Answer:
[tex] 2^\frac{3}{10} [/tex]
Step-by-step explanation:
[tex] \dfrac{2^\frac{2}{5}}{2^\frac{1}{10}} = [/tex]
[tex]= 2^{\frac{2}{5} - \frac{1}{10}}[/tex]
[tex]= 2^{\frac{4}{10} - \frac{1}{10}}[/tex]
[tex] = 2^\frac{3}{10} [/tex]
During a manufacturing process, a metal part in a machine is exposed to varying temperature conditions. The manufacturer of the machine recommends that the temperature of the machine part remain below 131°F. The temperature T in degrees Fahrenheit x minutes after the machine is put into operation is modeled by T=-0.005x^2+0.45x+125. Will the temperature of the part ever reach or exceed 131°F? Use the discriminant of a quadratic equation to decide.
answer options
1. No
2. Yes
From the discriminant of the give quadratic equation, the temperature of the machine will part after 50 minutes of operation.
Will the temperature of the part ever reach or exceed 135°F?The given equation that models the temperature of the machine is;
T = -0.005x² + 0.45x + 125
Let check if there's a value that exists for T = 135
Putting T = 135 in the given equation,
135 = -0.005x² + 0.45x + 125
We can simplify this to;
0.005x² - 0.45x + 10 = 0
From the general form of quadratic equation which is ax² + bx + c = 0, where a = 0.005, b = -0.45, and c = 10.
The discriminant of this quadratic equation is given by:
D = b² - 4ac
= (-0.45)² - 4(0.005)(10)
= 0.2025 - 0.2
= 0.0025
The discriminant of the equation is positive which indicates we have two roots. Therefore, the temperature of the machine part will cross 135°F at some point during the operation.
We can also find the roots of the quadratic equation using the formula:
[tex]x = (-b \± \sqrt(D)) / 2a[/tex]
Substituting the values of a, b, and D, we get:
[tex]x = (0.45 \± \sqrt(0.0025)) / 2(0.005)\\= (0.45 \± 0.05) / 0.01[/tex]
Taking the positive value, we get:
x = 50
Therefore, the temperature of the machine part will cross 135°F after 50 minutes of operation.
Learn more on discriminant here;
https://brainly.com/question/12526527
#SPJ1
In a budget, what type of expense is an flu shot?
In a budget, an expense for a flu shot would typically fall under the category of "Healthcare" or "Medical Expenses".
What is Flu Shot?
A flu shot is a vaccine that helps protect against the influenza virus, which can cause the flu. The vaccine works by stimulating the body's immune system to produce antibodies that can recognize and fight off the flu virus. The flu shot is usually given as an injection in the upper arm, and it typically contains small amounts of inactivated flu viruses, which cannot cause the flu.
The Centers for Disease Control and Prevention (CDC) recommends that everyone over the age of six months get a flu shot every year, as the flu can be a serious and sometimes deadly illness. The flu virus can mutate and change each year, so getting a flu shot annually helps protect against the most prevalent strains of the virus that are circulating. While the flu shot does not guarantee that a person won't get the flu, it can greatly reduce the severity and duration of the illness if contracted.
To know more about Flu Shot visit:
https://brainly.com/question/14603083
#SPJ1
Drag each tile to its equivalent measure, rounded to the nearest tenth.
Options: 19.8, 10.2, 22.7, 15.4
Measure Equivalent
4 in. _____ Cm
7 kg _____lb
6 gal _____L
65 ft _____ m
The correct matches are: 4 in. → 10.2 cm , 7 kg → 15.4 lb
6 gal → 22.7 L and 65 ft → 19.8 m.
What are conversions?Conversions refer to the process of changing a measurement from one unit to another unit that measures the same quantity.
For example, converting distance from miles to kilometers, or converting weight from pounds to kilograms.
Here are the conversions:
1 inch = 2.54 cm (approx.)
1 kg = 2.205 lb (approx.)
1 gal = 3.785 L (approx.)
1 ft = 0.3048 m (approx.)
