What happens to the surface area of the following rectangular prism if the width is doubled?

The surface area is doubled.

The surface area is increased by 144 sq ft.

The surface area is increased by 160 sq. ft.

The surface area is increased by 112 sq ft.

What Happens To The Surface Area Of The Following Rectangular Prism If The Width Is Doubled?The Surface

Answers

Answer 1

The observation of the surface area of the figure and the surface area when the width of the figure is doubled indicates;

The surface area is increased by 144 sq ft

What is the surface area of a regular shape?

The surface area of a regular shape is the two dimensional surface the shape occupies.

The surface area, A, of the prism in the figure can be found as follows;

A = 2 × (8 × 6 + 8 × 4 + 4 × 6) = 208

Therefore, the surface area of the original prism is 208 ft²

The surface area when the width is doubled, A' can be found as follows;

The width of the prism = 6 ft

When the width is doubled, we get;

A' = 2 × (8 × 6 × 2 + 8 × 4 + 4 × 6 × 2) = 352

The new surface area of the prism when the width is doubled, is therefore;

A' = 352 ft²

The comparison of the surface areas indicates that we get;

ΔA = A' - A = 352 ft² - 208 ft² = 144 ft²

When the width is doubled, the surface area increases by 144 square feet

Learn more on the surface area of regular shapes here: https://brainly.com/question/31326377

#SPJ1


Related Questions

Find the approximate area of this shape

screenshot below

Answers

Answer:

The answer is 197cm²

Step-by-step explanation:

Area of shape =Area of semi circle +Area of rectangle

A=1/2pir²+L×B

A=1/2×3.14×10²+10×4

A=157+40

A=197cm²

Answer:

10(4) + (1/2)π(5^2)

= 40 + (25/2)π cm^2

= about 79.27 cm^2

If we use 3.14 for π:

40 + (1/2)(3.14)(5^2)

= 40 + 39.25 = about 79.25 cm^2

evaluate the definite integral. ⁄2 csc(t) cot(t) dt ⁄4

Answers

The definite integral ∫π/4 to π/2 csc(t) cot(t) dt is undefined.

To see why, note that csc(t) = 1/sin(t), which is undefined at t = π/2. Therefore, the integrand is undefined at t = π/2, making the definite integral undefined as well.

Alternatively, we can use the fact that the integral of csc(t) from π/4 to π/2 is divergent (i.e., it does not converge to a finite value) to show that the integral of csc(t) cot(t) from π/4 to π/2 is also divergent.

To see this, we can use the identity csc(t) cot(t) = 1/sin(t) * cos(t)/sin(t) = cos(t)/sin^2(t). Then, using the substitution u = sin(t), du/dt = cos(t) dt, we can write the integral as:

∫π/4 to π/2 csc(t) cot(t) dt = ∫1/√2 to 1 cos(u)/u^2 du

Since the integral of cos(u)/u^2 from 1 to infinity is divergent, the integral of cos(u)/u^2 from 1/√2 to 1 is also divergent. Therefore, the definite integral ∫π/4 to π/2 csc(t) cot(t) dt is undefined.

To know more about definite integral refer here :

https://brainly.com/question/29974649#

#SPJ11

given two decision-makers, one a risk taker and the other a risk avoider, the risk avoider will show a diminishing marginal return for money. (True or False)

Answers

False, While risk avoiders may generally show diminishing marginal returns for money, the specific circumstances of the two decision-makers and the level of risk they take can have a significant impact on their financial outcomes.

Factors such as their personal financial situation, the potential rewards and consequences of the decision, and their risk tolerance can all influence the final outcome. Without further information, it is impossible to determine whether the statement is true or false.
                                            A risk avoider, also known as a risk-averse individual, tends to make decisions that prioritize minimizing risks over maximizing potential rewards. As a result, they often exhibit diminishing marginal returns for money, meaning that the incremental value or satisfaction they receive from additional money decreases as their wealth increases. This is because risk avoiders prefer to have a more stable financial situation and are less likely to take risks to achieve potentially higher returns, which might lead to losses.

Learn more about risk-averse individual

brainly.com/question/30830369

#SPJ11

Find a parametric representation for the surface. The part of the cylinder y2 + z2 = 16 that lies between the planes x = 0 and x = 5. (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of u and/or v.) (where 0 < x < 5)

Answers

The surface is given by the equations x = 5t, y = 4sin(u), and z = 4cos(u)

To find a parametric representation for the surface, we can start by introducing the variables u and v.

Let u and v be parameters representing the angles around the y and z-axes respectively.

Then, we can express y and z in terms of u and v as follows:

y = 4sin(u) z = 4cos(u)

Since x is bounded between 0 and 5, we can express x in terms of another parameter t as x = 5t, where 0 < t < 1.

Combining the equations for x, y, and z, we obtain the parametric representation: x = 5t y = 4sin(u) z = 4cos(u)

Thus, the surface is given by the equations x = 5t, y = 4sin(u), and z = 4cos(u), where 0 < t < 1 and 0 ≤ u ≤ 2π.

Learn more about parametric equations at

https://brainly.com/question/29848865

#SPJ11

use double intergral to find the volume of the solid bounded by the paraboloids z=x^2 y^2 and z=8-x^2-y^2

Answers

Therefore, the volume of the solid bounded by the paraboloids z=x^2 y^2 and z=8-x^2-y^2 is 8π cubic units by double integral.

To find the volume of the solid bounded by the paraboloids z=x^2 y^2 and z=8-x^2-y^2, we can use a double integral over the region of intersection of the two surfaces.

