what is a second degree burn​

Answers

Answer 1
a second degree burn is a burn that affect the first and second layers of your skin. it may develop blisters and look wet or moist. the pain caused can be very severe

Related Questions

Two major innovations in clothing in the 14th century were___ a) The zipper and Bomber jacket. b) The zipper and Macintosh. c) Buttons and knitting. d) Velcro and snaps. e) Polyester and Nylon.

Answers

Two major innovations in clothing in the 14th century were Buttons and knitting.  Option c is correct.

The use of buttons became more widespread in the 14th century, and they were used for both practical and decorative purposes. Buttons made it easier to fasten and unfasten clothing, and they were also used to add embellishments to clothing.

Knitting also became more popular in the 14th century, and it allowed for the creation of new types of clothing, such as stockings and hats. Knitted clothing was warmer and more comfortable than woven fabrics, and it was also more stretchy, which allowed for a better fit.

The other options listed in the question, such as the zipper, bomber jacket, Macintosh, Velcro, snaps, polyester, and nylon, were not invented until much later, with most of them not appearing until the 20th century or later.

For more question on clothing click on

https://brainly.com/question/13581089

#SPJ11

Choose the system with the greater entropy in each case:(a) 1 mol of H2(g) at STP or 1 mol of SO2(g) at STP(b) 1 mol of N2O4(g) at STP or 2 mol of NO2(g) at STP

Answers

(a) 1 mol of SO2(g) at STP has greater entropy than 1 mol of H2(g) at STP. (b) 1 mol of N2O4(g) at STP has greater entropy than 2 mol of NO2(g) at STP.

(a) The system with greater entropy between 1 mol of H2(g) and 1 mol of SO2(g) at STP can be determined by considering their molecular masses and the number of moles.

At STP, 1 mol of H2(g) occupies a volume of 22.4 L and has a molecular mass of 2 g/mol. Similarly, 1 mol of SO2(g) occupies a volume of 22.4 L and has a molecular mass of 64 g/mol.

The entropy of a system is directly proportional to the number of particles present in it, so the system with greater entropy will have more particles. As 1 mole of SO2(g) has more particles than 1 mole of H2(g), it will have a greater entropy.

Therefore, the system with greater entropy between 1 mol of H2(g) and 1 mol of SO2(g) at STP is 1 mol of SO2(g).

(b) The system with greater entropy between 1 mol of N2O4(g) and 2 mol of NO2(g) at STP can be determined by considering the degree of molecular complexity.

At STP, 1 mol of N2O4(g) occupies a volume of 22.4 L and has a molecular mass of 92 g/mol. On the other hand, 2 mol of NO2(g) occupy a volume of 44.8 L and have a molecular mass of 46 g/mol.

The entropy of a system is directly proportional to the degree of molecular complexity. As N2O4(g) is a larger and more complex molecule than NO2(g), it will have more entropy.

Therefore, the system with greater entropy between 1 mol of N2O4(g) and 2 mol of NO2(g) at STP is 1 mol of N2O4(g).

For more question on entropy visit:

https://brainly.com/question/30481619

#SPJ11

given 1 amp of current for 1 hour, which solution would deposit the smallest mass of metal?

Answers

The solution with Cu in CuSO₄ would deposit the smallest mass of metal. Thus the correct answer to the question is C.

The weight of the metal deposited is given by

W = E i t / 96500

where E is the Equivalent mass

i is the current

t is the time

Since the current and time is constant, thus,

W ∝ equivalent mass

The equivalent mass of Fe in FeCl₂ is 56 /2 which is 28 g

The equivalent mass of Ni found in NiCl₂ (aq) is 59 /2 which is 29.5 g

The equivalent mass of Cu found in CuSO₄ (aq)  is 63.5 /4 which is 15.875 g

The equivalent mass of Ag found in AgNO₃ (aq) is 108 /1 which is 108 g

Thus, the equivalent mass of Cu is the least so this solution would deposit the smallest mass of metal.

Learn more about Equivalent mass:

https://brainly.com/question/31046806

#SPJ1

The complete question is:

Given 1 amp of current for an hour, which of these solutions would deposit the smallest amount (mass) of metal?

a) Fe found in FeCl₂ (aq)

b) Ni found in NiCl₂ (aq)

c) Cu found in CuSO₄ (aq)

d) Ag found in AgNO₃ (aq)

calculate the number of moles of solute in 83.85 ml of 0.1065 m k2cr2o7(aq).

Answers

0.008947 moles of solute.

To calculate the number of moles of solute, we use the formula:

moles = concentration (in mol/L) x volume (in L)

First, we need to convert the given volume of 83.85 ml to liters by dividing it by 1000:

83.85 ml ÷ 1000 ml/L = 0.08385 L

Next, we plug in the given concentration and volume into the formula:

moles = 0.1065 mol/L x 0.08385 L = 0.008947 moles

Therefore, the number of moles of solute in 83.85 ml of 0.1065 M K2Cr2O7 (aq) is 0.008947 moles.

Learn more about moles here :

https://brainly.com/question/31597231

#SPJ11

a sample currently contains 20 parent atoms and 60 daughter atoms. given that the half-life is 2,000 years how old is the sample?

