a meter.
The parabolic trajectory of the falling prey can be described by the equation y = 228 – x2/57, where y is the height above the ground and x is the horizontal distance traveled in meters. In this case, the prey was dropped at a height of 228 m and flying at 19 m/s. To calculate the total distance traveled by the prey, we can use the equation for the parabola to solve for x.
We can rearrange the equation y = 228 – x2/57 to solve for x, which gives us[tex]x = √(57*(228 – y))[/tex]. When the prey hits the ground, the height (y) is 0. Plugging this into the equation for x, we can calculate that the total distance traveled by the prey is[tex]x = √(57*(228 - 0)) = √(57*228) = 84.9 m.\\[/tex] Expressing this answer to the nearest tenth of a meter gives us the final answer of 84.9 m.
for such more questions on parabolic trajectory
https://brainly.com/question/13244761
#SPJ11
The local hardware store has blue buckets that hold 2 gallons of water and white buckets that hold 5 gallons of water. You bought 7 buckets that can hold 26 gallons of water. How many buckets of each color were purchased?
Answer:
So 3 blue buckets and 4 white buckets were purchased
Step-by-step explanation:
We can solve this by algebra
Let B = number of blue buckets bought
Let W = number of white buckets bought
Total buckets bought:
B + W = 7 (1)
Each blue bucket can hold 2 gallons of water
So B blue buckets can hold 2B gallons of water
Each white bucket can hold 5 gallons of water
So W white buckets can hold 5W gallons of water
Totally they can hold
2B + 5W gallons
We are given that they both can hold 26 gallons of water
So our second equation is
2B + 5W = 26 (2)
By eliminating one of the variable terms we can solve for the other variable term
Let's eliminate the term for variable B
Multiply equation (1) by 2
(1) x 2 ==> 2(B + W) = 2(7)
2B + 2W = 14 (3)
Subtract (3) from (2); B terms are same so they cancel out
(2) - (3):
2B + 5W = 26 [tex]\bold{-}[/tex]
2B + 2W = 14
---------------------
0 + 3W = 12
------------------------
3W = 12
W = 12/3
W = 4
Substitute W= 4 in equation 1
B + W = 7
=> B + 4 = 7
B = 3
So 3 blue buckets and 4 white buckets were purchased
Will give Brainlest!!!
A car dealership offers a convertible that can be purchased in one of four colors: red, black, white, or silver. The number of cars purchased in each color is listed below.
red: 400
black: 325
white: 475
silver: 300
Based on the information shown in the list, what is the probability that the next car purchased will be silver? Please put your answer in the form of a percentage.
In this case, we are given a car dealership that offers a convertible that can be purchased in one of four colors: red, black, white, or silver. It is asked in the problem to give the probability for the next car purchased will be silver. since there are 300 silver colors, then the probability is 300/1500 or 1/5 in lowest terms. this is equal to 0.20.
Calculate Suppose that on each of the
4,500 dives Alvin has made, a new pilot and two new scientists were on board.
How many scientists have seen the
deep ocean through Alvin's windows? How
many people, in total, traveled in Alvin?
The calculation shows that 9,000 scientists have seen the deep ocean through Alvin's windows; and
a total of 13,500 people have traveled in Alvin over the course of its 4,500 dives.
What is the explanation for the above calculation?1) If on each of the 4,500 dives Alvin carried a new pilot and two new scientists, then the total number of scientists who have seen the deep ocean through Alvin's windows is:
4,500 dives x 2 scientists per dive = 9,000 scientists
Therefore, 9,000 scientists have seen the deep ocean through Alvin's windows.
2) To calculate the total number of people who traveled in Alvin, we can add the number of pilots and scientists on each dive and multiply by the number of dives:
4,500 dives x (1 pilot + 2 scientists)
= 4,500 x 3
= 13,500 people
Therefore, a total of 13,500 people have traveled in Alvin over the course of its 4,500 dives.