Using these conversions, we can find the equivalent measures:
4 in. → 4 × 2.54 = 10.16 ≈ 10.2 cm
7 kg → 7 × 2.205 = 15.435 ≈ 15.4 lb
6 gal → 6 × 3.785 = 22.71 ≈ 22.7 L
65 ft → 65 × 0.3048 = 19.812 ≈ 19.8 m
To know more about equivalent measures visit:
https://brainly.com/question/29156458
#SPJ1
sams rectangular swimming pool has a volume of 600 cubic feet, the neighbors pools the same length and height but the width is three times larger. what is the volume of the neighbors pool?
Answer: Let's denote the length, width, and height of Sam's pool as l, w, and h, respectively. Then, we have:
lwh = 600
For the neighbor's pool, we know that it has the same length and height as Sam's pool, but the width is three times larger. Let's denote the width of the neighbor's pool as 3w. Then, the volume of the neighbor's pool is:
l(3w)h = 3lwh = 3(600) = 1800 cubic feet
Therefore, the volume of the neighbor's pool is 1800 cubic feet.
Step-by-step explanation:
FOR 15 POINTS!! Select one of the Theorems from section 2.2 and do the following:
1. Explain why you chose to explore that theorem.
2. Write down the formal definition of the theorem.
3. Explain the theorem in your own words.
4. Find or create an example with new numbers and explain how/why it works.
Here are the 4 Theorems you can choose from:
1. Angle Sum Theorem
2. Third Angle Theorem
3 Exterior Angle Theorem
4. Corollary of Exterior Angle Theorem
In response to the stated question, we may state that We know that these two angles are complimentary since their total is 90 degrees.
what are angles?An angle is a form in Euclidean geometry that is composed of a pair of rays, known as such angle's sides, that meet at a center point known as the angle's vertex. Two rays may merge to generate an angle in the plane in which they are located. An angle is formed when two planes collide. They are known as dihedral angles. In plane geometry, an angle is a potential arrangement of two rays or lines whose share a termination. The English term "angle" is derived from the Latin word "angulus," which means "horn." The apex is the point in which the two rays, often known as the angle's sides, converge.
Angle Sum Theorem formal definition:
The total of the three interior angles of a triangle is always equal to 180 degrees.
The Angle Sum Theorem states:
According to the Angle Sum Theorem, the sum of a triangle's internal angles is always equal to 180 degrees. In other terms, using new numbers:
Consider a triangle having three angles of 70 degrees, 60 degrees, and 50 degrees. The Angle Sum Theorem states that the sum of these angles should be 180 degrees.
[tex]70 + 60 + 50 = 180\\90 + x + y = 180\sx + y = 90[/tex]
We know that these two angles are complimentary since their total is 90 degrees.
To know more about angles visit:
https://brainly.com/question/14569348
#SPJ1
Find the coordinates of the center and the measure of the radius for a circle whose equation is(x - 8) + (y + 4) = 12
The center coordinates and radius of the given circle (x - 8)^2 + (y + 4)^2 = 12 is given by ( 8 ,-4 ) and 2√3 respectively.
Equation of the circle is equal to ,
(x - 8)^2 + (y + 4)^2 = 12.
Standard form of the equation of the circle is equals to,
( x - a )^2 + ( y - b )^2 = r^2 ___(1)
Where ( a, b ) are the coordinates of the center of the circle.
And r is the radius of the circle.
Convert the equation of the circle (x - 8)^2 + (y + 4)^2 = 12 into standard form we have,
(x - 8)^2 + (y + 4)^2 = ( 2√3 )^2 ___(2)
Compare equation (1) and (2) to get coordinates of the center and radius of the circle.
Here value of a = 8
value of b = -4
Radius of the circle 'r' = 2√3
Therefore, the center of the coordinates and radius of the circle is equal to ( 8 ,-4 ) and 2√3 respectively.
learn more about circle here
brainly.com/question/23132834
#SPJ4
The above question is incomplete, the complete question is:
Find the coordinates of the center and the measure of the radius for a circle whose equation is(x - 8)^2 + (y + 4)^2 = 12.