Answers

A sample currently contains 20 parent atoms and 60 daughter atoms. so the sample is approximately 4,706 years old.

To determine the age of the sample, we need to use the formula for radioactive decay:
N = N0(1/2)^(t/T)
where N is the current number of parent atoms, N0 is the initial number of parent atoms, t is the time elapsed, T is the half-life of the sample.
We are given that N0 = 20 and N/N0 = 60/20 = 3. Thus, we can solve for t:
3 = (1/2)^(t/2000)
Taking the natural log of both sides:
ln(3) = (t/2000) ln(1/2)
Solving for t:
t = 2000 ln(3)/ln(1/2)
t ≈ 4,706 years
Therefore, the sample is approximately 4,706 years old.

we can determine the age of the sample using the half-life of 2,000 years and the ratio of parent to daughter atoms.
The sample contains 20 parent atoms and 60 daughter atoms, making a total of 80 atoms. The ratio of parent to daughter atoms is 1:3. Since the half-life is 2,000 years, we can calculate the number of half-lives that have passed to reach this ratio.
Initially, there would have been 80 parent atoms and 0 daughter atoms. After the first half-life (2,000 years), there would be 40 parent atoms and 40 daughter atoms. After the second half-life (another 2,000 years), there would be 20 parent atoms and 60 daughter atoms, which matches the given information.
So, two half-lives have passed to reach the current state of the sample. Each half-life is 2,000 years long, so the age of the sample can be calculated as follows
Age of the sample = (Number of half-lives) * (Half-life)
Age of the sample = 2 * 2,000 years
Age of the sample = 4,000 years
Therefore, the sample is approximately 4,000 years old.

learn more about atoms

https://brainly.com/question/1566330

#SPJ11

what is the minimum number of grams of sodium hydroxide required to saponify 579 g of trimyristin?

Answers

The minimum number of grams of sodium hydroxide required to saponify 579 g of trimyristin is 96.0 g.

To calculate the minimum number of grams of sodium hydroxide (NaOH) needed to saponify 579 g of trimyristin, you must use stoichiometry.

Trimyristin (C₄5H₈6O₆) undergoes saponification with 3 moles of NaOH to produce 3 moles of sodium myristate and 1 mole of glycerol.

First, determine the molar mass of trimyristin (C₄5H₈6O₆) :

45(12.01) + 86(1.01) + 6(16.00) = 723.5 g/mol.

Next, calculate the moles of trimyristin: 579 g / 723.5 g/mol = 0.800 mol.

Since 3 moles of NaOH are required to saponify 1 mole of trimyristin, you need 3 * 0.800 mol = 2.400 mol of NaOH.

Finally, convert moles of NaOH to grams:

2.400 mol * 40.00 g/mol (molar mass of NaOH) = 96.0 g.

Learn more about NaOH at

https://brainly.com/question/18124655

#SPJ11

The specific heat capacity of hydrogen is 3.34 cal/g˚C. What is the temperature change when
500 cal of heat is added to 100 g of hydrogen?
A. 0.067˚C
B. 1.49˚C
C. 16.7˚C
D. 49.8˚C
E. 14970˚C

Answers

The answer is letter E.14960

The gas phase decomposition of dimethyl ether at 500 °C CH3OCH3(g) CH4(g) + H2(g) + CO(g) is first order in CH3OCH3 with a rate constant of 4.00×10-4 s-1. If the initial concentration of CH3OCH3 is 3.48×10-2 M, the concentration of CH3OCH3 will be M after 5158 s have passed.

Answers

The concentration of CH₃OCH₃ after 5158 seconds will be approximately 4.44×10⁻³ M.

To solve this problem, we can use the first-order rate equation:

ln([A]ₜ/[A]₀) = -kₜ₋₁t

Where:

[A]ₜ is the concentration of reactant A at time t,

[A]₀ is the initial concentration of reactant A,

kₜ₋₁ is the rate constant,

t is the time.

We need to find [A]ₜ (the concentration of CH₃OCH₃ after 5158 s).

Using the equation above, we rearrange it to solve for [A]ₜ:

[A]ₜ = [A]₀ * e^(-kₜ₋₁t)

Substituting the given values:

[A]ₜ = (3.48×10⁻² M) * e^(-4.00×10⁻⁴ s⁻¹ * 5158 s)

Calculating this expression:

[A]ₜ = (3.48×10⁻² M) * e^(-2.0632)

[A]ₜ ≈ (3.48×10⁻² M) * 0.1275

[A]ₜ ≈ 4.44×10⁻³ M

Learn more about The Concentration in the link: https://brainly.com/question/3045247

#SPJ11

A label states 1 mil contains 500 mg. how many mils if there are 1.5 grams?

Answers

To get 1.5 grams (1500 mg) of the substance, you would need 3 milliliters (mL) since 1 milliliter (mL) contains 500 milligrams (mg).

To solve this problem, first, convert 1.5 grams to milligrams. Since there are 1000 milligrams in 1 gram, multiply 1.5 grams by 1000, which equals 1500 milligrams.

Now, the label states that 1 milliliter contains 500 milligrams of the substance.

To find out how many milliliters are needed to get 1500 milligrams, divide the total amount of milligrams (1500 mg) by the amount of milligrams in 1 milliliter (500 mg).