Learn more about calculation:
https://brainly.com/question/30781060
#SPJ1
how does a form differ from shape? form is defined by its allegiance to mathematical construction. form has more than three sides. form has the third dimension of depth. shape has more volume than form. save
Form refers to three-dimensional objects with depth, while shape pertains to the two-dimensional outline or boundary of an object.
We have,
In the context of geometry and visual representation, the terms "form" and "shape" have distinct meanings and characteristics.
Form generally refers to a three-dimensional object that has depth, such as a solid object or a structure with volume.
It encompasses objects that have length, width, and height, and it extends beyond a two-dimensional representation.
Form can have irregular or complex shapes and is not limited to a specific number of sides.
Shape, on the other hand, refers to the two-dimensional outline or boundary of an object.
It is limited to the external appearance or silhouette of an object without considering its depth or volume.
Shapes are typically described by their attributes, such as the number of sides (e.g., triangle, square) or specific geometric properties (e.g., circle, rectangle).
Thus,
Form refers to three-dimensional objects with depth, while shape pertains to the two-dimensional outline or boundary of an object.
Learn more about form and shape here:
https://brainly.com/question/25440372
#SPJ12
The perimeter of a rectangle is 112 cm and its 10. A group
The tota
breadth is x cm.
(i) Find, in terms of x, an expression for the
length of the rectangle.
(ii) Given that the area of the rectangle is 597 cm²,
formulate an equation in x and show that it
reduces to x²-56x +597 = 0.
(iii) Solve the equation x²-56x + 597 = 0, giving
both answers correct to 2 decimal places.
(iv) Hence, find the length of the diagonal of
the rectangle.
Therefore, the length of the diagonal of the rectangle is approximately 193.57 cm or 49.43 cm, depending on which value of x is used.
What is perimeter?Perimeter is the total distance around the edge of a two-dimensional shape. It is the sum of the lengths of all the sides of the shape. For example, the perimeter of a rectangle is found by adding the lengths of its four sides.
Here,
(i) Let the length of the rectangle be y cm.
Then, the perimeter of the rectangle is given by:
2(x + y) = 112
x + y = 56
y = 56 - x
(ii) The area of the rectangle is given by:
Area = length x breadth
597 = yx
Substituting y = 56 - x, we get:
597 = x(56 - x)
597 = 56x - x²
x² - 56x + 597 = 0
(iii) Using the quadratic formula,
x = (-(-56) ± √((-56)² - 4(1)(597))) / (2(1))
x = (56 ± √(3136 - 2388)) / 2
x = (56 ± √(748)) / 2
x = (56 ± 2√(187)) / 2
x = 28 ± √(187)
Therefore, the two solutions are x = 28 + √(187) and x = 28 - √(187).
(iv) The length of the rectangle is y = 56 - x.
Using Pythagoras theorem, the length of the diagonal of the rectangle is given by:
d² = y² + x²
d² = (56 - x)² + x²
d² = 3136 - 112x + 2x²
d = √(3136 - 112x + 2x²)
Substituting the value of x from part (iii) into the above equation, we get:
d = √(3136 - 112(28 ± √(187)) + 2(28 ± √(187))²)
d = √(3136 - 3136 ± 112√(187) + 56 ± 56√(187) + 2(187))
d = √(37400 ± 168√(187))
d ≈ 193.57 cm (rounded to 2 decimal places) or d ≈ 49.43 cm (rounded to 2 decimal places)
To know more about perimeter,
https://brainly.com/question/6465134
#SPJ1
Rewrite the following expression using the division symbol and as a fraction: The quotient of m and 11.
Answer:
[tex]\frac{m}{11}[/tex]
Step-by-step explanation:
To write the given expression as a fraction, put m in the numerator and 11 in the denominator as shown: [tex]\frac{m}{11}[/tex]
This would be the quotient of m and 11 expressed as a fraction!