Since both surfaces are symmetric about the xy-plane, we can integrate over the circular region in the xy-plane where the two surfaces intersect. This region is given by the equation:

x^2 + y^2 = 4

Therefore, we can use polar coordinates to integrate over this region. The limits of integration for r are from 0 to 2, and the limits of integration for θ are from 0 to 2π.

The integral to find the volume is:

V = ∬R (8 - x^2 - y^2 - x^2 y^2) dA

Converting to polar coordinates, we have:

V = ∫(0 to 2π) ∫(0 to 2) (8 - r^2 - r^4 cos^2 θ) r dr dθ

Evaluating the inner integral first, we have:

V = ∫(0 to 2π) [-r^4/4 - r^2/2 + 8r]∣(0 to 2) dθ

V = ∫(0 to 2π) [16 - 8 - 0] dθ

V = 8π

To know more about double integral,

https://brainly.com/question/29754607

#SPJ11

a point moves in a plane such that its position is defined by x = ln2t and y = 3 − t^3. find the acceleration vector when t = 2.√2305/16√325/4[-1/4, -12][-1/2,-12]

Answers

The acceleration vector when t = 2, is (-1/4, -12).

option B.

What is the acceleration vector?

The acceleration vector of the point is calculated as follows;

The position vector of the point at time t = y r(t) = (x(t), y(t)) = (ln(2t), 3 - t³).

The velocity vector is calculated as follows;

v(t) = r'(t)

v(t)  = (dx/dt, dy/dt)

v(t) =  (d/dt(ln(2t)), d/dt(3 - t³))

v(t) = (1/t, -3t²)

Acceleration is change in velocity with time, so the acceleration vector is calculated as follows;

a(t) = v'(t) = (d/dt(1/t), d/dt(-3t²))

a(t) = (-1/t², -6t)

The acceleration vector when t = 2, is calculated as follows;

a(2) = (-1/2², -6(2) )

a(2) = (-1/4, -12)

Learn more about acceleration vector here: https://brainly.com/question/31134791

#SPJ1

In Mr. Johnson’s third and fourth period classes, 30% of the students scored a 95% or higher on a quiz. Let be the total number of students in Mr. Johnson’s classes.



a. If 15 students scored a 95% or higher, write an equation involving that relates the number of students who scored a 95% or higher to the total number of students in Mr. Johnson’s third and fourth period classes.



b. Solve your equation in part (a) to find how many students are in Mr. Johnson’s third and fourth period classes

Answers

a. Let x be the total number of students in Mr. Johnson's third and fourth period classes.

30% of the students scored a 95% or higher on the quiz.

This means that the number of students who scored a 95% or higher is 0.3x.

The total number of students who scored a 95% or higher is 0.3x + 15.

Therefore, we can write the equation:

0.3x + 15 = 0.3x + 15

0.3x = 15

x = 50

b. To solve the equation x = 50 for the number of students in Mr. Johnson's third and fourth period classes, we can substitute 50 for x in either of the two expressions we derived in part (a):

30% of the students scored a 95% or higher on the quiz.

This means that the number of students who scored a 95% or higher is 0.3x = 0.3(50) = 15.

The total number of students who scored a 95% or higher is 0.3x + 15 = 0.3(50) + 15 = 22.5.

Therefore, we can write the equation:

x = 50

This equation tells us that if we know the total number of students in Mr. Johnson's third and fourth period classes, we can find the percentage of students who scored a 95% or higher.

We can also find the percentage of students who scored a 95% or higher if we know the total number of students in Mr. Johnson's third and fourth period classes.

For example, if we know that there are 100 students in Mr. Johnson's third and fourth period classes, we can use the equation x = 50 to find that 30% of the students scored a 95% or higher on the quiz.

Therefore, the number of students in Mr. Johnson's third and fourth period classes is 50, and 30% of the students scored a 95% or higher on the quiz.

Learn more percentages visit : brainly.in/question/14615362

#SPJ11

evaluate each expression based on the following table. x−3−2−10123 f(x)2363−2−0.51.25

Answers

We have the following table:

x -3 -2 -1 0 1 2 3

f(x) 2 3 6 3 -2 -0.5 1.25

f(2) - f(0) = 6 - 3 = 3

f(-3) + f(1) - f(0) = 2 + (-2) - 3 = -3

(f(3) + f(2)) / 2 = (1.25 + (-0.5)) / 2 = 0.375

To know more about solving equations refer here:

https://brainly.com/question/30066982

#SPJ11

(1 point) Use the inner product< f,gf()g(x)dx in the vector space C00, 1 to find
the orthogonal projection of f(z)-222 onto t
Use the inner product =∫10f(x)g(x)dx in the vector space C0[0,1] to find the orthogonal projection of f(x)=2x^2+2 onto the subspace V spanned by g(x)=x−1/2 and h(x)=1

Answers

The orthogonal projection of f(x) = z - 222 onto the subspace V spanned by t is -221/√2.

The orthogonal projection of f(x) = 2x^2 + 2 onto the subspace V spanned by g(x) = x - 1/2 and h(x) = 1 is (4/3)v(x) - (2/3√3)u(x) = 4/3 - (4/3√3)(x - 1/2).

For the first part of the question, we need to find the orthogonal projection of f(x) = z - 222 onto the subspace V spanned by t. First, we need to find an orthonormal basis for V. Since V is one-dimensional, we only need to find one vector in V and normalize it.