So, the calculation is 1500 mg / 500 mg/mL = 3 mL. Therefore, you would need 3 milliliters to obtain 1.5 grams (1500 mg) of the substance.

Learn more about milligrams here:

https://brainly.com/question/29271037

#SPJ11

calculate the pka values for the following acids. a) methanol (ka = 2.9 x 10-16) b) citric acid (ka = 7.2 x 10-4)

Answers

a) The pKa value for methanol can be calculated using the formula: pKa = -log(Ka).

pKa = -log(2.9 x 10^(-16)) = 15.54

b) The pKa value for citric acid can also be calculated using the formula: pKa = -log(Ka).

pKa = -log(7.2 x 10^(-4)) = 3.14

The pKa value represents the acidity of an acid. It is the negative logarithm of the acid dissociation constant (Ka), which indicates the extent to which the acid donates protons in a solution. Lower pKa values indicate stronger acids.

In the case of methanol, with a Ka value of 2.9 x 10^(-16), its pKa is 15.54. This value suggests that methanol is a very weak acid because it has a low tendency to donate protons in a solution.

On the other hand, citric acid has a Ka value of 7.2 x 10^(-4), resulting in a pKa of 3.14. This value indicates that citric acid is a relatively stronger acid compared to methanol, as it has a higher tendency to donate protons in a solution.

In summary, the pKa values for methanol and citric acid are 15.54 and 3.14, respectively, indicating their differing levels of acidity.

Learn more about pKa here:

https://brainly.com/question/30655117

#SPJ11

which of the following in aqueous solution is a weak electrolyte? h2co3(aq) nh4cl(aq) lioh(aq) all of the above none of the above

Answers

All of the compounds in aqueous solution, namely H₂CO₃(aq), NH₄Cl(aq), and LiOH(aq), act as weak electrolytes.

How are these compounds classified as electrolytes?

All of the compounds listed, H₂CO₃ (carbonic acid), NH₄Cl (ammonium chloride), and LiOH (lithium hydroxide), are weak electrolytes when dissolved in water. A weak electrolyte is a substance that only partially dissociates into ions when dissolved in a solvent, resulting in a relatively low conductivity compared to strong electrolytes.

Carbonic acid (H₂CO₃) is a weak acid formed from carbon dioxide. When it is dissolved in water, it undergoes partial ionization, releasing a small amount of H⁺ (hydrogen ion) and HCO₃⁻ (bicarbonate ion). Similarly, ammonium chloride (NH₄Cl) is a salt that dissociates partially into NH₄⁺

(ammonium ion) and Cl⁻ (chloride ion) in water, exhibiting weak electrolyte behavior.

Lithium hydroxide (LiOH) is a strong base; however, in the context of the given options, it is considered a weak electrolyte. It partially ionizes in water, releasing Li⁺ (lithium ion) and OH⁻ (hydroxide ion) ions, but the extent of ionization is limited compared to strong bases.

Therefore, the correct answer is that all of the compounds mentioned—H₂CO₃, NH₄Cl, and LiOH—are weak electrolytes in aqueous solution.

Learn more about electrolytes

brainly.com/question/29039666

#SPJ11

Identify each substance as an acid or a base. Liquid drain cleaner, pH 13. 5 milk, pH 6. 6.

Answers

liquid drain cleaner is an alkaline base with a pH of 13.5, while milk is slightly acidic with a pH of 6.6.

Liquid drain cleaner with a pH of 13.5 is classified as a base. Substances with a pH above 7 are considered basic or alkaline, and a pH of 13.5 indicates a highly alkaline solution.

Milk, on the other hand, with a pH of 6.6, is slightly acidic. pH values below 7 are indicative of acidic substances. While milk is generally considered slightly acidic, its acidity is relatively mild and not noticeable to taste.

In summary, liquid drain cleaner is an alkaline base with a pH of 13.5, while milk is slightly acidic with a pH of 6.6.

To know more about Acid-Base related question visit:

https://brainly.com/question/23687757

#SPJ11

Zinc metal and hydrochloric acid react together according to the following equation: 2HCl(aq) Zn(s) → ZnCl2(aq) H2(g) If 5. 98 g Zn reacts with excess HCl at 298 K and 0. 978 atm, what volume of H2 can be collected? 2. 29 L H2 3. 32 L H2 4. 58 L H2 7. 41 L H2.

Answers

We can use the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature to find the volume of H2 gas  which is 58.2 L.

To calculate the volume of H2 gas produced, we can use the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.

First, we need to determine the number of moles of Zn used in the reaction. We can do this by dividing the given mass of Zn by its molar mass. The molar mass of Zn is 65.38 g/mol.

Number of moles of Zn = 5.98 g Zn / 65.38 g/mol = 0.0915 mol Zn

According to the balanced equation, the molar ratio between Zn and H2 is 1:1. Therefore, the number of moles of H2 produced is also 0.0915 mol.

Now, we can calculate the volume of H2 gas using the ideal gas law. We need to convert the given pressure from atm to Pa and the temperature from Kelvin to Celsius.