#Keep learning
the data in the table shows a sinusoidal relationship between the number of seconds an object has been moving and its velocity v(x), measured in centimeters per second. x 2 4 6 8 10 12 14 16 18 20 22 24 v(x) 34.5 31.3 26.1 20 13.9 8.7 5.2 4 5.2 8.7 13.9 20 what is true of the cosine function that models the data in the table? drag a value into each box to correctly complete the statements.
The period of the cosine function is___ the equation of the midline of the cosinefunction is y=_______The amplitude of the cosine function is
these are the whole statements: Cosine function has a 24-period period. The cosine function's midline has the equation y = 19.25. The cosine function has a 15.25 amplitude.
What does an equation mean?A mathematical equation, such as 6 x 4 = 12 x 2, states that two amounts and values are equal. two. Countable noun. A scenario known as an equation means that two or more components must be taken into account in order to comprehend or understand the overall situation.
Midline = (34.5 Plus 4) / 2 (34.5 + 4) = 19.25 Maximum value plus Minimum value
As a result, the following equation represents the data's model for the midline of a cosine function:
y = 19.25
The biggest deviation from the function's midline is its amplitude in the cosine function. The maximum amount of v(x) was 34.5 cm/s, and the minimum is 4 cm/s, according to the data provided. The cosine function used to model the data has the following amplitude:
Amplitude is calculated as (highest value – minimum values) / 2 (or 34.5 - 4) / 2 (or 15.25).
To know more about equation visit:
https://brainly.com/question/29657983
#SPJ1
0.12 g of magnesium reacted to produce 0.20 g of magnesium oxide.
Calculate the number of moles of oxygen gas (O₂) that reacted.
Relative atomic mass (A): O = 16
There were 0.00325 moles of oxygen gas (O2) involved in the reaction.
The magnesium oxide created will react with any oxygen in the air when the experiment is performed without a lid on the crucible.
What is the number of moles of oxygen?Using the atomic mass of magnesium, we can calculate the number of moles of oxygen gas (O2) that reacted by first calculating the number of moles of magnesium that reacted:
Magnesium mass (Mg) = 0.12 g
Mg's atomic mass is 24.31 g/mol (from periodic table)
Mg's mass divided by its atomic mass yields the number of moles.
= 0.12 g / 24.31 g/mol
= 0.00494 mol
The chemical equation for the reaction of magnesium and oxygen to form magnesium oxide is 2Mg + O2 2MgO.
According to the equation, 2 moles of magnesium and 1 mole of oxygen combine to form 2 moles of magnesium oxide.
Thus, the following formula can be used to determine how many moles of O2 reacted:
Production of MgO moles as a function of mass
to learn more about number of moles click here:
brainly.com/question/13314627
#SPJ1
select all the correct answers. which three pairs of side lengths are possible measurements for the triangle?
The three pairs are (AB = 6, BC = 6) (AB = 4, AC = 4√2) and (BC = 2√2, AC = 4). So, First option, Option 5. and Option 6 are correct answers.
Since we know that,
Trigonometry is the branch of mathematics which set up a relationship between the sides and angle of the right-angle triangles.
The formula for a 30-60-90 triangle is this:
1) Side opposite to 30 will be value a.
2) Side opposite to 60 will be value a√3
3) Hypotenuse will be 2a.
AB is opposite of the angle with 30 degree measurement.
BC is opposite of the angle with 60 degree measurement.
The sides of an isosceles right triangle are in the ratio,
1:1:√2
where √2 is the hypotenuse.
For the example, BC = 2√2, then AC = 2√2 x √2 = 4.
Therefore, the three pairs are;
1. (AB = 6, BC = 6)
5. (AB = 4, AC = 4√2)
6.(BC = 2√2, AC = 4).
To know more about Trigonometry follow;
brainly.com/question/24349828
#SPJ12
The complete question is attached below:
Two balls are pulled one after another, without replacement, from the box containing three black, five yellow, and seven red balls. What is the probability that the 1st ball is yellow, if the 2nd ball is black? (Hint: use common fractions during your calculations and round only your final answer to 2 places after the decimal point). A. 0.21 B. 0.36 C. 0.42 D. None of the above
The probability that the first ball is yellow if the second ball is black is 1/14. The correct option is D.