Write a sine function that has a midline of, y=5, an amplitude of 4 and a period of 2.
Answer:
y = 4 sin(π x) + 5
Step-by-step explanation:
A sine function with a midline of y=5, an amplitude of 4, and a period of 2 can be written in the following form:
y = A sin(2π/ x) +
where A is the amplitude, is the period, is the vertical shift (midline), and x is the independent variable (usually time).
Substituting the given values, we get:
y = 4 sin(2π/2 x) + 5
Simplifying this expression, we get:
y = 4 sin(π x) + 5
Therefore, the sine function with the desired characteristics is:
y = 4 sin(π x) + 5
Find the value of the derivative (if it exists) at the given extremum. (If an answer does not exist, enter DNE.) f(x) = (x + 4)^2/3 f'(-4) = Find the critical numbers of the function. f(x) = x^6 - 6x^5
The critical numbers of f(x) = x^6 - 6x^5 are x = 0 and x = 5 at the given extremum.
To find the derivative of f(x), we use the chain rule and power rule:
f(x) = (x + 4)^(2/3)
f'(x) = (2/3)(x + 4)^(-1/3)(1)
f'(-4) = (2/3)(-4 + 4)^(-1/3)(1) = DNE (the derivative does not exist at x = -4)
To find the critical numbers of f(x), we first find the derivative:
f(x) = x^6 - 6x^5
f'(x) = 6x^5 - 30x^4
Next, we set the derivative equal to zero and solve for x:
6x^5 - 30x^4 = 0
6x^4(x - 5) = 0
So the critical numbers of f(x) are x = 0 and x = 5.
To know more about Derivatives:
https://brainly.com/question/30365299
#SPJ4
A boat is heading towards a lighthouse, whose beacon-light is 148 feet above the water. The boat’s crew measures the angle of elevation to the beacon, 8 degrees. What is the ships horizontal distance from the lighthouse(and the shore)? Round your answer to the nearest hundredth of a foot if necessary.
We can use trigonometry to solve this problem. Let's call the horizontal distance from the boat to the lighthouse "x". We can use the tangent function to find x:
tangent(8 degrees) = opposite / adjacent
tangent(8 degrees) = 148 / x
To solve for x, we can rearrange the equation:
x = 148 / tangent(8 degrees)
x ≈ 1041.87 feet
So the ship's horizontal distance from the lighthouse (and the shore) is approximately 1041.87 feet or 1041.87 rounded to the nearest hundredth of a foot if necessary.
Answer:
Your answer is 1053.07
Hope I helped!
Step-by-step explanation:
At a sale Jenny receives 10% off followed by a further 10% staff discount.
Calculate the first discount on a $300 camera.
If n is an integer and n > 1, then n! is the product of n and every other positive integer that is less than n. for example, 5! = 5 x 4 x 3 x 2 x 1a. Write 6! in standard factored formb. Write 20! in standard factored formc. Without computing the value of (20!)2, determine how many zeros are at the end of this number when it is written in decimal form. Justify your answer
a. 6! = 6 x 5 x 4 x 3 x 2 x 1 = 720. b. 20! = 20 x 19 x 18 x ... x 2 x 1. c. There are 16 zeros at the end of the decimal representation of (20!)2.
a. 6! = 6 x 5 x 4 x 3 x 2 x 1 = 720
b. 20! = 20 x 19 x 18 x ... x 2 x 1. To write this in factored form, we can identify the prime factors of each number and write the product using exponents. For example, 20 = 2² x 5, so we can write 20! as:
20! = (2² x 5) x 19 x (2 x 3²) x 17 x (2² x 7) x 13 x (2 x 2 x 3) x 11 x (2³) x (3) x (2) x 7 x (2) x 5 x (2) x 3 x 2 x 1
Simplifying, we get:
20! = 2¹⁸ x 3⁸ x 5⁴ x 7² x 11 x 13 x 17 x 19
c. The number of zeros at the end of (20!)² in decimal form is determined by the number of factors of 10, which is equivalent to the number of factors of 2 x 5. Since there are more factors of 2 than 5 in the prime factorization of (20!)², we only need to count the number of factors of 5. There are four factors of 5 in the prime factorization of 20!, which contribute four factors of 10 to the square. Therefore, (20!)²ends in 8 zeros when written in decimal form.