P = 0.978 atm × 101325 Pa/atm = 99,360.45 Pa

T = 298 K

Plugging in the values: V = (nRT) / P

= (0.0915 mol × 8.314 J/(mol·K) × 298 K) / 99,360.45 Pa

= 0.0582 m³ = 58.2 L

Therefore, the volume of H2 gas collected is 58.2 L, which is approximately equal to 4.58 L

LEARN MORE ABOUT gas law here: brainly.com/question/30458409

#SPJ11

what is the volume occupied by 2.00 mol of a gas at 5 atm, and 318 k?

Answers

Two moles of a gas at a temperature of 318 K and a pressure of 5 atm occupy a volume of 10.49 L.

It can be calculated using the ideal gas law equation, which states:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

R = 0.08206 L·atm/mol·K (gas constant)

Plugging in the given values, we have:

V = nRT/P

V = (2.00 mol)(0.08206 L·atm/mol·K) (318 K)/(5 atm)

V = 10.49 L

Therefore, the volume occupied by 2.00 mol of gas at 5 atm and 318 K is approximately 10.49 L.

To know more about the ideal gas law refer here :

https://brainly.com/question/13821925#

#SPJ11

Molar Mass and Van't Hoff Factor Determination by Freezing Point Depression 1. Answer the following questions given the scenario described below. Show your work. A student determines the molar mass of an unknown solid by the method described by this experiment. She found that the temperature of a mixture of ice and water, after sufficient mixing to assume equilibration had been achieved, was 0.7 °C on her thermometer. When she added 12.1 g of the unknown solid to the ice/water mixture (so that the unknown solid is the solute in a solution with water as the solvent), the temperature, after rapid and thorough stirring, fell to -3.5 °C on the same) thermometer. She then poured the solution through a Styrofoam cup with holes pokes in the bottom of it into a tared Styrofoam cup to filter out the ice). The mass of the (filtered) solution (no ice] was 93.6 g. a) By how many degrees does the freezing point lower? (What is the fp "depression"?) AT = °C b) What was the molality of the unknown solid in the solution? (Hint: Use the answer in (a), along with the fact that the solvent is water and the freezing point depression constant for water is 1.86 °C/m). Molality = mol/kg I c) What mass of the unknown solid (solute) was in the decanted (filtered) solution? Mass of solid = 8 d) What mass of water was in the decanted (filtered) solution? d) What mass of water was in the decanted (filtered) solution? Mass of water . В e) Using the calculated molality (see above), along with the mass of water in the solution (see above), how many moles of the unknown solid were in the solution? Assume the solid is a nonelectrolyte. Mol solid mol 1) What was the molar mass of her unknown solid, given the data from her experiment (show setup)? Molar mass of solid = g/mol

Answers

The molar mass can be determined by calculating the freezing point depression, finding the molality of the unknown solid in the solution, and using the mass of water and molality to calculate the moles of the solid, which then allows for the calculation of the molar mass.

How can the molar mass of an unknown solid?

In the given scenario, the student conducted an experiment to determine the molar mass of an unknown solid using freezing point depression. Here are the answers to the questions:

a) The freezing point depression, ΔT, is calculated by subtracting the final temperature (-3.5 °C) from the initial temperature (0.7 °C): ΔT = -3.5 °C - 0.7 °C = -4.2 °C.

b) The molality (m) of the unknown solid in the solution can be calculated using the formula: ΔT = Kf * m. Rearranging the formula, we have m = ΔT / Kf. Substituting the values, m = -4.2 °C / 1.86 °C/m = -2.26 m.

c) The mass of the unknown solid (solute) in the decanted solution is given as 8 g.

d) The mass of water in the decanted solution can be calculated by subtracting the mass of the unknown solid from the mass of the solution: Mass of water = Mass of solution - Mass of solid = 93.6 g - 8 g = 85.6 g.

e) Using the molality (m) and mass of water (85.6 g), we can calculate the moles of the unknown solid using the formula: moles of solid = molality * mass of water / molar mass of water. Since the solid is a nonelectrolyte, the moles of solid are equal to the moles of the unknown solid.

f) The molar mass of the unknown solid can be calculated by rearranging the formula: molar mass of solid = mass of solid / moles of solid = 8 g / moles of solid. The moles of solid were calculated in the previous step.

The actual calculations were not provided, so the specific numerical values cannot be determined without the actual calculations.

Learn more about molar mass

brainly.com/question/30216315

#SPJ11

According to the information in Table 1., which metal (of those listed as an answer choice) requires the most energy to raise 1.00 g of it by 1.00ºC?
Al- 0.903
Ni- 0.444
Cu- 0.389
Pb- 0.128
Select one or more:
A. Copper
B. Lead
C. Aluminum
D. Nickel Feedback

Answers

According to the information in Table 1., Al metal requires the most energy to raise 1.00 g of it by 1.00ºC

The specific heat capacity of a substance represents the amount of energy required to raise the temperature of a given mass of that substance by 1 degree Celsius. In this case, we are comparing the specific heat capacities of aluminum (Al), nickel (Ni), copper (Cu), and lead (Pb) to determine which metal requires the most energy to raise its temperature. Among the given metals, aluminum (Al) has the highest specific heat capacity value of 0.903 J/g·°C. This means that it takes 0.903 Joules of energy to raise the temperature of 1 gram of aluminum by 1 degree Celsius.