What is the probability?The given question is a classic example of dependent events in probability. As the balls are drawn without replacement, the second event's outcome will depend on the outcome of the first event.
Probability = Number of favorable events/ Total number of events
The probability of the first ball being yellow is [tex](5/15)[/tex], while the probability of the second ball being black is [tex](3/14)[/tex].
Mathematically represented as P(Yellow ball on the first draw) = P(Yellow ball) = [tex]5/15[/tex]
P(Blackball on second draw given Yellow ball on the first draw) = P(Blackball | Yellow ball) = [tex]3/14[/tex]
As both the events are dependent, we need to find the joint probability of both the events, which can be calculated as P(Yellow ball on the first draw and Blackball on the second draw) = P(Yellow ball) × P(Blackball | Yellow ball)
P (Yellow ball on the first draw and blackball on second draw) = [tex](5/15) × (3/14) = 3/42 = 1/14.[/tex]
Therefore, the correct option is D.
Learn more about probability here:
https://brainly.com/question/30034780
#SPJ11
how to calculate the product of two random variable that follows normal distribution with mean 0 and variance 1
To calculate the product of two random variables that follows the normal distribution with mean 0 and variance 1 by using the covariance formula
Cov(X, Y) = E[XY] - E[X]E[Y] = E[XY] - 0 = E[XY]
Given that two random variables follow a normal distribution with mean 0 and variance 1.
Let X and Y be two independent normal random variables such that X ~ N(0,1) and Y ~ N(0,1)
Now, The expected value of the product of two random variables is given by;
E[XY] = E[X]E[Y] + Cov(X,Y)
Where E[X] and E[Y] are the means of the two random variables X and Y respectively.
Cov(X, Y) is the covariance between the two random variables, which can be calculated using the formula;
Cov(X,Y) = E[XY] - E[X]E[Y]
Now, E[X] = E[Y] = 0 as both have a mean of 0.
Cov(X, Y) = E[XY] - E[X]E[Y]
⇒ E[XY] = the expected value of the product of X and Y.
As X and Y are independent, their covariance will be zero, which implies;
Cov(X, Y) = E[XY] - E[X]E[Y] = E[XY] - 0 = E[XY]
Thus, we can calculate the product of two random variables that follow a normal distribution with mean 0 and variance 1 using the above formula for covariance.
To know more about the "covariance": https://brainly.com/question/21287720
#SPJ11
Exponential for (0,35), (1,50), (2,100), (3,200), (4,400)
The exponential equation that fits the data points (0,35), (1,50), (2,100), (3,200), and (4,400) is y = 35 * (10/7)^x.
To find an exponential equation that fits the given data points, we can use the general form of an exponential equation:
y = a * b^x
where y is the dependent variable (in this case, the second coordinate of each data point), x is the independent variable (the first coordinate of each data point), a is the initial value of y when x is 0, and b is the growth factor.
Using the given data points, we can create a system of equations:
35 = a * b^0
50 = a * b^1
100 = a * b^2
200 = a * b^3
400 = a * b^4
The first equation tells us that a = 35, since any number raised to the power of 0 is 1. We can then divide the second equation by the first equation to get:
50/35 = b^1
Simplifying, we get:
10/7 = b
We can now substitute a = 35 and b = 10/7 into the remaining equations and solve for y:
y = 35 * (10/7)^x
This is the exponential equation that fits the given data points. We can use it to find the value of y for any value of x. This equation gives us a way to predict the value of y for any value of x.
To learn more about exponential click on,
https://brainly.com/question/11776332
#SPJ4
Unit 7 polygons and quadrilaterals
Homework 7 trapezoids
** this is a 2-page document **
Directions: if each quadrilateral below is a trapezoid, find the missing measures
The value of ML in the given quadrilateral which is a trapezoid is 58 units.