Let t(x) = 1/√2. Then t(x) is a unit vector in V. Now, we need to find the projection of f(x) onto t(x):

proj_v(f(x)) = <f(x), t(x)> / <t(x), t(x)> * t(x)

= ∫0^1 (z - 222)(1/√2) dx / ∫0^1 (1/√2)^2 dx * 1/√2

= ∫0^1 (z - 222)(1/2) dx / (1/2) * 1/√2

= -221/√2

For the second part of the question, we need to find the orthogonal projection of f(x) = 2x^2 + 2 onto the subspace V spanned by g(x) = x - 1/2 and h(x) = 1. First, we need to find an orthonormal basis for V. Since V is two-dimensional, we need to find two linearly independent vectors in V and normalize them.

Let u(x) = g(x) = x - 1/2 and v(x) = h(x) = 1. Then u(x) and v(x) are linearly independent and we can normalize them to obtain an orthonormal basis for V:

u(x) / ||u(x)|| = (x - 1/2) / √(∫0^1 (x - 1/2)^2 dx) = 2√3(x - 1/2)

v(x) / ||v(x)|| = 1 / √(∫0^1 1^2 dx) = 1

Now, we need to find the projection of f(x) onto u(x) and v(x):

proj_v(f(x)) = <f(x), v(x)> / <v(x), v(x)> * v(x)

= ∫0^1 (2x^2 + 2)(1) dx / ∫0^1 (1)^2 dx * 1

= 4/3

proj_u(f(x)) = <f(x), u(x)> / <u(x), u(x)> * u(x)

= ∫0^1 (2x^2 + 2)(2√3(x - 1/2)) dx / ∫0^1 (2√3(x - 1/2))^2 dx * 2√3(x - 1/2)

= -2/3√3

Know more about orthogonal projection here;

https://brainly.com/question/2292926

#SPJ11

Lydia makes a down payment of 1,600 on a car loan. how much of the purchase price will the interest be calculated on?

Answers

If Lydia makes a down payment of $1,600 on a car loan, the interest will be calculated on the balance of the purchase price.

Let the purchase price of the car be represented by P.Lydia makes a down payment of $1,600, therefore the balance of the purchase price is:

P = Purchase Price = Total cost - Down Payment

P = P - 1,600

To calculate the interest on the purchase price, you need to know the interest rate and the period of the loan, which is usually stated in years or months.

Suppose the interest rate is 5% and the period of the loan is 2 years, then the interest on the purchase price would be calculated as follows:

Interest = (Purchase Price - Down Payment) × Interest Rate × Time

= (P - 1,600) × 0.05 × 2

= (P - 1,600) × 0.1

The interest will be calculated on the balance of the purchase price, which is P - 1,600.

Therefore, the interest will be calculated on the expression (P - 1,600) × 0.1.

To know more about down payment visit:

https://brainly.com/question/29075522

#SPJ11

solve 8 cos 2 ( t ) − 2 sin ( t ) − 7 = 0 for all solutions 0 ≤ t < 2 π

Answers

The solution for 8 cos 2 ( t ) − 2 sin ( t ) − 7 = 0 for all solutions 0 ≤ t < 2 π is

t ≈ 0.896 rad and t ≈ 5.387 rad.

We can use the trigonometric identity:

cos(2t) = 2cos²t - 1, to rewrite the equation as:

8(2cos²t - 1) - 2sint - 7 = 0

Simplifying and rearranging terms, we get:

16cos²t - 2sint - 15 = 0

Using the identity sin²(t) + cos²(t) = 1, we can substitute sin(t) = ±√(1 - cos²(t)) and get a quadratic equation in terms of cos(t):

16cos²(t) - 2(±√(1 - cos²(t))) - 15 = 0

Solving for cos(t), we get:

cos(t) = ±√(17)/4

Since 0 ≤ t < 2π, we can use the inverse cosine function to find the solutions in this interval:

t = cos⁻¹(√(17)/4) and t = 2π - cos⁻¹(√(17)/4)

Therefore, the solutions are:

t ≈ 0.896 rad and t ≈ 5.387 rad.

To learn more about cos : https://brainly.com/question/23720007

#SPJ11

In order to estimate the difference between the average yearly salaries of top managers in private and governmental organizations, the following information was gathered: Develop an interval estimate for the difference between the average salaries of the two sectors. Let alpha = .05. (Assume sigma^2_1 = sigma^2_2)

Answers

We can say with 95% confidence that the average yearly salary of top managers in the private sector is between $6,670 and $13,330 higher than the average yearly salary of top managers in the government sector.

The formula for calculating the confidence interval for the difference between two means where x1 and x2 are the sample means, s1 and s2 are the sample standard deviations, n1 and n2 are the sample sizes, t(a/2,n1+n2−2) is the t-distribution value for the desired confidence level and degrees of freedom, and t is the significance level (in this case, = 0.05).

Plugging in the values from the given data, we get:

(90−80)±(0.025,108)∗(6²/50+8²/60)¹/₂

Simplifying this expression, we get:

10±1.98∗1.634

Therefore, the 95% confidence interval for the difference between the average salaries of top managers in private and governmental organizations is:

(6.67, 13.33)

This means that we can be 95% confident that the true population parameter falls within this range.

To know more about standard deviation here

https://brainly.com/question/16555520

#SPJ4

Complete Question:

In order to estimate the difference between the average yearly salaries of top managers in private and governmental organizations, the following information was gathered:

                                                               Private                              Government

Sample size                                                       50                                          60

sample mean                                                     90                                          80

Sample standard deviation                          6                                                8

Develop an interval estimate for the difference between the average salaries of the two sectors. Let alpha = .05.