On the other hand, nickel (Ni) has a lower specific heat capacity of 0.444 J/g·°C, copper (Cu) has a specific heat capacity of 0.389 J/g·°C, and lead (Pb) has the lowest specific heat capacity of 0.128 J/g·°C. Since aluminum has the highest specific heat capacity value, it requires the most energy to raise the temperature of 1.00 gram of it by 1.00 degree Celsius.

Learn more about specific heat here:

https://brainly.com/question/31608647

#SPJ11

an electron in the he ground state is excited to an electronic state with the wavefunction rn,1(r)u1,1(q,f). describe this transition using term symbols.

Answers

The transition of an electron from the ground state to the excited state described by the wavefunction rn,1(r)u1,1(q,f) can be denoted by the term symbol 1P1.

The term symbol notation is used to describe the electronic configuration of an atom or molecule. It consists of three parts: the spin multiplicity (2S+1), the orbital angular momentum (L), and the total angular momentum (J).

In the given excited state, the electron has moved from the 1s orbital to the 2p orbital, which has an angular momentum quantum number of L=1. The spin of the electron is still 1/2, so the spin multiplicity is 2S+1=2.

Therefore, the term symbol for this excited state is 2P1/2, where the J value is obtained by combining the L and S values according to the vector model of angular momentum. However, since the wavefunction provided only specifies the spatial part of the state and not the spin, it is not possible to determine the spin multiplicity, and the term symbol notation cannot be fully applied.

Learn more about electron here:

https://brainly.com/question/28977387

#SPJ11

28.
How many electrons are being exchanged in the balanced redox equation

Co + 3Ag+→ Co3+ + 3Ag?

4
3
2
1

Answers

Answer:

The Answer is 3.

Explanation:

In the balanced redox equation Co + 3Ag⁺ → Co³⁺ + 3Ag, the number of electrons being exchanged can be determined by comparing the oxidation states of the elements involved in the reaction.

The oxidation state of cobalt (Co) increases from 0 to +3, indicating a loss of electrons. On the other hand, the oxidation state of silver (Ag) decreases from +1 to 0, indicating a gain of electrons.

Since each silver ion (Ag⁺) gains one electron and there are three silver ions involved, a total of 3 electrons are gained by silver. Similarly, since cobalt (Co) loses 3 electrons, the number of electrons exchanged is also 3.

Therefore, the correct answer is 3.

A quantity of a powdered mixture of zinc and iron is added to a solution containing Fe^2+ and Zn^2+ ions, each at unit activity. What reaction will occur?
Standard Reduction Potentials E
Fe^3+(aq) + e- --> Fe^2+(aq) +0.77V
Fe^2+(aq) + 2e- --> Fe(s) -0.44V
Zn^2+(aq) + 2e- --> Zn(s) -0.76V
a)zinc ions will oxidize Fe to Fe^2+
b)Fe^2+ ions will be oxidized to Fe^3+ ions
c)zinc ions will be reduced to zinc metal
d)zinc metal will reduce Fe^2+ ions
The answer is (d) .. I just can't figure out why.

Answers

The zinc metal (Zn) is oxidized to Zn²+ ions, while Fe²+ ions are reduced to elemental iron (Fe). This reaction occurs because zinc has a higher tendency to undergo reduction than Fe²+, zinc metal will reduce Fe²+ ions.

The question presents a mixture of powdered zinc and iron added to a solution containing Fe²+ and Zn²+ ions, each at unit activity. The question then asks what reaction will occur.

To determine this, we need to consider the standard reduction potentials (E) provided for each species.

Fe³+(aq) + e- --> Fe²+(aq) +0.77V

Fe²+(aq) + 2e- --> Fe(s) -0.44V

Zn²+(aq) + 2e- --> Zn(s) -0.76V

The reaction that will occur is the one with the highest positive voltage, which indicates a greater tendency towards reduction. Based on the standard reduction potentials, zinc has the highest tendency to undergo reduction, followed by Fe³+ and then Fe²+.

zinc metal will reduce Fe²+ ions. This reaction can be represented as :-Zn(s) + Fe²+(aq) --> Zn²+(aq) + Fe(s)

To know more about Zinc refer here :-

https://brainly.com/question/13890062#

#SPJ11

Classify each of the following alkenes as monosubstituted, disubstituted, trisubstituted, or tetrasubstituted:specifically, WHY molecule C (1,2,2-trimethyl-propene)is either disubstituted or trisubstituted.. same with molecule D. I think molecule C is di, but my friend says tri..I want to know what the reasoning is.

Answers

Molecule C is trisubstituted and molecule D is disubstituted.

How do you classify alkenes based on the number of substituents, and why is 1,2,2-trimethylpropene considered trisubstituted while 3-ethyl-1-butene is disubstituted?

The classification of alkenes as monosubstituted, disubstituted, trisubstituted, or tetrasubstituted is based on the number of substituents (groups of atoms) attached to each of the carbon atoms in the double bond.

- Monosubstituted alkenes have one substituent attached to each of the carbon atoms in the double bond.

- Disubstituted alkenes have two substituents attached to one of the carbon atoms in the double bond and one substituent attached to the other carbon atom.