What is a trapezoid?A polygon with only one set of parallel sides is called a trapezoid. The parallel bases of a trapezoid are another name for these parallel sides. Trapezoids have two additional sides that are not parallel and are referred to as their legs.
Trapezoids are defined differently by different people. A trapezoid can have one and only one pair of parallel sides, according to one school of mathematics, whereas another contends that a trapezoid can have several pairs of parallel sides. If we take into account the second definition, then a parallelogram is also a trapezoid under that definition.
We know that, A median on a trapezoid will be parallel to the bases, with a length equal to the sum of the bases divide by 2.
Thus,
45 = 3x + 11 + 10x - 12 / 2
45 = 13x - 1/ 2
90 = 13x - 1
91 = 13x
x = 7
Substitute the value of x in ML:
ML = 10x - 12
ML = 10(7) - 12
ML = 70 - 12
ML = 58
Hence, the value of ML in the given quadrilateral which is a trapezoid is 58 units.
Learn more about trapezoid here:
https://brainly.com/question/22227061
#SPJ1
20 people ride the bus, 80 people ride motorbikes, 65 people drive vans, and 215 people drive cars. Based on the data, how many would you expect to use motorbikes if you asked 800 people? how many people ride motorbikes
3.
If the expression 1/2x
was placed in the form
ax^b
where a and b are real numbers, then which of the
following is equal to a + b ? Show how you arrived at your answer.
(1) 1
(2) 3/2
(3) 1/2
(4) -1/2
If the expression 1/2x was placed in the form ax^b where a and b are real numbers, then a + b equal to option (4) -1/2
The given expression is 1/(2x), which can be rewritten as:
1/(2x) = 1/2 × (1/x)
Here, we can see that the expression can be written in the form of ax^b, where a = 1/2 and b = -1.
To see why a = 1/2, notice that 1/2 is the coefficient of (1/x). And to see why b = -1, note that x^(-1) is the exponent on the variable x
So, we have:
1/(2x) = (1/2) × x^(-1)
And, a + b = (1/2) + (-1)
Add the numbers
= -1/2.
Therefore, the correct option is (4) -1/2.
Learn more about exponent here
brainly.com/question/219134
#SPJ4
mrs. jeffers started the school year with 22 students. during the school year, another s students joined her class. write an expression that shows the number of students at the end of the year.
At the end of the year, the expression that shows the total number of students is [tex]22+s[/tex]
What is an expression?An expression is a mathematical phrase that can contain numbers, variables, and operators. It doesn't contain an equal sign (=) or a value.
Mrs. Jeffers started the school year with 22 students. During the school year, another s student joined her class.
The expression that shows the number of students at the end of the year is.[tex]22+s[/tex]
The symbol "+" is an operator that stands for addition, and "s" is a variable that represents the number of students who joined the class.
Learn more about expression here:
brainly.com/question/1859113
#SPJ11
There are 58 students enrolled in an art class. The day before the class begins 10.3% of the students cancel. How many students actually attend the art class
The total number of students which attend the art class is 52 which is 89.75 of the total enrolled students that is 58.
Explain about the percentage of number?A Latin word with the meaning "out of one hundred" is percentage.
Working with parts of 100 is much easier than working with thirds, twelfths, and other fractions, especially since many fractions lack a consistent (non-recurring) decimal equivalent.
Significantly, this also makes comparing percentages more simpler than comparing fractions with various denominators. This contributes to the widespread usage of the metric measuring system and decimal currencies.
Total students enrolled for art class = 58
Percentage of cancelled students = 10.3%
Then, Percentage of non-cancelled students = 100 - 10.3 = 89.7%
So,
Attended students = 89.7% of 58.
= 89.7*58 / 100
= 52.06
= 52 (approx)
Thus, the total number of students which attend the art class is 52 which is 89.75 of the total enrolled students that is 58.