Learn more about integer here: brainly.com/question/15276410
#SPJ4
93. Electricity Usage The graph shows
the daily megawatts of electricity used
on a record-breaking summer day in
Sacramento, California.
(a) Is this the graph of a function?
(b) What is the domain?
(c) Estimate the number of megawatts
used at 8 A.M.
(d) At what time was the most electric-
ity used? the least electricity?
(e) Call this function f. What is f(12)?
Interpret this answer.
(f) During what time intervals is usage
increasing? decreasing?
Sacramento, California's electricity demand on a scorching summer day is depicted in a function graph. The domain is 24 hours of a day.
The site is available around-the-clock.
One thousand two hundred megawatts are consumed at eight in the morning.
The hours between 4:00 and 6:00 pm saw the highest electricity use, while 4:00 am saw the lowest use.
It would be 1,900 megawatts for f (12).
From 4 am to 5 pm, usage rises, and from 5 pm to 4 am, it falls.
What is displayed by the graph?Because each point on the graph reflects a different megawatt usage, the graph is a function. As this graph of electricity usage illustrates, the domain would be available throughout the entire day.
At 8 a.m., these megawatts are used:
= 1, 300 - ( 200 / 2 )
equal to 1,200 megawatts
As people get ready for work and leave for work, we can observe an increase in power demand from 4 am to 5 pm, but a reduction from 5 pm to 4 am.
To learn more about graphs from given link
https://brainly.com/question/31125739
#SPJ1
An instructor is administering a final examination. She tells her class that she with give an A grade to the 10% of the students who earns the highest marks. Past experience with the same examination has yielded grades that are normally distributed with a mean of 70 and a standard deviation of 10. If present class runs true to form, what numerical score would a student need to earn an A grade?
To earn an A grade, a student needs to score at least 82.8 , calculated using the inverse normal cumulative distribution function with a mean of 70, a standard deviation of 10, and a 10th percentile of 0.10.
Given that the grades are normally distributed with a mean of 70 and a standard deviation of 10.
We need to find the score which is at the 10th percentile of the distribution.
Using the standard normal distribution table, we can find the z-score that corresponds to the 10th percentile.
From the table, we can see that the z-score is approximately -1.28.
Using the formula for standardizing a normal distribution:
z = (x - μ) / σ
where z is the z-score, x is the raw score, μ is the mean, and σ is the standard deviation.
Substituting the given values, we have:
-1.28 = (x - 70) / 10
Solving for x, we get:
x = (-1.28 * 10) + 70
x = 82.8
Therefore, a student would need to earn a score of approximately 82.8 to receive an A grade.
To know more about standard deviation:
https://brainly.com/question/23907081
#SPJ4
two random vectors follow the same distribution does this mean every marginalized variables have to follow the same distribution
Yes. they can in fact, more than two independent variables can have the same distribution. Two random vectors follow the same distribution, which means that each marginalized variable must follow the same distribution.
In probability theory and statistics, the marginal distribution of a subset of a set of random variables is the probability distribution of the variables contained in that subset. It gives the probability of different values of variables in the subset without reference to the values of other variables. This contrasts with conditional distributions, which give probabilities based on the values of other variables.
The marginal variables are the variables of the subset of variables which are retained. These concepts are "marginal" because they can be found by adding the values of the rows or columns of a table and writing the sum in the blank space of the table.
The distribution of the marginal variable (marginal distribution) is obtained by marginalizing the distribution of the suppressed variable (that is, focusing on the sum in the margin), and the suppressed variable is called marginalized.
Complete Question:
If two random variables have the same PDF/PMF, then does this mean they have the same distribution?
Learn more about Variable:
https://brainly.com/question/29696241
#SPJ4
when emotive words are used in a group, which of the following questions should group members ask themselves?