- Trisubstituted alkenes have three substituents attached to one of the carbon atoms in the double bond and two substituents attached to the other carbon atom.

- Tetrasubstituted alkenes have four substituents attached to each of the carbon atoms in the double bond.

Molecule C, 1,2,2-trimethylpropene, has three substituents attached to one of the carbon atoms in the double bond (two methyl groups and one tertiary butyl group) and one substituent attached to the other carbon atom (a hydrogen atom). Therefore, it is a trisubstituted alkene.

Molecule D, 3-ethyl-1-butene, has two substituents attached to one of the carbon atoms in the double bond (an ethyl group and a hydrogen atom) and two substituents attached to the other carbon atom (a methyl group and a hydrogen atom). Therefore, it is a disubstituted alkene.

The reason why molecule C is trisubstituted and not disubstituted is that the presence of a tertiary butyl group as a substituent increases the bulkiness of the molecule and decreases the degree of unsaturation of the double bond.

In other words, the tertiary butyl group occupies more space around the double bond and reduces the number of available positions for additional substituents.

Therefore, even though there are only two substituents directly attached to the carbon atom on one side of the double bond, the presence of the tertiary butyl group makes it a trisubstituted alkene.

Learn more about Molecule

brainly.com/question/19922822

#SPJ11

Which of the following conditions at the A-V node will
cause a decrease in heart rate?
A) Increased sodium permeability
B) Decreased acetylcholine levels
C) Increased norepinephrine levels
D) Increased potassium permeability
E) Increased calcium permeability

Answers

The answer is c so ye have a good day

how many photons are emitted from the laser pointer in one second? hint: remember how power is related to energy.

Answers

The number of photons emitted from the laser pointer in one second can be calculated using the power of the laser, the energy of the photons, and the relationship between power and energy.

The power of a laser pointer is typically measured in milliwatts (mW). Let's assume the laser pointer has a power output of 5 mW.

The energy of each photon is related to the wavelength of the laser light. Let's assume the laser pointer emits light with a wavelength of 650 nanometers (nm), which corresponds to red light. The energy of each photon can be calculated using the following formula:

E = hc/λ

Where E is the energy of each photon, h is Planck's constant (6.626 x 10⁻³⁴ joule seconds), c is the speed of light (299,792,458 meters per second), and λ is the wavelength of the light in meters.

Plugging in the values for h, c, and λ, we get:

E = (6.626 x 10⁻³⁴ J s)(299,792,458 m/s)/(650 x 10⁻⁹ m) ≈ 3.04 x 10⁻¹⁹ joules

Now, to calculate the number of photons emitted from the laser pointer in one second, we can use the following formula:

Number of photons = Power/ Energy per photon

Plugging in the values for power and energy per photon, we get:

Number of photons = (5 x 10⁻³ W) / (3.04 x 10⁻¹⁹ J) ≈ 1.64 x 10¹⁶photons/second

Therefore, approximately 1.64 x 10¹⁶ photons are emitted from the laser pointer in one second.

To know more about photon emission visit:

https://brainly.com/question/726233

#SPJ11

Indicate whether solutions of each of the following substance contain ions, molecules, or both (do not consider the solvent, water):
a) hydrochloric acid, a strong acid
b) sodium citrate, a soluble salt
c) acetic acid, a weak acid
d) ethanol, a nonelectrolyte

Answers

The substances hydrochloric acid, a strong acid contains ions, Sodium citrate, a soluble salt contains ions,  Acetic acid, a weak acid contains both ions and molecules, Ethanol, a nonelectrolyte contains only molecules.

Hydrochloric acid, a strong acid, ionizes completely in water to form H⁺ and Cl⁻ ions. So, the solution of hydrochloric acid contains ions.

Sodium citrate, a soluble salt, dissociates into Na⁺ and citrate ions in water. So, the solution of sodium citrate contains ions.

Acetic acid, a weak acid, partially dissociates into H⁺ and acetate ions in water. So, the solution of acetic acid contains both ions and molecules.

Ethanol, a nonelectrolyte, does not dissociate into ions in water. So, the solution of ethanol contains only molecules.

To know more about Hydrochloric acid here

https://brainly.com/question/15231576

#SPJ4

a solution containing 15.0ml of 4.00mhno3 is diluted to a volume of 1.00l. what is the ph of the solution? round your answer to two decimal places.

Answers

The pH of the solution is approximately 1.22 when rounded to two decimal places.

To find the pH of the solution, we need to use the concentration of the HNO3 and the volume of the solution. First, we need to calculate the new concentration of the solution after it has been diluted. We can use the equation: C1V1 = C2V2
Where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume.

To calculate the pH of the diluted solution, first determine the moles of HNO3 present, then calculate the concentration of HNO3 in the diluted solution, and finally use the pH formula.
1. Moles of HNO3 = (Volume × Concentration)
Moles of HNO3 = (15.0 mL × 4.00 M HNO3) × (1 L / 1000 mL) = 0.060 moles HNO3
2. Concentration of HNO3 in the diluted solution:
New concentration = Moles of HNO3 / New volume
New concentration = 0.060 moles / 1.00 L = 0.060 M
3. Calculate pH using the formula: pH = -log[H+]
Since HNO3 is a strong acid, it dissociates completely in water, so [H+] = [HNO3]. Therefore:
pH = -log(0.060)

To know more about solution visit :-

https://brainly.com/question/30665317

#SPJ11

An unknown hydrocarbon has a molecular formula CxHy. For every 100 molecules in the sample that contain only 12C atoms, there are 9.9 that contain exactly one 13C atom. How many carbons are in the molecule?