Know more about the percentage of number
https://brainly.com/question/26511030
#SPJ1
if terri were to paint her living room alone, it would take 3 hours. her sister angela could do the job in 4 hours. how many hours would it take them working together?
The time in hours which it will take them for working together for terri is about 1.71 hours.
What is the time in hours?Inverse Proportion: When two quantities are related in such a way that the product of one quantity with the reciprocal of the other quantity remains constant, it is said to be in inverse proportion.
Let's calculate their working rate:
Terri takes 3 hours to complete the painting of her living room, so she can paint her living room in [tex]\frac{1}{3} hours[/tex]
Angela takes 4 hours to complete the painting of the living room, so she can paint her living room in [tex]\frac{1}{4} hours[/tex]
If both work together, then the time taken to complete the work will be less than the time taken by each of them individually.
To find the time taken by both working together, we will add their rates.
Terri's work rate = [tex]\frac{1}{3} hours[/tex]
Angela's work rate = [tex]\frac{1}{4} hours[/tex]
Work rate when working together = Terri's rate + Angela's rate= [tex]\frac{1}{3} + \frac{1}{4} = \frac{7}{12}[/tex]
Thus, both will take [tex]\frac{12}{7} = 1.71 hours[/tex] approximately to complete the painting of the living room when they work together.
Therefore, the time in hours is about 1.71 hours.
Learn more about Working rate here:
https://brainly.com/question/29071883
#SPJ11
if there are m ways of doing one thing and n ways of doing another, how many ways are there to do both? for example, if a toy comes in m colors and n sizes, how many different toys can there be
The number of ways of doing both things is N = m × n
How to find the number of ways of doing both things?Since there are m ways of doing one thing and n ways of doing another, to find how many ways are there to do both, we proceed as follows.
Since there are m ways of doing one thing and n ways of doing another, to find the number of many ways to do both things,we multiply both numbers together.
So, then number of ways of doing both things is N = m × n
So, there are m × n ways of doing both things
Learn more about number of ways of doing things here:
brainly.com/question/29594894
#SPJ1
Let Y be a binomial random variable with n trials and probability of success given by p. Use the method of moment-generating functions to show that U = n - Y is a binomial random variable with n trials and probability of success given by 1 - p.
U is a binomial random variable with n trials and probability of success given by 1 - p.
As Y is a binomial random variable with n trials and probability of success given by p. Using the moment-generating functions method, it can be shown that U = n - Y is a binomial random variable with n trials and probability of success given by 1 - p. The binomial distribution is described by two parameters: n, which is the number of trials, and p, which is the probability of success in any given trial. If a binomial random variable is denoted by Y, then:[tex]P(Y = k) = \binom{n}{k}p^{k}(1 - p)^{n-k}[/tex]
The method of generating moments can be used to show that U = n - Y is a binomial random variable with n trials and probability of success given by 1 - p. The moment-generating function of a binomial random variable is given by: [tex]M_{y}(t) = [1 - p + pe^{t}]^{n}[/tex]
The moment-generating function for U is: [tex]M_{u}(t) = E(e^{tu}) = E(e^{t(n-y)})[/tex]
Using the definition of moment-generating functions, we can write: [tex]M_{u}(t) = E(e^{t(n-y)})$$$$= \sum_{y=0}^{n} e^{t(n-y)} \binom{n}{y} p^{y} (1-p)^{n-y}[/tex]
Taking the summation of the above expression: [tex]= \sum_{y=0}^{n} e^{tn} e^{-ty} \binom{n}{y} p^{y} (1-p)^{n-y}$$$$= e^{tn} \sum_{y=0}^{n} \binom{n}{y} (pe^{-t})^{y} [(1-p)^{n-y}]^{1}$$$$= e^{tn} (pe^{-t} + 1 - p)^{n}[/tex]
Comparing this expression with the moment-generating function for a binomial random variable, we can say that U is a binomial random variable with n trials and probability of success given by 1 - p.