What was the HoChi Minh Trail?
A) a series of overland paths and roads used by the South Vietnamese to move troops
B) a system of waterways connecting the Gulf of Tonkin to the Gulf of Thailand
C) a series of underground facilities housing American troops and weapons
D) a system of passages used to send supplies and troops from North Vietnam to the South

Answers

Minh Trail a series of overland paths and roads used by the South Vietnamese to move troops. Thus, option (a) is correct.

It served as a network of paths for pedestrian and bicycle traffic as well as truck routes, and it supplied troops and supplies to the North Vietnamese forces battling in South Vietnam.

A 16,000-kilometer (9,940-mile) network of tracks, roads, and trails made up the actual trail. During the Vietnam War, the Minh Trail served as the main supply route for the North Vietnamese forces that invaded and entered South Vietnam, Cambodia, and Laos.

As a result, the significance of the Minh Trail are the aforementioned. Therefore, option (a) is correct.

Learn more about on Minh Trail, here:

https://brainly.com/question/30985880

#SPJ1

Answer:

Your answer should be D

Step-by-step explanation:

I got it correct on edge 2023

Hope this helps!

If the domain of


a piecewise-defined function f is all real


numbers, must the range of f also be all


real numbers? Explain.

Answers

A function whose domain is all real numbers may have a restricted range or an infinite range. The range is determined by the sub-functions that make up the piecewise-defined function.

A piecewise-defined function is a function that is defined using several sub-functions, each sub-function is defined on a different part of the domain.

Now, if the domain of a piecewise-defined function is all real numbers, it is not necessary that the range of f also be all real numbers. A range of a function is the set of all output values that the function can produce.

It is the complete set of all possible results that the function can generate for its inputs. In other words, the range is the set of all output values that the function produces when we input all possible input values.

Now, it is not necessary that the range of a piecewise-defined function whose domain is all real numbers will also be all real numbers. In conclusion, if the domain of a piecewise-defined function is all real numbers, then the range of the function may or may not be all real numbers.

It will depend on the definition of the sub-functions that make up the piecewise-defined function. A function whose domain is all real numbers may have a restricted range or an infinite range. The range is determined by the sub-functions that make up the piecewise-defined function.

To learn about the piecewise function here:

https://brainly.com/question/31352670

#SPJ11

determine the area of the given region under the curve. y = 1/x6

Answers

The area of the region under the curve y = 1/x^6 between x = 1 and x = ∞ is 1/5 square units.

The region under the curve y = 1/x^6 is bounded by the x-axis and the vertical line x = 1. To find the area of this region, we need to evaluate the definite integral ∫[1,∞] 1/x^6 dx.

We can do this using the power rule of integration:

∫[1,∞] 1/x^6 dx = [-1/5x^5] [1,∞] = [-1/(5∞^5)] - [-1/(5(1)^5)] = 1/5

Therefore, the area of the region under the curve y = 1/x^6 between x = 1 and x = ∞ is 1/5 square units.

Learn more about area here

https://brainly.com/question/25292087

#SPJ11

Find equations for the tangent plane and the normal line at point Po(xo,yo,zo) (4,3,0) on the surface −7cos(πx) 3x^2y + 2e^xz + 6yz=139.
Using a coefficient of 8 forx, the equation for the tangent plane is ___
Find the equations for the normal line. Let x = 3 + 144t. x= __ , y= ___, z= ___ (Type expressions using t as the variable.)

Answers

So the equations for the normal line are: x = 4, y = 12.5 - (11/8)t, z = t.

First, we need to find the partial derivatives of the given surface:

f(x, y, z) = −7cos(πx) + 3x^2y + 2e^xz + 6yz

∂f/∂x = 7πsin(πx) + 6xye^xz

∂f/∂y = 3x^2 + 6z

∂f/∂z = 2xe^xz + 6y

Now, we can evaluate the partial derivatives at the given point P(4, 3, 0):

∂f/∂x(P) = 7πsin(4π) + 6(4)(3)e^0 = 0

∂f/∂y(P) = 3(4)^2 + 6(0) = 48

∂f/∂z(P) = 2(4)e^0 + 6(3) = 22

So the equation of the tangent plane is:

0(x - 4) + 48(y - 3) + 22(z - 0) = 0

Simplifying, we get:

8y + 11z = 132

This is the equation of the tangent plane using a coefficient of 8 for x.

To find the equation of the normal line, we need a vector normal to the tangent plane. The coefficients of the variables in the equation of the tangent plane give us the components of the normal vector, which is:

N = <0, 8, 11>

So a parametric equation for the normal line passing through P is:

x = 4 + 0t = 4

y = 3 + 8t

z = 0 + 11t

We can substitute x = 4 into the equation of the tangent plane to get:

8y + 11z = 100

Solving for y in terms of z, we get:

y = (100 - 11z)/8

Substituting this expression for y into the parametric equation for the normal line, we get:

x = 4

y = (100 - 11z)/8

z = t

Simplifying, we get:

x = 4

y = 12.5 - (11/8)t

z = t

To know more about equation,

https://brainly.com/question/28243079

#SPJ11

Maira has a total of Rs.1040 as currency notes in the denomination of Rs.10, Rs.20 and Rs.50. The ratio of the number of Rs10 notes and Rs20 notes is 2:5. If she has a total of 30 notes, how many notes of each denomination she has.

Answers

Maira has a total of 16 Rs10 notes, 40 Rs20 notes, and 5 Rs50 notes. The ratio of Rs10 notes to Rs20 notes is 2:5, and the total number of notes is 30.

Let's assume the number of Rs10 notes is 2x, and the number of Rs20 notes is 5x, as per the given ratio.

The total number of notes is given as 30. So we can write the equation: 2x + 5x + 5 = 30 (since there are 5 Rs50 notes).

Simplifying the equation, we have 7x + 5 = 30.