The correct answer is All. (i.e.as a group what do we do?, how would you discuss this issue?, what new rules might this group create to allow for emotive words yet avoid the consequences of their use?)
Group members should ask themselves how their use of emotive words may affect the group dynamic, and should consider how can they use these words to make other group members feel and if it is appropriate to express their opinion in this way and also think about the impact this might have on the group's ability to achieve its goals and objectives.
They should consider what new rules may be created to allow for emotive words yet avoid the consequences of their use. And also they should ask themselves if there are other ways to express their opinion which may be much effective and appropriate. All of these questions should be asked in order to ensure that the group remains respectful and productive.
Full Question:
when emotive words are used in a group, which of the following questions should group members ask themselves?
as a group what do we do?how would you discuss this issue?what new rules might this group create to allow for emotive words yet avoid the consequences of their use?To know more about consequences:
brainly.com/question/22094348
#SPJ4
Help please need to pass this
Answer:
45%
Step-by-step explanation:
86 people play an instrument out of 192 students.
86/192 = .4479
.4479 x 100% = 44.79% = 45%
Answer: 45 percent
Step-by-step explanation:
what is the integral of e^{\cos\left(e^{\cos\left(e^{\cos\left(e^{\cos\left(x\right)}\right)}\right)}\right)}
The integral of [sin x / cos x] + [cos x / sin x] is (1/2) x ln |tan x| - (1/2) x ln |sec x| + C
The integral you have provided can be rewritten as:
∫ [sin x / cos x] + [cos x / sin x] dx
Using algebraic manipulation, we can simplify this expression to:
∫ (sin² x + cos² x) / (cos x x sin x) dx
Now, we can use the method of partial fractions to break down the integrand into simpler fractions. To do this, we first need to factor the denominator:
cos x x sin x = (1/2) x (sin 2x)
We can then express the integrand as:
(sin² x + cos² x) / [(1/2) x (sin 2x)]
Using the partial fractions technique, we can express the integrand as:
(sin² x + cos² x) / [(1/2) x (sin 2x)] = A / sin 2x + B / cos 2x
where A and B are constants that we need to determine. To solve for A and B, we can multiply both sides by sin 2x x cos 2x, which gives us:
sin² x + cos² x = A x cos 2x + B x sin 2x
We can then use the trigonometric identities sin² x + cos² x = 1 and cos 2x = 2 x cos² x - 1, and sin 2x = 2 x sin x x cos x, to simplify the equation to:
1 = (2A - B) x cos² x + (2B) x sin x x cos x - A
We now have two equations (for x = 0 and x = π/2) and two unknowns (A and B), which we can solve simultaneously to obtain:
A = 1/2 and B = -1/2
Using these values, we can express the integrand as:
(sin² x + cos² x) / [(1/2) x (sin 2x)] = (1/2) x [1 / sin 2x - 1 / cos 2x]
We can now integrate each term separately:
∫ [sin x / cos x] + [cos x / sin x] dx = ∫ [(1/2) x (1 / sin 2x - 1 / cos 2x)] dx = (1/2) x ln |tan x| - (1/2) x ln |sec x| + C
where C is the constant of integration. Therefore, the final answer to the given integral is:
∫ [sin x / cos x] + [cos x / sin x] dx = (1/2) x ln |tan x| - (1/2) x ln |sec x| + C
To know more about integral here
https://brainly.com/question/18125359
#SPJ4
Complete Question:
what is the integral of
[sin x / cos x] + [cos x / sin x]
Consider parallelogram ABCD below.
Use the information given in the figure to find m/BAC, m/B, and x.