To learn more about "Binomial random variable": brainly.com/question/30657837
#SPJ11
The perimeter of a rectangular field is 292 m. If the length of the field is 95 m, what is it's width?
The width of the rectangular field is 51 meters
To find the width of the rectangular field, we need to use the formula for the perimeter of a rectangle, which is:
Perimeter = 2 × (length + width)
We are given that the perimeter of the rectangular field is 292 m and the length is 95 m. So, we can plug in these values into the formula and solve for the width:
292 = 2 × (95 + width)
First, we can simplify the right side of the equation:
292 = 190 + 2 × width
Next, we can isolate the variable (width) on one side of the equation by subtracting 190 from both sides:
292 - 190 = 2 × width
102 = 2 × width
Finally, we can solve for the width by dividing both sides by 2:
width = 51 m
Learn more about perimeter here
brainly.com/question/29595517
#SPJ4
first 6 terms of n² + 7
Answer:
8, 11, 16, 23, 32, and 43.
Step-by-step explanation:
When n = 1:
n² + 7 = 1² + 7 = 8
When n = 2:
n² + 7 = 2² + 7 = 11
When n = 3:
n² + 7 = 3² + 7 = 16
When n = 4:
n² + 7 = 4² + 7 = 23
When n = 5:
n² + 7 = 5² + 7 = 32
When n = 6:
n² + 7 = 6² + 7 = 43
Therefore, the first 6 terms of n² + 7 are 8, 11, 16, 23, 32, and 43.
Answer:
When n = 1, n² + 7 = 1² + 7 = 8
When n = 2, n² + 7 = 2² + 7 = 11
When n = 3, n² + 7 = 3² + 7 = 16
When n = 4, n² + 7 = 4² + 7 = 23
When n = 5, n² + 7 = 5² + 7 = 32
When n = 6, n² + 7 = 6² + 7 = 43
The first 6 terms of n² + 7 are 8, 11, 16, 23, 32, and 43.
Step-by-step explanation:
ᓚᘏᗢ
hope u have a good day man
Name the shape that will result from connecting the points (-4, 1) , (-4, -4) , (0, 3) , and (0, 6) .
A: Square
B: Rectangle
C: Trapezoid
D: Parallelogram
The shape that results from connecting the points (-4, 1), (-4, -4), (0, 3), and (0, 6) is a trapezoid.
What is a trapezoid?A trapezoid is a geometric form that has four sides, two of which are parallel and two of which are nonparallel (or skew lines). A trapezoid is also known as a trapezium (UK) or a trapeze (US).
The trapezoid's parallel sides are known as the bases, and the two nonparallel sides are known as the legs or lateral sides. The trapezoid is also sometimes referred to as the irregular quadrilateral.
How to identify a trapezoid?A quadrilateral is a shape that has four sides, four vertices, and four angles. The following are the characteristics of a trapezoid:
It has four sidesIt has two parallel sides and two nonparallel sidesIt has two opposite sides that are parallel to one another and two other sides that are not parallelIt has two acute angles and two obtuse anglesIt has diagonals that intersect at a midpointThe formula for the area of a trapezoid is as follows:
Area of a trapezoid = [ (base 1 + base 2) / 2 ] x height
To know more about the "trapezoid": https://brainly.com/question/1463152
#SPJ11
x = -3y - 17 2x + 3y = -7
Answer:
x = 10
y = -9
Step-by-step explanation:
x = -3y - 17
2x + 3y = -7
Plug in x
2 (-3y - 17) + 3y = -7
-6y - 34 + 3y = -7
-3y = 27
y = -9
Plug in the value you got for y back into the equation to find the x value
x = -3(-9) - 17
x = 10
Pls Help very Confused
Answer: x=1
Step-by-step explanation:
Vertical angles mean they are equal to each other. So first you would set the two equations equal to each other.
7x+26=4x+29
Then subtract 4x from both sides.
7x+26−4x=29
combine 7x and −4x to get 3x.