Subtracting 5 from both sides, we get 7x = 25.

Dividing both sides by 7, we find x = 25/7.

Thus, the number of Rs10 notes is 2 * (25/7) = 50/7, which is approximately 7.14. Since we can't have a fraction of a note, we take the nearest whole number, which is 7.

The number of Rs20 notes is 5 * (25/7) = 125/7, which is approximately 17.86. Again, we take the nearest whole number, which is 18.

Therefore, Maira has 7 Rs10 notes, 18 Rs20 notes, and the remaining 5 notes are Rs50 notes.

Learn more about whole number here:

https://brainly.com/question/29766862

#SPJ11

Using separation of variables technique, solve the following differential equation with the given initial condition y4y+36 and y(2)-10. (Hint: Factor first!)
The solution is:OA. Inly-91-4x+8
OB. Inly=-4+In 10+8
OC. Indy+91-4x-8+In 19
OD. Inly+91-4x+In 19+8
OE. Inly-91-4x-8

Answers

Using separation of variables technique, the solution for the given differential equation is OE. Inly-91-4x-8.

The differential equation to solve is:

y' = (4x - y) / 3y

First, we can factor out the 3y from the denominator to get:

y' = (4x - y) / (3y)

Next, we can multiply both sides by y to get:

y y' = 4x - y

Now, we can separate the variables by dividing both sides by (4x - y) y:

dy / (4x - y) = dx / y

Integrating both sides, we get:

ln|4x - y| = ln|y| + C

where C is the constant of integration. We can simplify this to:

ln|4x - y| - ln|y| = C

ln|4x / y - 1| = C

Taking the exponential of both sides, we get:

4x / y - 1 = e^C

Solving for y, we get:

y = 4x / (1 + Ce^x)

To find the constant of integration C, we can use the initial condition y(2) = 10. Substituting x = 2 and y = 10 into the solution, we get:

10 = 8 / (1 + Ce^2)

Solving for C, we get:

C = (8 / 10) - e^4

C = -0.2212

Substituting this value of C into the solution, we get:

y = 4x / (1 - 0.2212e^x)

Simplifying, we get:

y = 4x / (0.7788e^-x - 1)

Thus, the answer is (OE) Inly-91-4x-8.

To know more about differential equation refer here :

https://brainly.com/question/31583235#

#SPJ11

compute the derivative of the following function: h(x) = 1/x arctan(5 t) dt 4

Answers

The derivative of h(x) is:

h'(x) = (-arctan(20))/(17x^2) + (1/5x).

To compute the derivative of h(x), we need to use the chain rule and the fundamental theorem of calculus.

First, let's rewrite h(x) using the definition of definite integration:
h(x) = ∫4 [1/x arctan(5 t)] dt

Now, let's apply the fundamental theorem of calculus, which tells us that if F(t) is an antiderivative of f(t), then ∫a to b f(t) dt = F(b) - F(a).

In this case, let F(t) = arctan(5 t), so F'(t) = 5/(1 + 25 t^2) is the integrand of h(x).

Using the chain rule, we have:

h'(x) = d/dx [1/x F(4)]
= -1/x^2 F(4) + 1/x d/dx F(4)
= -1/x^2 arctan(20) + 1/x [5/(1 + 25*4^2)]
= -1/(x^2 [1 + 25*16]) arctan(20) + 1/(5x)

Therefore, the derivative of h(x) is h'(x) = (-arctan(20))/(17x^2) + (1/5x).

To learn more about derivatives visit : https://brainly.com/question/28376218

#SPJ11

5. One-sixth of freshmen entering a large state university are out-of-state students. If the students are assigned at random to the dormitories, 180 to a building, what is the probability that in a given dormitory (a) (2 points) at most 40 of them are from out of state (b) (2 points) at least 40 of them are from out of state. (c) (2 points) at most one-fifth of them are from out of state. (d) (2 points) at least ive-nineths of them are from out of state. (o) (2 points) Find the mean number of out of state students in a given dorum. ) Find the standard deviation for the number of out of state students (o) (2 points) in a given dorm. (8) (2 points) Find the usual range for number of out of state students in a given dorm. Total Study Guide 13 Page 4 of 4

Answers

To find the probability that at most 40 of them are from out of state, we can use the binomial distribution formula. Let X be the number of out-of-state students in a dormitory with n = 180 students and p = 1/6 probability of being out-of-state. Then, P(X ≤ 40) = Σi=0^40 (180 choose i)(1/6)^i(5/6)^(180-i) ≈ 0.011.

To find the probability that at least 40 of them are from out of state, we can use the complement rule. P(X ≥ 40) = 1 - P(X < 40) = 1 - Σi=0^39 (180 choose i)(1/6)^i(5/6)^(180-i) ≈ 0.231.To find the probability that at most one-fifth of them are from out of state, we need to find the probability that X ≤ 36, since 36 is the largest integer that is one-fifth of 180. Using the same formula as in part a, we get P(X ≤ 36) ≈ 0.0003.To find the probability that at least five-ninths of them are from out of state, we need to find the probability that X ≥ 100, since 100 is the smallest integer that is five-ninths of 180. Using the same formula as in part b, we get P(X ≥ 100) ≈ 0.020.The mean number of out-of-state students in a dormitory is E(X) = np = 180*(1/6) = 30.The standard deviation of the number of out-of-state students in a dormitory is σ = sqrt(np(1-p)) = sqrt(180*(1/6)*(5/6)) ≈ 4.58.The usual range for the number of out-of-state students in a dormitory is ±2 standard deviations around the mean, which is [30-2*4.58, 30+2*4.58] ≈ [21.84, 38.16]. So, the usual range is between 22 and 38 out-of-state students.