Answer:
Since opposite angles in a parallelogram are congruent, we know that:
m∠DAB = m∠BCD = 67°
Since ∠BAC and ∠BCD are adjacent angles, we know that:
m∠BAC + m∠BCD = 180°
So we can solve for m∠BAC:
m∠BAC + 67° = 180°
m∠BAC = 113°
Since opposite angles in a parallelogram are congruent, we know that:
m∠BAD = m∠BC
So we can solve for m∠BC:
m∠BAD = 16
m∠BC = 16°
Finally, we can solve for x by using the fact that the interior angles of a quadrilateral sum to 360 degrees:
m∠DAB + m∠BAC + m∠BCD + m∠CDA = 360°
67° + 113° + m∠BCD + 90° = 360°
m∠BCD = 90°
So we can solve for x:
m∠4B - m∠BCD = 90° - 90° = 0
4x - 59° = 0
4x = 59°
x = 14.75°
Therefore, m/BAC = 113°, m/B = 16°, and x = 14.75°.
what is the square root of 8
2√2
The square root of 8 in radical form is represented as √8 which is also equal to 2√2 and as a fraction, it is equal to 2.828 approximately.
Answer this imagine please
The expression that is not equivalent to the model shown is given as follows:
-4(3 + 2). -> Option C.
What are equivalent expressions?Equivalent expressions are mathematical expressions that have the same value, even though they may look different. In other words, two expressions are equivalent if they produce the same output for any input value.
The expression for this problem is given by three times the subtraction of four, plus three times the addition of 2, hence:
3(-4) + 3(2) = -12 + 6 = 3(-4 + 2) = 3(-2) = -6.
Hence the expression that is not equivalent is the expression given in option C, for which the result is given as follows:
-4(3 + 2) = -4 x 5 = -20.
More can be learned about equivalent expressions at https://brainly.com/question/15775046
#SPJ1
Which of the following random variables can be approximated to discrete distribution and continuous distribution? a. b. C. d. The wages of academician and non-academician workers in UPSI. The time taken to submit online quiz answer's document. The prices of SAMSUM mobile phones displayed at a phone shop The number of pumps at Shell petrol stations in Perak. [2 marks] 10% chance of contamination by a particular
10% chance of contamination by a particular: It's not clear what random variable is being referred to here, but if it's the probability of contamination.
What is Distribution?In general terms, a distribution refers to the way something is divided or spread out. In the context of statistics and probability theory, a distribution is a mathematical function that describes the likelihood of different possible outcomes or values that a variable can take.
There are various types of distributions, but some of the most commonly used ones include:
Normal distribution: also known as the Gaussian distribution, it is a continuous probability distribution that is symmetrical around the mean, with most of the data falling within one standard deviation of the mean.
Binomial distribution: this is a discrete probability distribution that describes the likelihood of a certain number of successes in a fixed number of trials.
Poisson distribution: another discrete probability distribution that describes the likelihood of a certain number of events occurring in a fixed interval of time or space.
Exponential distribution: a continuous probability distribution that describes the time between events occurring at a constant rate.
Distributions are essential in statistical analysis as they can help to understand and analyze data, make predictions, and draw conclusions about a population based on a sample of data.
Given by the question.
a. The wages of academician and non-academician workers in UPSI: This random variable can be approximated to a continuous distribution as wages can take on any numerical value within a range. However, it's worth noting that in practice, there may be discrete intervals or categories of wages, in which case a discrete distribution may be more appropriate.
b. The time taken to submit online quiz answer's document: This random variable can also be approximated to a continuous distribution as it can take on any numerical value within a range.
c. The prices of SAMSUNG mobile phones displayed at a phone shop: This random variable can be approximated to a continuous distribution as prices can take on any numerical value within a range.
d. The number of pumps at Shell petrol stations in Perak: This random variable can be approximated to a discrete distribution since the number of pumps can only take on integer values.
To learn more about function:
https://brainly.com/question/21145944
#SPJ1
Solve for x, using a
tangent and a secant line.
64°
X
145°
x = [?]° Remember: a = b
c-b
2
Enter
Considering the secant-tangent theorem, the value of x is given as follows: x = 17º.
What is the secant-tangent theorem?The secant-tangent theorem states that when a tangent and a secant line intersect at a point outside a circle, the measure of the angle of intersection is given by half the difference between the arc length of the far arc by the arc length of the near arc.
Hence the equation is given as follows:
y = (far arc - near arc)/2.