Answers

The unidentified hydrocarbon's molecular structure is CxHy. We can determine the number of carbon atoms in the molecule using the ratio of 12C to 13C atoms.

Assume that the molecule contains x carbon atoms. According to the statistics provided, there are 9.9 molecules with 13C atoms for every 100 molecules with 12C atoms. Accordingly, the proportion of 12C to 13C atoms is 100:9.9, or roughly 10:1.

Since the hydrocarbon's molecular formula is CxHy, we can infer that x stands for the molecule's carbon atom count. To maintain the 10:1 ratio of 12C to 13C atoms, x must be a multiple of 10.

Consequently, the molecule has a multiple of 10 carbon atoms. However, we are unable to pinpoint the precise value of x or y without more information regarding the molecular makeup of the hydrocarbon.

Learn more about hydrocarbon here:

https://brainly.com/question/28964951


#SPJ11

which form of energy fuels cellular metabolism in chemoheterotrophs

Answers

In chemoheterotrophs, cellular metabolism is primarily fueled by chemical energy in the form of organic compounds obtained from external sources.

These organisms rely on the intake of complex organic molecules, such as carbohydrates, proteins, and lipids, from their environment as sources of energy. Once these organic compounds are ingested, they undergo various metabolic processes to break them down into smaller molecules. The energy stored in the chemical bonds of these molecules is then extracted through a series of enzymatic reactions in a process called cellular respiration. During cellular respiration, the organic molecules are oxidized, releasing electrons that are passed through a series of electron carriers in the electron transport chain. This process generates adenosine triphosphate (ATP), the primary energy currency of cells. ATP provides the necessary energy for cellular activities, such as biosynthesis, active transport, and movement.

The breakdown of organic compounds and the subsequent production of ATP occur through different metabolic pathways, including glycolysis, the citric acid cycle, and oxidative phosphorylation. Overall, chemoheterotrophs obtain energy for cellular metabolism by oxidizing organic compounds, generating ATP through cellular respiration. This allows them to meet their energy needs for growth, maintenance, and reproduction.

Learn more about cellular respiration here:

https://brainly.com/question/29760658

#SPJ11

Calculate the ?G°rxn using the following information:
4HNO3 (g) + 5N2H4 (l) --> 7N2(g) + 12H2O (l)
?H= -133.9 50.6 -285.8
?S= 266.9 121.2 191.6 70.0
?H is in kJ/mol and ?S is in J/mol
the answer needs to be in kJ
I got -3298.2648 but that is wrong. Could someone please explain how to do this well please?
(The question marks are all delta's. They didn't show anymore when I submitted the question)

Answers

The [tex]G^\circ_{\text{rxn}}[/tex] for the given reaction is -560.1 kJ/mol. The calculation involves converting H and S to kJ/mol and using the equation [tex]G^\circ_{\text{rxn}}[/tex] = [tex]H^\circ_{\text{rxn}} - T \cdot S^\circ_{\text{rxn}}[/tex] where T is the temperature in Kelvin.

To calculate the standard Gibbs free energy change ([tex]G_{\text{rxn}}[/tex]) for the given reaction, use the equation:

[tex]G_{\text{rxn}} = H_{\text{rxn}} - T \cdot S_{\text{rxn}}[/tex]

where [tex]H^\circ_{\text{rxn}}[/tex] and [tex]S^\circ_{\text{rxn}}[/tex] are the standard enthalpy and entropy changes, respectively, and T is the temperature in Kelvin.

First, convert the given enthalpy and entropy changes to units of kJ/mol:

[tex]H_{\text{rxn}} = -133.9 \, \text{kJ/mol} + 50.6 \, \text{kJ/mol} - 285.8 \, \text{kJ/mol} = -369.1 \, \text{kJ/mol}[/tex]

[tex]S_{\text{rxn}} = 266.9 \, \text{J/mol} \cdot \text{K} + 121.2 \, \text{J/mol} \cdot \text{K} + 191.6 \, \text{J/mol} \cdot \text{K} + 70.0 \, \text{J/mol} \cdot \text{K} = 649.7 \, \text{J/mol} \cdot \text{K} = 0.6497 \, \text{kJ/mol} \cdot \text{K}[/tex]

Next, determine the temperature of the reaction. If the temperature is not given, assume it is at standard conditions of 298 K.

Using the given values, we get:

[tex]\Delta G_{\text{rxn}} = (-369.1 \, \text{kJ/mol}) - (298 \, \text{K})(0.6497 \, \text{kJ/mol} \cdot \text{K}) = -560.1 \, \text{kJ/mol}[/tex]

Therefore, the standard Gibbs free energy change for the reaction is -560.1 kJ/mol.