Learn more about binomial here

https://brainly.com/question/29163389

#SPJ11

The average monthly temperature in Phoenix Arizona can be modeled by the equation A=70.5 +19.5 sin(pi/6t +c), where a represents the average monthly temperature in Fahrenheit and t is time in months. if the coldest temperature occurs in January ( that is, t=1), find the value of c.

Answers

The value of c is approximately -1.964.To find the value of c in the equation A = 70.5 + 19.5 sin(pi/6t + c), we need to use the given information that the coldest temperature occurs in January (t = 1).

Substituting t = 1 into the equation, we have:

A = 70.5 + 19.5 sin(pi/6 + c)

We know that the coldest temperature occurs in January, which means it is the minimum value of A. For a sine function, the minimum value is -1. Therefore, we can set A = -1 and solve for c.

-1 = 70.5 + 19.5 sin(pi/6 + c)

Rearranging the equation, we have:

19.5 sin(pi/6 + c) = -1 - 70.5

19.5 sin(pi/6 + c) = -71.5

Dividing both sides by 19.5, we get:

sin(pi/6 + c) = -71.5 / 19.5

Using the inverse sine function (arcsin), we can solve for c:

pi/6 + c = arcsin(-71.5 / 19.5)

c = arcsin(-71.5 / 19.5) - pi/6

Using a calculator to evaluate the inverse sine and subtracting pi/6, we find:

c ≈ -1.964

To learn more temperature go to:

https://brainly.com/question/7510619

#SPJ11

by how many feet would sea level increase over the next 100 years if this rate stays constant? calculate your answer in mm, and then convert to feet using an online conversion calculator.

Answers

The current rate of sea level rise stays constant, the sea level would increase by about 1.05 feet over the next 100 yea

To answer this question, we need to know the current rate of sea level rise. According to the National Oceanic and Atmospheric Administration (NOAA), the current rate of global sea level rise is about 3.2 millimeters per year.

Therefore, over the next 100 years, the sea level would rise by:

3.2 millimeters/year * 100 years = 320 millimeters

To convert millimeters to feet, we can use an online conversion calculator. 320 millimeters is equivalent to 1.05 feet (rounded to two decimal places). Therefore, if the current rate of sea level rise stays constant, the sea level would increase by about 1.05 feet over the next 100 years.

Learn more about current rate here

https://brainly.com/question/30416905

#SPJ11

A palm tree casts a 19 foot shadow. A 18 beach umbrella in the sand next to a palm tree casts a 6. 5 foot shadow. If the umbrella te is 4 feet tall, calculate the height of the palm tree. ​

Answers

The answer of the question based on problem statement is  ,  the height of the palm tree is approximately 11.69 feet.

The height of the palm tree can be calculated using proportions and ratios.

The umbrella's height is 4 feet and its shadow length is 6.5 feet, while the palm tree's shadow length is 19 feet.

Since the heights of the two objects are proportional to their shadows' lengths, we can set up the proportion:

Height of palm tree/Length of palm tree's shadow = Height of umbrella/Length of umbrella's shadow

Let x be the height of the palm tree:

Height of palm tree/19 = 4/(6.5)

Now, we can cross-multiply to get:

Height of palm tree = 19(4)/(6.5)

Simplify:

Height of palm tree = 11.69 feet

Therefore, the height of the palm tree is approximately 11.69 feet.

To know more about Ratio visit:

https://brainly.com/question/31945112

#SPJ11

Triangle ABC is


right-angled at A, and


AD is the altitude from


A to the hypotenuse BC.


Find x.

Answers

X is not a real number.

Hence, x cannot be found.

Thus, the correct option is, " x cannot be found."

Given :Triangle ABC is right-angled at A, and AD is the altitude from A to the hypotenuse BC.

To Find: We have to find

In right triangle ABC,

by Pythagoras theorem

AC² = AB² + BC²

4x² = 9² + (3x)²

4x² = 81 + 9x²

4x² - 9x² = 81

-5x² = 81

x² = -81/5

There is no real number solution to x² = -81/5.

Therefore, x is not a real number.

Hence, x cannot be found.

Thus, the correct option is, " x cannot be found."

Learn more about Pythagoras theorem here,

https://brainly.com/question/343682

#SPJ11

suppose that an algorithm performs f(n) steps, and each step takes g(n) time. how long does the algorithm take? f(n)g(n) f(n) g(n) f(n^2) g(n^2)

Answers

The time complexity of an algorithm depends on both the number of steps it performs and the time taken by each step. If an algorithm performs f(n) steps, and each step takes g(n) time, then the total time taken by the algorithm would be given by the product f(n)g(n).

This means that as the input size n grows larger, the total time taken by the algorithm would also grow larger, based on the growth rate of f(n) and g(n). If f(n) and g(n) both have polynomial growth rates, such as [tex]O(n^2)[/tex], then the time complexity of the algorithm would also have a polynomial growth rate, which can be expressed as [tex]O(n^4)[/tex].

On the other hand, if f(n) and g(n) have exponential growth rates, such as [tex]O(2^n)[/tex], then the time complexity of the algorithm would have an exponential growth rate, which can be expressed as [tex]O(2^n)[/tex].

Therefore, it is important to consider both the number of steps and the time taken by each step when analyzing the time complexity of an algorithm.

To know more about algorithm refer to-

https://brainly.com/question/28724722

#SPJ11

If the integral from 1 to 5 f(x)dx=10 and the integral 4 to 5 f(x)dx=3.3, find the integral from 1 to 4 f(x)dx.