The parameters for this problem are given as follows:
far arc = 145º.near arc = x.Angle = 64º.Hence the value of x is obtained as follows:
64 = (145 - x)/2
145 - x = 128
x = 17º.
More can be learned about the secant-tangent theorem at https://brainly.com/question/9132922
#SPJ1
Bria is a customer who would like to display her collection of soap carvings on top of her bookcase. The collection needs an area of 300 square inches. What should b equal for the top of the bookcase to have the correct area? Round your answer to the nearest tenth of an inch.
help me pls D;
please D:
The breadth, B which the soap carvings should be equal for the top of the bookcase to have the correct area is 5 inches.
How to calculate the area of a rectangle?In Mathematics, the area of a rectangle can be calculated by using the following mathematical equation:
A = LB
Where:
A represent the area of a rectangle.B represent the width or breadth of a rectangle.L represent the length or height of a rectangle.Substituting the given parameters into the area of rectangle formula, we have the following;
Area of soap carvings = length × width
300 = 60B
Width, B = 300/60
Width, B = 5 inches.
Read more on area of a rectangle here: brainly.com/question/25292087
#SPJ1
which of the following statements about the car's motion is true?
Answer: the last one
Step-by-step explanation:
the car went slow at the end
I will mark you brainiest!
Given parallelogram RUST and m∠RUT = 43º, what other angle has the same measurement?
A) ∠RTS
B) ∠RUS
C) ∠STU
Answer:
(c) ∠STU
Step-by-step explanation:
Transversal UT between parallel sides RU and ST creates alternate interior angles RUT and STU. These are congruent.
∠STU has the same measure as ∠RUT
_____
The figure shown is a trapezoid, not a parallelogram.
FILL IN THE BLANK Random variation in a process indicates __________; whereas non-random variation indicates process __________.
Random variation in a process indicates natural variation ; whereas non-random variation indicates process variation
Random variation in a process refers to the natural variation or randomness that occurs in a process due to various factors that are not controlled or predictable. For example, in a manufacturing process, random variation can be caused by factors such as differences in raw materials, operator error, or environmental conditions that are not controlled.
On the other hand, non-random variation in a process refers to the variation that is not due to chance and is likely caused by specific factors that are affecting the process. Non-random variation is also known as special cause variation. Special cause variation can be caused by factors such as a change in machine settings, a change in process parameters, or a change in the process inputs.
Learn more about random variation here
brainly.com/question/15692082
#SPJ4
Select which function f has an inverse g that satisfies g prime of 2 equals 1 over 6 period
f(x) = 2x3
f of x equals 1 over 8 times x cubed
f(x) = x3
1 over 3 times x cubed
The function that satisfies F Has An Inverse G That Satisfies G'(2) = 1/6 is f(x) = 2x³ (option a).
More precisely, if f(x) is a function, then its inverse function g(x) satisfies the following two conditions:
g(f(x)) = x for all x in the domain of f
f(g(x)) = x for all x in the domain of g
In other words, if we apply f(x) to an input value x, and then apply g(x) to the resulting output, we get back to the original input value.
Now, let's look at the given condition: G'(2) = 1/6. This means that the derivative of the inverse function at x=2 is 1/6. We can use this condition to eliminate some of the options.
f(x) = 2x³
If we take the derivative of f(x), we get: f'(x) = 6x²
To find the inverse function, we can solve for x in the equation y = 2x³:
x = [tex]y/2^{(1/3)}[/tex]
Now we can express the inverse function g(x) in terms of y:
g(y) = [tex]y/2^{(1/3)}[/tex]
To find the derivative of g(x), we use the chain rule:
g'(x) = f'(g(x))⁻¹
g'(2) = f'(g(2))⁻¹
g'(2) = f'([tex]1/2^{(1/3)}[/tex])⁻¹
g'(2) = 6([tex]1/2^{(1/3)}[/tex])²)⁻¹
g'(2) = 6/36 = 1/6
Since g'(2) = 1/6, option a) is the correct answer.