3x+26=29
Then subtract 26 from both sides.
3x=29−26
subtract 26 from 29 to get 3.
3x=3
Lastly divide both sides by 3.
3/3x=3/3
Divide 3 by 3 to get 1.
x=1
A right cone has a base with diameter 14 units. The volume of the cone is 392π
cubic units. What is the length of a segment drawn from the apex to the edge of the circular base?
The segment drawn from the apex to the circumference of the circle's base is 25 units long.
Let's denote the radius of the circular base of the cone by r, and the height of the cone by h. Then, the diameter of the base is given as 14 units, which means that the radius is r = 14/2 = 7 units.
We are given that the volume of the cone is 392π cubic units, which means that:
(1/3)πr²h = 392π
Simplifying this equation, we get:
r²h = 1176
Substituting r = 7, we get:
49h = 1176
Solving for h, we get:
h = 24
So the height of the cone is 24 units.
To find the length of a segment drawn from the apex to the edge of the circular base, we can use the Pythagorean theorem. Let's denote this length by L. Then, we have:
L² = r² + h²
Substituting r = 7 and h = 24, we get:
L² = 7² + 24²
L² = 625
Taking the square root of both sides, we get:
L = 25
Therefore, the length of the segment drawn from the apex to the edge of the circular base is 25 units.
To learn more about circumference click here
brainly.com/question/28757341
#SPJ4
Marisa bought a car for $9,632. She paid $2,000 down. She will pay the remainder
in 24 monthly payments. How much will she pay each month?
Explain your answer.
Answer: $318/mo
Step-by-step explanation:
First, we get the remainder, which is the difference between $9, 632 and $2,000. That gives us $7, 632.
Then, since we know she will pay in 24 months, we assume she pays the same amount each month and divide $7, 632 by 24 = $318/mo
The points (-6,3) and (10,r) lie on a line with slope 1/2 find the missing coordinate r
The missing cοοrdinate r is 11
What is Slοpe ?Slοpe is calculated by finding the ratiο οf the "vertical change" tο the "hοrizοntal change" between (any) twο distinct pοints οn a line. Sοmetimes the ratiο is expressed as a quοtient ("rise οver run"), giving the same number fοr every twο distinct pοints οn the same line.
First use pοint slοpe fοrm tο find yοur equatiοn
y - y1 = m ( x - x1) using (-6,3) and m= 1/2
y - 3 = 1/2 ( x - -6)
y - 3 = 1/2x + 3
Add 3 tο each side tο isοlate y
y -3 +3 = 1/2x +3 +3
y = 1/2x + 6
Nοw we knοw οur y-intercept is 6
Sο we can graph (-6, 3) and (0, 6) and draw a line
Nοw draw a vertical line at x = 10 because we want tο find the y value at x=10
y = 11
Learn more about Slοpe
https://brainly.com/question/16859730
#SPJ1
See attached graph
please help
this is all the information i have!
New points of graph A'B'C'D' are A'(-2, -2), B'(-2, 0), C'(-4, 0), D'(-4, -1)
Define the term Translation?In graph theory, the term "translation" refers to a type of operation that moves all the vertices and edges of a graph by a fixed distance in a given direction. Specifically, a translation of a graph involves shifting every vertex a certain distance horizontally and/or vertically, without changing the shape or connectivity of the graph.
Translation: 4 left and 2 down
Start with a point at its original location and then move it 4 units to the left and 2 units down. This can be done by subtracting 4 from the x-coordinate and subtracting 2 from the y-coordinate of the point or shape.
Given points in a graph ABCD are, A(2, 0), B(2, 2), C(0, 2), D(0, 1)
Subtract 4 from the x-coordinate and subtract 2 from the y-coordinate, resulting in a new points of graph A'B'C'D' are A'(-2, -2), B'(-2, 0), C'(-4, 0), D'(-4, -1)
The figure shown in below diagram.
To know more about graph, visit:
https://brainly.com/question/11803331
#SPJ1