Answers

The integral of f(x) from 1 to 4 is 6.7.

To solve this problem, we can use the property of integrals known as additivity. This states that if we have a function f(x) and we split up its integral into two separate intervals, say from a to b and from b to c, then the integral of f(x) over the entire interval from a to c is equal to the sum of the integral of f(x) from a to b and the integral of f(x) from b to c.
Using this property, we can write:
∫1 to 5 f(x)dx = ∫1 to 4 f(x)dx + ∫4 to 5 f(x)dx
We know that ∫1 to 5 f(x)dx = 10 and ∫4 to 5 f(x)dx = 3.3, so we can substitute these values in and solve for ∫1 to 4 f(x)dx:10 = ∫1 to 4 f(x)dx + 3.3
Simplifying this equation, we get:
∫1 to 4 f(x)dx = 6.7
Therefore, the integral of f(x) from 1 to 4 is 6.7.

Learn more about integrals here, https://brainly.com/question/22008756

#SPJ11

Which point are either in quadrant II or quadrants IV

Answers

The points that are either in Quadrant II or Quadrant IV lie on the left-hand side of the coordinate plane and are less than the x-axis. Since the value of y is negative in Quadrant IV, this is the fourth quadrant.

The second quadrant has positive values for y but negative values for x, i.e. they are above the x-axis but to the left of the y-axis.

So, any point that has a negative x-value will be in Quadrant II or Quadrant IV.

Some examples of points that are in either Quadrant II or Quadrant IV include:(-2, -5), (-3, -4), (-4, -2), (-5, -1) and (-6, 3).

To know more about quadrant visit :-

https://brainly.com/question/28587485

#SPJ11

Here is a double number line showing that it costs $3 to buy 2 bags of rice:

Answers

We can use the double number line to find the cost of buying a different number of bags of rice or the number of bags of rice we can buy for a given amount of money.

The given double number line shows that it costs $3 to buy 2 bags of rice. This means that the cost of 1 bag of rice is $1.50.

To find the cost of buying a different number of bags of rice, we can use the double number line.

Suppose we want to know the cost of buying 5 bags of rice. We can do this by starting at the number 2 on the top line and following the diagonal line down to the bottom line.

Then, we can read off the number on the bottom line that corresponds to 5 on the top line.

This gives us a cost of $7.50 for 5 bags of rice.

We can also use the double number line to find the number of bags of rice that we can buy for a given amount of money.

For example, if we have $6, we can find the number of bags of rice we can buy by starting at the number $3 on the bottom line and following the diagonal line up to the top line. Then, we can read off the number on the top line that corresponds to $6 on the bottom line.

This gives us a value of 4 for the number of bags of rice.

Therefore, we can use the double number line to find the cost of buying a different number of bags of rice or the number of bags of rice we can buy for a given amount of money.

To know more about double number line visit:

https://brainly.com/question/14706297

#SPJ11

2/x+4 = 3^x + 1



the approximate solution to the given equation after three iterations of successive approximations is when x is about.



answer choices are


-39/16


-35/-6


-37/16


-33/16



pls help :,)

Answers

After three iterations of successive approximations, the approximate solution to the given equation is when x is about -37/16.

To find the approximate solution to the equation 2/x + 4 = [tex]3^{x}[/tex] + 1, we can use an iterative method such as the Newton-Raphson method. Starting with an initial guess, we can refine the estimate through successive iterations. After three iterations, we find that x is approximately -37/16.

The Newton-Raphson method involves rearranging the equation into the form f(x) = 0, where f(x) = 2/x + 4 - [tex]3^{x}[/tex] - 1. Then, the iterative formula is given by:

x[n+1] = x[n] - f(x[n]) / f'(x[n])

By plugging in the initial guess into the formula and repeating the process three times, we arrive at an approximate solution of x ≈ -37/16.

It is important to note that the solution is an approximation and may not be exact. However, after three iterations, the closest option to the obtained approximate solution is -37/16, which indicates that -37/16 is the approximate solution to the given equation.

Learn more about iterations here:

https://brainly.com/question/30941646

#SPJ11

Consider the vectors b = (2, −5, 3) and a = (3, 1, 2). Compute the projection of b onto the line along the vector a as p = ˆxa.

Answers

Therefore, the projection of b onto the line along the vector a is p = (3/2, 1/2, 1).

The projection of b onto the line along the vector a is given by the formula:

p = ˆxa = (b ⋅ a) / ||a||^2 * a

where ⋅ denotes the dot product and ||a|| is the magnitude of the vector a.

First, we need to compute the dot product b ⋅ a:

b ⋅ a = (2)(3) + (-5)(1) + (3)(2) = 6 - 5 + 6 = 7

Next, we need to compute the magnitude of the vector a:

||a|| = sqrt(3^2 + 1^2 + 2^2) = sqrt(14)

Finally, we can compute the projection of b onto the line along a:

p = (b ⋅ a) / ||a||^2 * a

= 7 / (sqrt(14))^2 * (3, 1, 2)

= 7/14 * (3, 1, 2)

= (3/2, 1/2, 1)

what is magnitude?

Magnitude generally refers to the size or extent of something, and it is often used in the context of mathematics and physics to describe the amount or intensity of a quantity.

In mathematics, the magnitude of a vector is the length of the vector, which is a scalar quantity. The magnitude of a complex number is also referred to as its absolute value, which is the distance between the complex number and the origin on the complex plane.