To know more about function here
https://brainly.com/question/28193995
#SPJ4
The bells bought a $386,000 house. They made a down payment of $49,000 and took out a mortgage for the rest. Over the course of 15 years they made monthly payments of $2843.81 on their mortgage until it was paid off.
What was the total amount they ended up paying for the house (including the down payment and monthly payments)?
How much interest did they pay on the mortgage?
Answer:
Step-by-step explanation:
The total amount paid for the house is the sum of the down payment and the total amount paid for the mortgage.
The total amount paid for the mortgage can be calculated as follows:
Number of monthly payments = 15 years x 12 months/year = 180 months
Total amount paid for the mortgage = 180 x $2843.81 = $511,086.80
Therefore, the total amount paid for the house is:
$386,000 + $511,086.80 = $897,086.80
To calculate the amount of interest paid, we need to subtract the principal amount (the original amount borrowed) from the total amount paid for the mortgage.
Principal amount = Total amount borrowed - Down payment = $386,000 - $49,000 = $337,000
Total interest paid = Total amount paid for the mortgage - Principal amount = $511,086.80 - $337,000 = $174,086.80
Therefore, they paid a total of $897,086.80 for the house, and they paid $174,086.80 in interest on their mortgage.
A spherical balloon is inflated with gas at a rate of 900 cubic centimeters per minute. (a) Find the rates of change of the radius when r-70 centimeters and r 95 centimeters. r 70 X cm/min r = 95 X cm/min
When the radius of spherical balloon r = 70 cm, the rate of change of the radius is approximately 0.002 cm/min and when the radius is 95 cm then the rate of change of the radius is approximately 0.001 cm/min.
The volume of a sphere is given by V = (4/3)πr^3, where r is the radius. Differentiating both sides with respect to time t, we get:
dV/dt = 4πr^2(dr/dt)
where dV/dt is the rate of change of the volume and dr/dt is the rate of change of the radius.
We are given that dV/dt = 900 cm^3/min.
When r = 70 cm, we can solve for dr/dt as follows:
900 = 4π(70)^2(dr/dt)
dr/dt = 900 / (4π(70)^2) ≈ 0.002 cm/min
Therefore, when r = 70 cm, the rate of change of the radius is approximately 0.002 cm/min.
Similarly, when r = 95 cm, we can solve for dr/dt as follows:
900 = 4π(95)^2(dr/dt)
dr/dt = 900 / (4π(95)^2) ≈ 0.001 cm/min
Therefore, when r = 95 cm, the rate of change of the radius is approximately 0.001 cm/min.
To know more about Rate of change of radius:
https://brainly.com/question/30097646
#SPJ4
In Problems 21 through 30, set up the appropriate form of a
particular solution yp, but do not determine the values of the
coefficients.y" – 2y' + 2y = et sin x = . =
The particular solution of Differential equation y" – 2y' + 2y = et sin x is yp = (1/2et - 1/2et cos(x))sin(x).
We assume the particular solution is of the form of given differential equation is
yp = (Aet + Bcos(t))sin(x) + (Cet + Dsin(t))cos(x)
where A, B, C, and D are constants to be determined.
Taking the first and second derivative of yp with respect to t:
yp' = Aet sin(x) - Bsin(t)sin(x) + Cet cos(x) + Dcos(t)cos(x)
yp'' = Aet sin(x) - Bcos(t)sin(x) - Cet sin(x) + Dsin(x)cos(t)
Substituting these into the differential equation and simplifying, we get:
(et sin x) = (A - C)et sin(x) + (B - D)cos(x)sin(t)
Since et sin x is not a solution to the homogeneous equation, the coefficients of et sin x and cos(x)sin(t) on both sides of the equation must be equal. Therefore:
A - C = 1 and B - D = 0
Solving for A, B, C, and D, we get:
A = 1/2, B = 0, C = -1/2, D = 0
So the particular solution is:
yp = (1/2et - 1/2et cos(x))sin(x)
To know more about Differential Equation:
https://brainly.com/question/2273154
#SPJ4