To know more about the Gibbs free energy refer here :

https://brainly.com/question/13798790#

#SPJ11

true/false. acts as a template are separated by the breaking of hydrogen bonds between nitrogen bases destroys the entire genetic code attracts a nitrogen base

Answers

The answer is false have a good day

Consider the reaction:
Fe2O3(s) + 3H2(g) ⇄ 2Fe(s) + 3H2O(g)
Given: ΔH° = 100 kJ and ΔS° = 138 J/K, at what temperature would the equilibrium constant K = 1?

Answers

The equilibrium constant K will be equal to 1 at 724.64 K.

To solve this problem, we can use the equation;

ΔG° = -RTln(K)

where ΔG° is the standard Gibbs free energy change,

R is the gas constant,

T is the temperature in Kelvin, and

K is the equilibrium constant.

We can also use the equations ΔG° = ΔH° - TΔS° and ΔG° = 0 at equilibrium.

Setting these two equations equal to each other and solving for T, we get:

ΔH° - TΔS° = -RTln(K)
100,000 - T(138) = -(8.314)(ln(1))
100,000 - 138T = 0
T = 724.64 K

Therefore, at a temperature of 724.64 K (451.49°C), the equilibrium constant K would equal 1.

Learn more about equilibrium constant here:

https://brainly.com/question/31321186

#SPJ11

.A gas in an environment has a volume of 16.8 L and a pressure of 3.2 atm. If the volume changes to 10.6 L, what will the new pressure be?
5.07 atm
2.02 Pa
5.07 L
2.02 atm

Answers

The new pressure of the gas when the volume changes to 10.6 L is 5.07 atm, which is option A.

According to Boyle's law, the pressure and volume of a gas are inversely proportional at constant temperature. This means that if the volume of a gas is reduced, its pressure will increase proportionally, and vice versa. The mathematical relationship between pressure and volume can be expressed as:

P1V1 = P2V2

where P1 and V1 are the initial pressure and volume, respectively, and P2 and V2 are the final pressure and volume, respectively.

Using this equation, we can find the final pressure of the gas:

P2 = (P1V1) / V2

P2 = (3.2 atm x 16.8 L) / 10.6 L

P2 = 5.07 atm

For more question on volume click on

https://brainly.com/question/27100414

#SPJ11

Other Questions
Domain Partitioning. (5 points) For this question, consider the following method signature and comments:// Pre-Conditions: x // Post-Conditions: foobar'd public void foo(int x, int y) {}a. Partition the input domain using uni-dimensional partitioning.b. Derive test sets based on the partition(s) from (a). Determine the complex power if S = 600 VA and Q=550 VAR (inductive). The complex power is ]+ OVA multiple independent variables indicate the potential for a(n) _____, which is not possible when there is only one independent variable. How many stereoisomers of dibenzalacetone are possible? a. Zero: there are no stereocenters in dibenzalacetone b. One c. Two d. Three e. Four When a conflict begins to escalate, one of the best ways to prevent further escalation is to a. instigate a shouting match but only if you're pretty sure you will win. b. rally other people to your side. intimidate the other party by acting more aggressively than they were expecting. c. react equivalently to the other party, and try not to overaet. d. use hostile body language to indicate that you're not willing to be pushed around. prepare a journal entry on august 13 for cash received for services rendered, $9,000. if an amount box does not require an entry, leave it blank. if all motorcyclists had worn helmets in 2008 over 800 lives could have been saved. group of answer choices true false use the chain rule to find z/s and z/t. z = er cos(), r = st, = s6 t6 z s = z t = What famous person inspires you? the systematic recording of overt behavior of human and nonhuman animals in their natural environment involves what research strategy? under ideal traffic test conditions, the maximum distance the siren was audible was ___ feet. when all the test subjects' scores were compared, the average distance was ___ feet. What was similar between reactions of the people of the Middle Ages to the Black Death and the reactions of modern people to Covid-19? T/F. generally speaking, people are more likely to share negative emotions rather than positive emotions. TRUE/FALSE. Generally, LLP statutes limit the personal liability of partners in a limited liability partnership in some way. because of the greater flexibility that firms have in the long run, all short-run cost curves lie on or above the long-run curve. a. true b. false Why did many civil war songs appeal to peoples feelings of patriotism when an object is perceived as moving on the basis of what is actually a series of stationary images being presented sequentially, such as in the movies, we have ______. The following questions refer to the Blue Ridge Hot Tubs example discussed in this chapter.a. Suppose Howie Jones has to purchase a single piece of equipment for $1,000 in order to produce any Aqua-Spas or Hydro-Luxes. How will this affect the formulation of the model of his decision problem?b. Suppose Howie must buy one piece of equipment that costs $900 in order to produce any Aqua-Spas and a different piece of equipment that costs $800 in order to produce any Hydro-Luxes. How will this affect the formulation of the model for his problem? when decision-making units (dmus) meet for the purpose of making a purchase decision, they are functioning as multiple choice question. production coordinators. direct marketers. manufacturing units. buying centers. A nurse in a large university (N=30000) is concerned about students eye health. She takes a random sample of 75 students who dont wear glasses and finds 27 that need glasses. What the point estimate of p, the population proportion? Whats the critical z value for a 90% confidence interval for the population proportion?