To learn more about magnitude visit:

brainly.com/question/14452091

#SPJ11

Other Questions
The goals and benefits of a good Customer Relationship Management program include all of the following EXCEPT? A Automation of repetitive tasks. B. Growth of the customer base through referrals. oc Lower inventory levels. OD Increasing sales effectiveness. A bag is filled with 100 marbles each colored red, white or blue. The tableshows the results when Cia randomly draws10 marbles. Based on this data, how many ofthe marbles in the bag are expected to be red? ________________was a destination for tens of thousands of black American emigrants.- Liberia-South Carolina- Portugal- England (5)In most organisms, the end product of glycolysis is pyruvate. Pyruvate still has a substantial amount of energy in it that can further be extracted. Depending on whether the organisms are operating under aerobic or anaerobic conditions, pyruvate undergoes further oxidation to produce more ATP, resulting in different end products.Sort the following items according to whether they are reactants or products in the anaerobic reduction of pyruvate that takes place in animal muscles during strenuous exercise.Drag each item to the appropriate bin.A. PyruvateB. NAD+C. LactateD. NADH On October 22, Zone Company placed an order to purchase merchandise with payment terms of 2/10, n/30. The goods were listed by Danger (the seller) in the companys catalog at a selling price of $15,500. The goods were carried on Dangers balance sheet at a historical cost of $4,800. Zone obtained a 6% trade discount. Danger shipped the goods to Zone on November 2 with shipping terms of FOB Shipping Point and $900 of prepaid freight. The goods arrived at Zones facility on November 5. Zone returned $5,270* of goods and paid the balance due to Danger on November 9.*returned units had an original cost to Danger of $1,920How much Gross Profit will Danger report on the company's income statement as a result of this transaction? (Round your final answers to the nearest $1).A. None of the answer choices provided are correct.B. $6,234C. $5,216D. $4,316E. $6,420 The standard curve was made by spectrophotographic analysis of equilibrated iron(III) thiocyanate solutions of known n. You are asked to analyze a Fe(SCN)2+ solution with an unknown concentration and an absorbance value of 0.409. The slope-intercept form of the equation of the line is y 4593.6x + 0.0152. The unknown was analyzed on the same instrument as the standard curve solutions at the same temperature. What is the Fe3+ concentration of the unknown solution? According to proponents of a balanced budget, who bears the cost of the budget deficit?a. Other nationsb. Current taxpayersc. The World Bankd. Future taxpayers Determine the inverse Laplace transform of each of the following s-domain expressions: a) 1/(s + 2)^2(s + 1); b) s/(s^2 + 4s + 4)(s + 2); c) 8/s^3 + 8s^2 + 21s + 18. A physician considers a medication to decrease blood pressure by causing dilation of blood vessels. He wants to try a drug that will work as antagonist working on a receptors . Which sub-group should he target?Group of answer choicesAlpha1none - a receptors are not part of autonomic nervous systemAlpha2Both Let C1 be the semicircle given by z = 0,y 0,x2 + y2 = 1 and C2 the semicircle given by y = 0,z 0,x2 +z2 = 1. Let C be the closed curve formed by C1 and C2. Let F = hy + 2y2,2x + 4xy + 6z2,3x + eyi. a) Draw the curve C. Choose an orientation of C and mark it clearly on the picture. b) Use Stokess theorem to compute the line integral ZC F dr. what are the the most consumed meats in the world? Propose a plausible mechanism for the following transformation. 1) EtMgBr 2)H3O+ . Identify the most likely sequence of steps in the mechanism: step 1: ____. step 2: ____. step 3: ____. Which of the following best describes the accounting for costs benefitting more than one period?a. Accounting standards requires companies to estimate the effective tax rate expected to be applicable for the full fiscal year and to use that rate in computing income taxes in an interim period.b. Companies must estimate the effective tax rate for all interim reporting periods independently.c. Companies are required to use the statutory tax rate for each interim reporting period and to adjust to the effective tax rate at the end of the year.d. The tax rate used for interim reporting periods should not reflect tax benefits resulting from investment tax credits, foreign tax rates, and the like, unless those benefits are certain. Problem 6.42: In Problem 6.20 you computed the partition function for a quantum harmonic oscillator: Zh.o. = 1/(1 e ), where = hf is the spacing between energy levels. (a) Find an expression for the Helmholtz free energy of a system of N harmonic oscillators. Solution: Let the oscillators are distinguishable. Then Ztot = Z N h.o.. So, F = kT lnZtot = kT lnZ N h.o. = N kT ln 1 1 e . (1) (b) Find an expression for the entropy of this system as a function of temperature. (Dont worry, the result is fairly complicated.) For the query "Find the number of all departments that are on the 1st floor and have a budget of less than $50,000," which of the listed index choices would you choose to speed up the query?a:Clustered B+ tree index on fields of Deptb:Unclustered hash index on the floor field of Dept.c:Clustered hash index on the floor field of Dept.d:Clustered B+ tree index on the budget field of Dept.e:No index. did the james webb telescope disprove the big bang Match the adult structure on the left with the aortic arch or other arterial structure on the right. internal carotid arteries ligamentum arteriosus common carotid arteries stapedal arteries aortic arch pulmonary artery maxillary arteries A. proximal part of third aortic arch B. first aortic arch C. left fourth aortic arch D. distal part of left sixth aortic arch E. proximal part of right six aortic arch F. third aortic arch and dorsal aorta G.second aortic arch given f(x, y) = 15x 3 3xy 15y 3 , find all points at which fx(x, y) = fy(x, y) = 0 simultaneously Consider log linear model (WX,XY,YZ). Explain why W and Z are independent given alone or given Y alone or given both X and Y. When are W and Y condition- ally independent? When are X and Z conditionally independent? in what type of plate boundary did mountains form?